Publications

Publications / Conference

First principles predictions of intrinsic defects in aluminum arsenide, AlAs

Schultz, Peter A.

The structures, energies, and energy levels of a comprehensive set of simple intrinsic point defects in aluminum arsenide are predicted using density functional theory (DFT). The calculations incorporate explicit and rigorous treatment of charged supercell boundary conditions. The predicted defect energy levels, computed as total energy differences, do not suffer from the DFT band gap problem, spanning the experimental gap despite the Kohn-Sham eigenvalue gap being much smaller than experiment. Defects in AlAs exhibit a surprising complexity - with a greater range of charge states, bistabilities, and multiple negative-U systems - that would be impossible to resolve with experiment alone. The simulation results can be used to populate defect physics models in III-V semiconductor device simulations with reliable quantities in those cases where experimental data is lacking, as in AlAs. © 2011 Materials Research Society.