Publications
Neural Networks as Surrogates of Nonlinear High-Dimensional Parameter-to-Prediction Maps
Jakeman, John D.; Perego, Mauro P.; Severa, William M.
We present a preliminary investigation of the use of Multi-Layer Perceptrons (MLP) and Recurrent Neural Networks (RNNs) as surrogates of parameter-to-prediction maps of com- putational expensive dynamical models. In particular, we target the approximation of Quan- tities of Interest (QoIs) derived from the solution of a Partial Differential Equations (PDEs) at different time instants. In order to limit the scope of our study while targeting a rele- vant application, we focus on the problem of computing variations in the ice sheets mass (our QoI), which is a proxy for global mean sea-level changes. We present a number of neural network formulations and compare their performance with that of Polynomial Chaos Expansions (PCE) constructed on the same data.