Publications
Adapting Secure MultiParty Computation to Support Machine Learning in Radio Frequency Sensor Networks
Berry, Jonathan W.; Ganti, Anand G.; Goss, Kenneth G.; Mayer, Carolyn D.; Onunkwo, Uzoma O.; Phillips, Cynthia A.; Saia, Jared S.; Shead, Timothy M.
In this project we developed and validated algorithms for privacy-preserving linear regression using a new variant of Secure Multiparty Computation (MPC) we call "Hybrid MPC" (hMPC). Our variant is intended to support low-power, unreliable networks of sensors with low-communication, fault-tolerant algorithms. In hMPC we do not share training data, even via secret sharing. Thus, agents are responsible for protecting their own local data. Only the machine learning (ML) model is protected with information-theoretic security guarantees against honest-but-curious agents. There are three primary advantages to this approach: (1) after setup, hMPC supports a communication-efficient matrix multiplication primitive, (2) organizations prevented by policy or technology from sharing any of their data can participate as agents in hMPC, and (3) large numbers of low-power agents can participate in hMPC. We have also created an open-source software library named "Cicada" to support hMPC applications with fault-tolerance. The fault-tolerance is important in our applications because the agents are vulnerable to failure or capture. We have demonstrated this capability at Sandia's Autonomy New Mexico laboratory through a simple machine-learning exercise with Raspberry Pi devices capturing and classifying images while flying on four drones.