Publications
An empirical comparison of graph laplacian solvers
Boman, Erik G.; Deweese, Kevin; Gilbert, John R.
Solving Laplacian linear systems is an important task in a variety of practical and theoretical applications. This problem is known to have solutions that perform in linear times polylogarithmic work in theory, but these algorithms are difficult to implement in practice. We examine existing solution techniques in order to determine the best methods currently available and for which types of problems are they useful. We perform timing experiments using a variety of solvers on a variety of problems and present our results. We discover differing solver behavior between web graphs and a class of synthetic graphs designed to model them.