Multiphysics Simulation Technologies

Multiphysics Simulation Technologies develops advanced or novel simulation methods and application software designed for use on high-performance computing platforms to solve currently intractable problems of national importance. Current strategic thrusts include development and application of peridynamics and gradient-free methods for material failure, fracture, and fragmentation and development of new integrated capabilities in support of nuclear energy, including reactor performance and safety and used nuclear fuel storage and disposal. Core areas of competency include PDE solution methods, multiscale techniques, multiphysics coupling, embedded uncertainty quantification, constitutive modeling, and code development.

Research Area: Multiphysics Simulation Technologies

Related Projects
Albany
Contact
Salinger, Andrew G., agsalin@sandia.gov