Publications

Publications / Conference

Nonlinear programming strategies for source detection of municipal water networks

van Bloemen Waanders, Bart G.; van Bloemen Waanders, Bart G.; Bartlett, Roscoe B.

Increasing concerns for the security of the national infrastructure have led to a growing need for improved management and control of municipal water networks. To deal with this issue, optimization offers a general and extremely effective method to identify (possibly harmful) disturbances, assess the current state of the network, and determine operating decisions that meet network requirements and lead to optimal performance. This paper details an optimization strategy for the identification of source disturbances in the network. Here we consider the source inversion problem modeled as a nonlinear programming problem. Dynamic behavior of municipal water networks is simulated using EPANET. This approach allows for a widely accepted, general purpose user interface. For the source inversion problem, flows and concentrations of the network will be reconciled and unknown sources will be determined at network nodes. Moreover, intrusive optimization and sensitivity analysis techniques are identified to assess the influence of various parameters and models in the network in a computational efficient manner. A number of numerical comparisons are made to demonstrate the effectiveness of various optimization approaches.