Publications

Publications / Conference Poster

Design methodology for optimizing optical interconnection networks in high performance systems

Rumley, Sébastien; Glick, Madeleine; Hammond, Simon D.; Rodrigues, Arun; Bergman, Keren

Modern high performance computers connect hundreds of thousands of endpoints and employ thousands of switches. This allows for a great deal of freedom in the design of the network topology. At the same time, due to the sheer numbers and complexity involved, it becomes more challenging to easily distinguish between promising and improper designs. With ever increasing line rates and advances in optical interconnects, there is a need for renewed design methodologies that comprehensively capture the requirements and expose tradeoffs expeditiously in this complex design space. We introduce a systematic approach, based on Generalized Moore Graphs, allowing one to quickly gauge the ideal level of connectivity required for a given number of end-points and traffic hypothesis, and to collect insight on the role of the switch radix in the topology cost. Based on this approach, we present a methodology for the identification of Pareto-optimal topologies. We apply our method to a practical case with 25,000 nodes and present the results.