Publications
Particle dynamics modeling methods for colloid suspensions
Bolintineanu, Dan S.; Grest, Gary S.; Lechman, Jeremy B.; Pierce, Flint P.; Plimpton, Steven J.; Schunk, Randy
We present a review and critique of several methods for the simulation of the dynamics of colloidal suspensions at the mesoscale. We focus particularly on simulation techniques for hydrodynamic interactions, including implicit solvents (Fast Lubrication Dynamics, an approximation to Stokesian Dynamics) and explicit/particle-based solvents (Multi-Particle Collision Dynamics and Dissipative Particle Dynamics). Several variants of each method are compared quantitatively for the canonical system of monodisperse hard spheres, with a particular focus on diffusion characteristics, as well as shear rheology and microstructure. In all cases, we attempt to match the relevant properties of a well-characterized solvent, which turns out to be challenging for the explicit solvent models. Reasonable quantitative agreement is observed among all methods, but overall the Fast Lubrication Dynamics technique shows the best accuracy and performance. We also devote significant discussion to the extension of these methods to more complex situations of interest in industrial applications, including models for non-Newtonian solvent rheology, non-spherical particles, drying and curing of solvent and flows in complex geometries. This work identifies research challenges and motivates future efforts to develop techniques for quantitative, predictive simulations of industrially relevant colloidal suspension processes.