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Abstract— Reinforcement learning (RL) may enable fixed-
wing unmanned aerial vehicle (UAV) guidance to achieve more
agile and complex objectives than typical methods. However,
RL has yet struggled to achieve even minimal success on
this problem; fixed-wing flight with RL-based guidance has
only been demonstrated in literature with reduced state and/or
action spaces. In order to achieve full 6-DOF RL-based guid-
ance, this study begins training with imitation learning from
classical guidance, a method known as warm-staring (WS),
before further training using Proximal Policy Optimization
(PPO). We show that warm starting is critical to successful
RL performance on this problem. PPO alone achieved a 2%
success rate in our experiments. Warm-starting alone achieved
32% success. Warm-starting plus PPO achieved 57% success
over all policies, with 40% of policies achieving 94% success.

Index Terms—Autonomous Systems, Reinforcement Learn-
ing, Unmanned Aerial Vehicles (UAVs), Artificial Neural Net-
works, Intelligent Control, Autonomous Vehicles

I. INTRODUCTION

Guidance of unmanned aerial vehicles (UAVs) is an active
research area that seeks to extend the flight capability of
both fixed-wing and rotorcraft autopilots. With the growth
and popularization of UAVs for research and commercial
purposes, many new applications are arising that necessitate
autonomous guidance of more complex objectives or more
agile maneuvers. While rotorcraft initially seem to be good
candidates for these applications due to the ability to hover
and move in any direction, fixed-wing aircraft of comparable
mass have increased range, payload capacity, and for some
designs, maneuverability.

Common commercial autopilots for fixed-wing aircraft
utilize linear techniques and therefore excel at low-agility
guidance near trim flight regimes [1]. However, these guid-
ance and control models cannot handle the advanced re-
quirements of new applications. The linear, time-invariant
models inexactly describe the nonlinear and unsteady dy-
namics of real aircraft, resulting in controllers with only local
stabilization [2]. During high-agility flight, such as high roll
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Fig. 1. The Zagi Flying Wing UAV modeled in this study [4]

angle maneuvers, the linearization error increases. Modern
autopilots may be able to handle these regimes and some
complex objectives, such as obstacle avoidance or mission
optimization, but they require human-in-the-loop derivations
for each application and have high computational cost at
runtime compared to neural inference [3]. Mitigating the
downsides of advanced guidance and control would greatly
improve capabilities of UAVs and should enable new high-
complexity applications.

The complexities of advanced 6-DOF fixed-wing guidance
(e.g. highly constrained dynamics and coupled control re-
lationships) suggest that supervised machine learning (ML)
and deep reinforcement learning (deep RL) are appealing
research areas for the field. However, supervised learning
typically requires large amounts of near-optimal training data
to produce a model that can perform tasks. Furthermore, the
agent will never perform beyond the ability shown in the
training data, e.g if training data is taken from an expert
pilot, the agent will never outperform the pilot. Additionally,
many next generation applications of UAVs—e.g. coordi-
nated teaming, camera driven control, obstacle avoidance
and racing behaviours—have no derived guidance model or
expert pilot available. In contrast, reinforcement learning
(RL) learns to improve its policy (i.e. the mapping from
state to action) based on a reward function designed for its
environment and/or desired behavior. This allows RL policies
to learn without any training data, provided the environment
dynamics can be modeled. Modern deep RL algorithms such
as Proximal Policy Optimization (PPO) [5] formalize the
agent as the combination of actor and critic neural networks.
The actor network transforms observed states to actions while
the critic network estimates the value of a given state (i.e.
the value function). The RL algorithm updates the actor and



critic networks as agents explore the environment, attempting
to optimize the policy and minimize loss via gradient descent.
PPO is a state-of-the-art RL algorithm for this single-agent
continuous-action application because it avoids excessively
large policy updates [5]. Despite the advantages of RL, its
application to guidance and control of 6-DOF fixed-wing
flight has proven difficult (e.g. [6]).

Initial stages of fixed-wing RL training can be challenging
due to sparse rewards, local extrema, and unproductive
policy changes. One method of mitigating these challenges
is to utilize warm-starting with an expert guidance model.
Warm-starting is a form of imitation learning that uses
the mean squared error between the actor and a designed
guidance model to optimize the actor network, providing
a lower bound to optimality [7]. Warm-starting shapes the
initial behavior of the actor network, allowing subsequent
RL training to sample from trajectories that are closer
to intended behavior. While unused during warm-starting,
the critic network is also optimized by experiencing the
reward landscape; this provides a better estimate of the value
function when beginning RL training. This reduces training
time and enables successful convergence on 6-DOF fixed-
wing guidance. Warm-starting trains a policy to the level of
the designed guidance model; further reinforcement learning
is needed to achieve more difficult objectives, e.g. coordi-
nated teaming, camera driven control, obstacle avoidance
and racing behaviours, as previously mentioned. This paper
shows that using a very limited warm-start period (WaSP)
enables an otherwise intractable RL for guidance problem
to converge, which should enable learning more complex
objectives via transfer learning in future work.

