Publications
Accelerated Cartesian expansions for the rapid solution of periodic multiscale problems
Baczewski, Andrew D.; Dault, Daniel D.; Shanker, Balasubramaniam S.
We present an algorithm for the fast and efficient solution of integral equations that arise in the analysis of scattering from periodic arrays of PEC objects, such as multiband frequency selective surfaces (FSS) or metamaterial structures. Our approach relies upon the method of Accelerated Cartesian Expansions (ACE) to rapidly evaluate the requisite potential integrals. ACE is analogous to FMM in that it can be used to accelerate the matrix vector product used in the solution of systems discretized using MoM. Here, ACE provides linear scaling in both CPU time and memory. Details regarding the implementation of this method within the context of periodic systems are provided, as well as results that establish error convergence and scalability. In addition, we also demonstrate the applicability of this algorithm by studying several exemplary electrically dense systems.