Srideep Musuvathy

Cognitive and Emerging Computing

Author profile picture

Cognitive and Emerging Computing

smusuva@sandia.gov

Google Scholar

LinkedIn

(505) 844-1753

Sandia National Laboratories, New Mexico
P.O. Box 5800
Albuquerque, NM 87185-1327

Biography

Dr. Srideep Musuvathy is a Principal Member of Technical Staff in the Center for Computing Research at Sandia National Laboratories. His research focuses on developing algorithms and co-design solutions for autonomous systems. At Sandia, his focus is on both machine learning, and algorithms and software abstractions for emerging computing systems. 

Before joining Sandia, he was involved in research in controls, biomedical signal processing and systems modeling, machine learning, and robotics. 

When not working, he enjoys cooking – both exploring new recipes from around the world, and perfecting some old favorites. He also enjoys hiking the mountains of New Mexico and skiing in winter. 

Education

M.A., Mathematics, University of Southern California, Los Angeles, CA, 2012

Ph.D., Electrical Engineering, University of Southern California, Los Angeles, CA, 2011

M.S., Electrical Engineering, University of Southern California, Los Angeles, CA, 2007

M.S., Computer Science, University of Southern California, Los Angeles, CA, 2007

B.E., Electrical and Electronics Engineering, Madurai Kamaraj University, India, 2001

Publications

Papers

  1. Wang, F., Teeter, C., Luca, S., Musuvathy, S., Aimone, J., “Distributed Localization with Grid-based Representations on Digital Elevation Models”, International Conference on Neuromorphic Systems ICONS 2022, Knoxville, TN. 2022
  2. Bailey, T., Gomez, A., Musuvathy, S., “Shortest Path Navigation using Reinforcement Learning”, 2022 Machine Learning and Deep Learning (MLDL) Workshop 2022, Albuquerque, NM. 2022
  3. Musuvathy, S., Pagan, J., Crowder, D., Vineyard, C., Williams, K., “Intelligent Agent-Driven Exploration for Wargaming”, AI for Contested Space Training, Strategy, Tactics, & Force Shaping Workshop 2022
  4. Wang, F., Teeter, C., Luca, S., Musuvathy, S., Aimone, J., “Localization through Grid-based En- codings on Digital Elevation Models”, Neuro-Inspired Computational Elements Workshop (NICE), 2022
  5. Vineyard, C., Cardwell, S., Chance, F., Musuvathy, S., Rothganger, F., Severa, W., Smith, J., Teeter, C., Wang, F., Aimone, J., “Neural Mini-Apps as a Tool for Neuromorphic Computing Insight”, Neuro-Inspired Computational Elements Workshop (NICE), 2022
  6. Williams K., Schlossman R., Whitten W., Ingram J., Musuvathy S., Patel A., Pagan J., Williams K., Green S., Mazumdar A., Parish J., “Trajectory Planning with Deep Reinforcement Learning in High-Level Action Spaces”,  in IEEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 3, pp. 2513-2529, June 2023, doi: 10.1109/TAES.2022.3218496.
  7. Galiardi M., Musuvathy S., Thorpe J., Verzi S., Vugrin E., Dykstra M., “Threat Data Generation for Space Systems”, IEEE Space Computing Conference 2021
  8. Severa W., Aimone J., Vineyard C., Musuvathy S., Ho Y., Kane Z., Reeder L., “Platform-Agnostic Neural Algorithm Composition using Fugu”, Neuro-Inspired Computational Elements 2021.
  9. Thorpe J., Musuvathy S., Verzi S., Vugrin E., Dykstra M., Sahakian M., “GAMVT: A Genera- tive Algorithm for Multi-Variate Timeseries Data”, Joint Statistical Meetings (JSM) 2021 in Seattle, Washington, United States.
  10. Galiardi M., Musuvathy S., Thorpe J., Verzi S., Vugrin E., Dykstra M., Umbenhower M., “AIRSS: Adaptive Intrusion Response for Space Systems”, AFRL Catalyst Accelerator 2020
  11. Vineyard C., Melzer R., Musuvathy S., Richards J., Severa W., Smith J., “Neural Network Approaches for Enabling Automatic Target Recognition”, Workshop: Uncertainty Management and Machine Learning in Engineering Applications 2020.
  12. Chance F. S., Aimone J.B., Musuvathy S.S., Smith M.R., Vineyard C.M., Wang F. “Crossing the Cleft: Communication Challenges Between Neuroscience and Artificial Intelligence”, Frontiers in Computational Neuroscience, vol 14, 2020. DOI 10.3389/fncom.2020.00039.
  13. Cardwell S, Vineyard CM, Severa W, Chance F, Rothganger F, Wang F, Musuvathy S, Teeter CM, and Aimone JB, “Truly heterogeneous HPC: co-design to achieve what science needs from HPC”, 2020 Smoky Mountains Computational Sciences and Engineering Conference (SMC2020)
  14. Anwar A., Cardwell S., Musuvathy S., Severa W., Vineyard C., “Evolving Spiking Circuit Motifs Using Weight Agnostic Neural Networks”, International Conference on Neuromorphic Systems 2020.
  15. Thorpe J., Verzi S., Musuvathy S., Vugrin E., Galiardi M., “Threat Data Generation for a More Resilient Response”, Machine Learning and Deep Learning Workshop, 2020
  16. Cauthen K., Musuvathy S., Verzi S., Kaikaus J., “Machine learning approaches for modeling spatio-temporal patterns in subsurface energy production”, American Geographical Union Fall Meeting, 2020.
  17. Musuvathy S., Jonckheere E.A., Ariaei F., “Zero-One Test for Mixing Dynamics in RR Sequence” 2nd Annual International Congress of Cardiology ICC-2010, Shangai, China. December 2010.
  18. Musuvathy S., Jonckheere E.A., ”Evidence of spatio-temporal transition to chaos in the spine,” 4th International Symposium on Communication, Control and Signal Processing ISCCSP 2010, Cyprus. March 2010.
  19. Jonckheere E.A., Lohsoonthorn P., Mahajan V., Musuvathy S., and Stefanovic M., ”On a stand- ing wave Central Pattern Generator,” Biomedical Signal Processing and Control, Volume 5, Issue 4, October 2010.
  20. Jonckheere E., Musuvathy S., Stefanovic M., ”A biologically inspired synchronization of lumped parameter oscillators through a distributed parameter channel,” CDPS 2007, Belgium.
  21. Musuvathy S., Jonckheere E., Boone R., ”Visualization and training tool for chiropractic education”, The 15th Annual Medicine Meets Virtual Reality (MMVR 15) Conference. 2007
  22. Hiebert A., Jonckheere E.A., Lohsoonthorn P., Mahajan V., Musuvathy S., and Stefanovic M., ”Visualization of a stationary CPG-revealing spinal wave,” The 14th Annual Medicine Meets Virtual Reality (MMVR 14) Conference, Accelerating Change in Healthcare: Next Medical Toolkit. 2006

