Publications
Glider communications and controls for the sea sentry mission
Feddema, John T.; Dohner, Jeffrey L.
This report describes a system level study on the use of a swarm of sea gliders to detect, confirm and kill littoral submarine threats. The report begins with a description of the problem and derives the probability of detecting a constant speed threat without networking. It was concluded that glider motion does little to improve this probability unless the speed of a glider is greater than the speed of the threat. Therefore, before detection, the optimal character for a swarm of gliders is simply to lie in wait for the detection of a threat. The report proceeds by describing the effect of noise on the localization of a threat once initial detection is achieved. This noise is estimated as a function of threat location relative to the glider and is temporally reduced through the use of an information or Kalman filtering. In the next section, the swarm probability of confirming and killing a threat is formulated. Results are compared to a collection of stationary sensors. These results show that once a glider has the ability to move faster than the threat, the performance of the swarm is equal to the performance of a stationary swarm of gliders with confirmation and kill ranges equal to detection range. Moreover, at glider speeds greater than the speed of the threat, swarm performance becomes a weak function of speed. At these speeds swarm performance is dominated by detection range. Therefore, to future enhance swarm performance or to reduce the number of gliders required for a given performance, detection range must be increased. Communications latency is also examined. It was found that relatively large communication delays did little to change swarm performance. Thus gliders may come to the surface and use SATCOMS to effectively communicate in this application.