Publications
Global Solution Strategies for the Network-Constrained Unit Commitment Problem with AC Transmission Constraints
Liu, Jianfeng; Laird, Carl D.; Scott, Joseph K.; Watson, Jean-Paul W.; Castillo, Anya
We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current (ac) model of the transmission network, which is a nonconvex mixed-integer nonlinear programming problem. Our algorithm is based on the multi-tree global optimization methodology, which iterates between a mixed-integer lower-bounding problem and a nonlinear upper-bounding problem. We exploit the mathematical structure of the unit commitment problem with ac power flow constraints and leverage second-order cone relaxations, piecewise outer approximations, and optimization-based bounds tightening to provide a globally optimal solution at convergence. Numerical results on four benchmark problems illustrate the effectiveness of our algorithm, both in terms of convergence rate and solution quality.