Publications

Publications / Conference

Multilinear algebra for analyzing data with multiple linkages

Dunlavy, Daniel D.; Kolda, Tamara G.; Kegelmeyer, William P.

Link analysis typically focuses on a single type of connection, e.g., two journal papers are linked because they are written by the same author. However, often we want to analyze data that has multiple linkages between objects, e.g., two papers may have the same keywords and one may cite the other. The goal of this paper is to show that multilinear algebra provides a tool for multilink analysis. We analyze five years of publication data from journals published by the Society for Industrial and Applied Mathematics. We explore how papers can be grouped in the context of multiple link types using a tensor to represent all the links between them. A PARAFAC decomposition on the resulting tensor yields information similar to the SVD decomposition of a standard adjacency matrix. We show how the PARAFAC decomposition can be used to understand the structure of the document space and define paper-paper similarities based on multiple linkages. Examples are presented where the decomposed tensor data is used to find papers similar to a body of work (e.g., related by topic or similar to a particular author's papers), find related authors using linkages other than explicit co-authorship or citations, distinguish between papers written by different authors with the same name, and predict the journal in which a paper was published.