Publications

Publications / SAND Report

Physics-Based Optical Neuromorphic Classification

Leonard, Francois L.; Teeter, Corinne M.; Vineyard, Craig M.

Typical approaches to classify scenes from light convert the light field to electrons to perform the computation in the digital electronic domain. This conversion and downstream computational analysis require significant power and time. Diffractive neural networks have recently emerged as unique systems to classify optical fields at lower energy and high speeds. Previous work has shown that a single layer of diffractive metamaterial can achieve high performance on classification tasks. In analogy with electronic neural networks, it is anticipated that multilayer diffractive systems would provide better performance, but the fundamental reasons for the potential improvement have not been established. In this work, we present extensive computational simulations of two - layer diffractive neural networks and show that they can achieve high performance with fewer diffractive features than single layer systems.