Publications

Publications / Conference

Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design

Eldred, Michael S.

Non-intrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) methods are attractive techniques for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. PCE estimates coefficients for known orthogonal polynomial basis functions based on a set of response function evaluations, using sampling, linear regression, tensor-product quadrature, or Smolyak sparse grid approaches. SC, on the other hand, forms interpolation functions for known coefficients, and requires the use of structured collocation point sets derived from tensor product or sparse grids. When tailoring the basis functions or interpolation grids to match the forms of the input uncertainties, exponential convergence rates can be achieved with both techniques for a range of probabilistic analysis problems. In addition, analytic features of the expansions can be exploited for moment estimation and stochastic sensitivity analysis. In this paper, the latest ideas for tailoring these expansion methods to numerical integration approaches will be explored, in which expansion formulations are modified to best synchronize with tensor-product quadrature and Smolyak sparse grids using linear and nonlinear growth rules. The most promising stochastic expansion approaches are then carried forward for use in new approaches for mixed aleatory-epistemic UQ, employing second-order probability approaches, and design under uncertainty, employing bilevel, sequential, and multifidelity approaches. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc.