Publications
Open science on Trinity's knights landing partition: An analysis of user job data
Levy, Scott; Pedretti, Kevin P.; Ferreira, Kurt B.
High-performance computing (HPC) systems are critically important to the objectives of universities, national laboratories, and commercial companies. Because of the cost of deploying and maintaining these systems ensuring their efficient use is imperative. Job scheduling and resource management are critically important to the efficient use of HPC systems. As a result, significant research has been conducted on how to effectively schedule user jobs on HPC systems. Developing and evaluating job scheduling algorithms, however, requires a detailed understanding of how users request resources on HPC systems. In this paper, we examine a corpus of job data that was collected on Trinity, a leadership-class supercomputer. During the stabilization period of its Intel Xeon Phi (Knights Landing) partition, it was made available to users outside of a classified environment for the Trinity Open Science Phase 2 campaign. We collected information from the resource manager about each user job that was run during this Open Science period. In this paper, we examine the jobs contained in this dataset. Our analysis reveals several important characteristics of the jobs submitted during the Open Science period and provides critical insight into the use of one of the most powerful supercomputers in existence. Specifically, these data provide important guidance for the design, development, and evaluation of job scheduling and resource management algorithms.