In order to investigate methods to mitigate the difficulty
of training continuous nonlinear 6-DOF guidance of fixed-
wing aircraft, this paper contributes an the implementation
of a dynamic environment for continuous nonlinear 6-DOF
guidance of fixed-wing aircraft (Section III), a proof-of-
concept RL guidance controller trained with a very limited
warm-start period (WaSP+PPO) (Section IV and V), and a
comparative analysis of method performance (Section VI).
The results form a baseline that will allow comparison when
considering more complex objectives.

II. RELATED WORK

Monaco, Ward, and Barto first investigated guidance of
fixed-wing aircraft with RL. They achieved discrete pitch
guidance [6], but left continuous full-rotational guidance of
diving flight to future work. Other research into RL fixed-
wing guidance and control in limited state space have also
been successful, such as control of heading [8], pitch [9],
or roll [10]. Some of these efforts improved upon existing
controllers by reducing overshoot [11]. Further efforts in-
creased the environment states controlled, including fixed-
wing longitudinal control [12], and heading and altitude
control stabilization [13]. This increased capability allowed
many autonomous guidance applications to be investigated,
including perching landing [14] [15], multi-agent flocking

[16] [17] [18], target tracking [19], refueling [20], and
collision avoidance/pursuit evasion [16] [21] [22].

Works considering 6-DOF RL guidance and control of
fixed-wing aircraft have the following three approaches.
First, some approaches use routines “composed by primitive
actions” [23] [24] or otherwise use action abstraction to learn
on commanded states rather than control surface deflections
[19] (second approach of paper). Second, some works at-
tempt to perform pre-defined maneuvers with varying success
(“the pitch profile steadily deteriorated during the maneu-
ver”) [25] [26]. Finally, there are works that investigate full
6-DOF fixed-wing flight, finding “no agents were observed
to exit their turn upon reaching the target heading, which is
the desired behavior” [27] and that “the agent still failed to
learn to orbit the target” [19] (first approach of paper). There
is a need in the existing literature to establish capable 6-DOF
guidance and control of fixed-wing aircraft using RL without
abstractions. With the work of [26] establishing low-level
control given commanded actions, there is remaining work
to establish a full-state fixed-wing guidance trained with RL
to produce the exact commands used in the paper.

Warm-starting has many forms [28], though it has typ-
ically been applied to non-robotic applications [29], which
found warm-starting could hurt generalization in deep neural
networks. Recently however, warm-starting has been used
in dynamic contexts such as the cart-pole and lunar lander
[30] as well as walker and robot manipulation [28]. To
the authors’ knowledge, there are no known applications of
warm-starting to full 6-DOF fixed wing RL guidance and
control. We show that warm-starting can enable RL on this
problem class and we posit that RL will advance the state
of the art on this problem class in future work.

III. FIXED WING DYNAMIC MODEL

This study considers a training environment of a simulated
fixed-wing UAV, defined using the nonlinear 6-DOF dynam-
ics of fixed-wing aircraft [1] [31]. The UAV is modeled as
a rigid body with mass m and inertia tensor I defined in the
body frame of reference b with origin at the center of gravity
(CG). This body has associated states, forces, and moments
defined in Table I. The aircraft travels in the direction of the
three-dimensional velocity vector VT , which is described in
reference to the body by the angles α and β (Fig. 2).

α = tan−1 (w/u) , β = sin−1 (v/VT ) (1)

The UAV has position and orientation relative to a North-
East-Down (NED) Earth-tangent frame assumed to be in-
ertial, denoted by i. The body frame orientation is repre-
sented in the dynamic simulation using quaternions e⃗ =
[e0, e1, e2, e3] and rotation matrices (e.g the rotation matrix
from the body frame to the inertial frame Ri/b) in order to
prevent mathematical singularities in computation. The same
orientation is represented in Euler angles, Θ⃗ = [ϕ, θ, ψ],
when used for guidance and control in later sections. Precise
definitions and conversions between Θ⃗, e⃗, and R can be
found in [32].



TABLE I
BODY-FIXED STATE, FORCE, AND MOMENT NOTATIONS

Roll Axis Pitch Axis Yaw Axis
xb yb zb

Velocity components u v w
Force components X Y Z

Orientation ϕ θ ψ
Angular rates p q r

Moment components L M N

Fig. 2. Axes definition with body-frame velocity components, the 3D
velocity vector VT , and angles α and β [1].

