Publications
Neural computing for scientific computing applications
Aimone, James B.; Parekh, Ojas D.; Severa, William M.
Neural computing has been identified as a computing alternative in the post-Moore's Law era, however much of its attention has been directed at specialized applications such as machine learning. For scientific computing applications, particularly those that often depend on supercomputing, it is not clear that neural machine learning is the exclusive contribution to be made by neuromorphic platforms. In our presentation, we will discuss ways that looking to the brain as a whole and neurons specifically can provide new sources for inspiration for computing beyond current machine learning applications. Particularly for scientific computing, where approximate methods for computation introduce additional challenges, the development of non-approximate methods for neural computation is potentially quite valuable. In addition, the brain's dramatic ability to utilize context at many different scales and incorporate information from many different modalities is a capability currently poorly realized by neural machine learning approaches yet offers considerable potential impact on scientific applications.