Publications

Publications / Conference Poster

Multifideliy optimization under uncertainty for a scramjet-inspired problem

Menhorn, Friedrich M.; Geraci, Gianluca G.; Eldred, Michael S.; Marzouk, Youssef M.

SNOWPAC (Stochastic Nonlinear Optimization With Path-Augmented Constraints) is a method for stochastic nonlinear constrained derivative-free optimization. For such problems, it extends the path-augmented constraints framework introduced by the deterministic optimization method NOWPAC and uses a noise-adapted trust region approach and Gaussian processes for noise reduction. In recent developments, SNOWPAC is available in the DAKOTA framework which offers a highly flexible interface to couple the optimizer with different sampling strategies or surrogate models. In this paper we discuss details of SNOWPAC and demonstrate the coupling with DAKOTA. We showcase the approach by presenting design optimization results of a shape in a 2D supersonic duct. This simulation is supposed to imitate the behavior of the flow in a SCRAMJET simulation but at a much lower computational cost. Additionally different mesh or model fidelities can be tested. Thus, it serves as a convenient test case before moving to costly SCRAMJET computations. Here, we study deterministic results and results obtained by introducing uncertainty on inflow parameters. As sampling strategies we compare classical Monte Carlo sampling with multilevel Monte Carlo approaches for which we developed new error estimators. All approaches show a reasonable optimization of the design over the objective while maintaining or seeking feasibility. Furthermore, we achieve significant reductions in computational cost by using multilevel approaches that combine solutions from different grid resolutions.