Publications

Publications / SAND Report

Interatomic Potentials Models for Cu-Ni and Cu-Zr Alloys

Safta, Cosmin S.; Geraci, Gianluca G.; Eldred, Michael S.; Najm, H.N.; Riegner, David R.; Windl, Wolfgang W.

This study explores a Bayesian calibration framework for the RAMPAGE alloy potential model for Cu-Ni and Cu-Zr systems, respectively. In RAMPAGE potentials, it is proposed that once calibrated potentials for individual elements are available, the inter-species interac- tions can be described by fitting a Morse potential for pair interactions with three parameters, while densities for the embedding function can be scaled by two parameters from the elemen- tal densities. Global sensitivity analysis tools were employed to understand the impact each parameter has on the MD simulation results. A transitional Markov Chain Monte Carlo al- gorithm was used to generate samples from the multimodal posterior distribution consistent with the discrepancy between MD simulation results and DFT data. For the Cu-Ni system the posterior predictive tests indicate that the fitted interatomic potential model agrees well with the DFT data, justifying the basic RAMPAGE assumtions. For the Cu-Zr system, where the phase diagram suggests more complicated atomic interactions than in the case of Cu-Ni, the RAMPAGE potential captured only a subset of the DFT data. The resulting posterior distri- bution for the 5 model parameters exhibited several modes, with each mode corresponding to specific simulation data and a suboptimal agreement with the DFT results.