Reports

  1. Sahakian, M., Jose, D., Musuvathy, S., Thorpe, J., Umbenhower, M., Verzi, S., Dykstra, M., Vugrin, E., “ AIRSS: Adaptive Intrusion Response for Space Systems”, SAND Report (SAND2021-11864), 2021
  2. Yoon, H., Verzi, S., Cauthen, K., Musuvathy, S., Melander, D., Norland, K., Morales, A., Lee, J., Sun, A., “Predictive Data-driven Platform for Subsurface Energy Production”, SAND Report (SAND2021-11262), 2021
  3. Vineyard, C., Aimone, J., Dellana, R., Hill, A., Kane, Z., Komkov, H., Melzer, R, Musuvathy, S., Plagge, M., Richards, J., Severa, W., Smith, J., “Neural-Inspired Approaches and Implementations for Automatic Target Recognition”, SAND Report (SAND2021-11749), 2021.
  4. Wang F., Aimone, J.B., Musuvathy S., Anwar A., “BrainSLAM”. United States. doi:10.2172/1569159.
  5. Sahakian, M., Jose, D., Musuvathy, S., Thorpe, J., Umbenhower, M., Verzi, S., Dykstra, M., Vugrin, E., “ AIRSS: Adaptive Intrusion Response for Space Systems”, SAND Report (SAND2021-11864), 2021
  6. Yoon, H., Verzi, S., Cauthen, K., Musuvathy, S., Melander, D., Norland, K., Morales, A., Lee, J., Sun, A., “Predictive Data-driven Platform for Subsurface Energy Production”, SAND Report (SAND2021-11262), 2021
  7. Vineyard, C., Aimone, J., Dellana, R., Hill, A., Kane, Z., Komkov, H., Melzer, R, Musuvathy, S., Plagge, M., Richards, J., Severa, W., Smith, J., “Neural-Inspired Approaches and Implementations for Automatic Target Recognition”, SAND Report (SAND2021-11749), 2021.
  8. Wang F., Aimone, J.B., Musuvathy S., Anwar A., “BrainSLAM”. United States. doi:10.2172/1569159.