Publications
ALEGRA: An arbitrary Lagrangian-Eulerian multimaterial, multiphysics code
Robinson, Allen C.; Brunner, Thomas A.; Carroll, Susan; Richarddrake; Garasi, Christopher J.; Gardiner, Thomas; Haill, Thomas; Hanshaw, Heath; Hensinger, David; Labreche, Duane; Lemke, Raymond; Love, Edward; Luchini, Christopher; Mosso, Stewart; Niederhaus, John; Ober, Curtis C.; Petney, Sharon; Rider, William J.; Scovazzi, Guglielmo; Strack, O.E.; Summers, Randall; Trucano, Timothy; Weirs, V.G.; Wong, Michael; Voth, Thomas
ALEGRA is an arbitrary Lagrangian-Eulerian (multiphysics) computer code developed at Sandia National Laboratories since 1990. The code contains a variety of physics options including magnetics, radiation, and multimaterial flow. The code has been developed for nearly two decades, but recent work has dramatically improved the code's accuracy and robustness. These improvements include techniques applied to the basic Lagrangian differencing, artificial viscosity and the remap step of the method including an important improvement in the basic conservation of energy in the scheme. We will discuss the various algorithmic improvements and their impact on the results for important applications. Included in these applications are magnetic implosions, ceramic fracture modeling, and electromagnetic launch. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.