Publications

Publications / Conference Poster

Performance Portable Supernode-based Sparse Triangular Solver for Manycore Architectures

Yamazaki, Ichitaro Y.; Rajamanickam, Sivasankaran R.; Ellingwood, Nathan D.

Sparse triangular solver is an important kernel in many computational applications. However, a fast, parallel, sparse triangular solver on a manycore architecture such as GPU has been an open issue in the field for several years. In this paper, we develop a sparse triangular solver that takes advantage of the supernodal structures of the triangular matrices that come from the direct factorization of a sparse matrix. We implemented our solver using Kokkos and Kokkos Kernels such that our solver is portable to different manycore architectures. This has the additional benefit of allowing our triangular solver to use the team-level kernels and take advantage of the hierarchical parallelism available on the GPU. We compare the effects of different scheduling schemes on the performance and also investigate an algorithmic variant called the partitioned inverse. Our performance results on an NVIDIA V100 or P100 GPU demonstrate that our implementation can be 12.4 × or 19.5 × faster than the vendor optimized implementation in NVIDIA's CuSPARSE library.