Publications

Publications / Report

A network architecture for Petaflops supercomputers

DeBenedictis, Erik; DeBenedictis, Erik

If we are to build a supercomputer with a speed of 10{sup 15} floating operations per second (1 PetaFLOPS), interconnect technology will need to be improved considerably over what it is today. In this report, we explore one possible interconnect design for such a network. The guiding principle in this design is the optimization of all components for the finiteness of the speed of light. To achieve a linear speedup in time over well-tested supercomputers of todays' designs will require scaling up of processor power and bandwidth and scaling down of latency. Latency scaling is the most challenging: it requires a 100 ns user-to-user latency for messages traveling the full diameter of the machine. To meet this constraint requires simultaneously minimizing wire length through 3D packaging, new low-latency electrical signaling mechanisms, extremely fast routers, and new network interfaces. In this report, we outline approaches and implementations that will meet the requirements when implemented as a system. No technology breakthroughs are required.