Publications
Evaluating the Potential of a Laplacian Linear Solver
Boman, Erik G.; Deweese, Kevin D.; Gilbert, John R.
A new approach for solving Laplacian linear systems proposed by Kelner et al. involves the random sampling and update of fundamental cycles in a graph. We evaluate the performance of this approach on a variety of real world graphs. We examine di erent ways to choose the set of cycles and their sequence of updates with the goal of providing more exibility and potential parallelism. We propose a parallel model of the Kelner et al. method for evaluating potential parallelism concerned with minimizing the span of edges updated at every iteration. We provide experimental results comparing the potential parallelism of the fundamental cycle basis and the extended basis. Our preliminary experiments show that choosing a non-fundamental set of cycles can save signi cant work compared to a fundamental cycle basis.