A. Equations of Motion

The equations of the motion for a UAV are defined as a
series of nonlinear first-order differential equations (i.e. state
space representation) [31]. This includes the change in the
position of the UAV body, b, relative to i, in the coordinate
frame i,

[
˙⃗pb/i

]
i
, defined as

[⃗
vb/i

]
b

rotated to the frame i.

[
˙⃗pb/i

]
i
=

ṗnṗe
ṗd

 = Ri/b ·
[⃗
vb/i

]
b
. (2)

The body-frame acceleration of the UAV includes contribu-
tions from the combined aerodynamic and propulsive forces
F⃗b = [X,Y, Z], coriolis acceleration, and body-frame gravity
gb. Wind is neglected in this study.[

bd

dt

(⃗
vb/i

)]
b

=

u̇v̇
ẇ

 = gb+
1

m
F⃗b−

[
ω⃗b/i

]
b
×
[
v⃗b/i

]
b
, (3)

where gb is the inertial-frame gravity (positive in NED)
rotated to the body frame.

gb =

gxbgyb
gzb

 = RT
i/b ·

00
g

 (4)

The change in quaternion-specified orientation
[
˙⃗eb/i

]
i

is a
function of angular rates (note that e is used to distinguish
from pitch rate q):

[
˙⃗eb/i

]
i
=


ė0
ė1
ė2
ė3

 =
1

2


ξ −p −q −r
p ξ r −q
−q −r ξ p
r q −p ξ

 (5)

Quaternions could become problematically small or large nu-
merically, therefore ξ = 0.5

(
1− ||e⃗||2

)
is included along the

diagonal to ensure near-unit quaternions. Finally, the change
in angular velocity of the UAV is a function of the combined
aerodynamic and propulsive moments M⃗b = [L,M,N ] and
the vector derivative of angular velocity.[

bd

dt

(
ω⃗b/i

)]
b

=

ṗq̇
ṙ

 = I−1
[
−
[
ω⃗b/i

]
b
× (I

[
ω⃗b/i

]
b
)+ M⃗b

]
(6)

B. Body-Frame Forces and Moments

The UAV experiences nonlinear forces and moments act-
ing on the CG that are functions of states and inputs.
Aerodynamic forces and moments can be nondimension-
alized into coefficients by dimensional factors wing area
S, dynamic pressure Q, wing span ♭, and wing chord c.
This results in the coefficient notation C−, where − is a
force or moment (e.g. the pitch moment M is equal to
QSc (CM )). These forces and moments are then linearized
with respect to states or inputs, which then become a sub-
subscript variable in notation (e.g. the linear approximation
of the contribution of angle of attack α to the pitching
moment M is QSc (CMαα)). Similarly, C−0 are coefficients
that describe nondimensionalized contributions that have
no state dependence, e.g. CM0

. Some coefficients such as
CX(α) are not constant and have dependencies on the angle
of attack α. These aerodynamic coefficients are estimated
using the UAV model specified in [31]. The propulsive
forces and moments are similarly modeled with scaling
terms Spr, Cpr, kmot, kTp, and kΩ (these are measured
constants, see [31]). The formulation contains aerodynamic
inputs ranging from [−15◦, 15◦] for the aileron (δa), elevator
(δe), and rudder (δr). For the aircraft considered, these are not
separate control surfaces and the coefficients listed in [31] are
considered to be analog quantities. The singular propulsive
input, throttle (δT ), ranges from [0, 1]. The total force from
the contributions of aerodynamics and propulsion can then
be described (where ρ is air density):

F⃗b =

XY
Z

 =
1

2
ρSprCpr

(kmotδT )
2 − V 2

T

0
0

+QS · . . .

 CX(α) + CXq (α)
c

2VT
q + CXδe

δe
CY0 + CYββ + CYp

♭
2VT

p+ CYr
♭

2VT
r + CYδr

δr
CZ(α) + CZq (α)

c
2VT

q + CZδe


(7)



The total moment from both sources is then a similar
equation of coefficients, states, and actions:

M⃗b =

LM
N

 =

−kTp (kΩδT )
0
0

+QS · . . .


♭
(
CL0

+ CLββ + CLp
♭

2VT
p+ CLr

♭
2VT

r + CLδr
δr

)
c
(
CM0

+ CMα
α+ CMq

c
2VT

q + CMδe
δe

)
♭
(
CN0

+ CNββ + CNp
♭

2VT
p+ CNr

♭
2VT

r + CNδr
δr

)

(8)

IV. GUIDANCE MODEL AND LOW-LEVEL CONTROLLER

A. High-Level Guidance Model

In order to warm-start the RL agent, a guidance model is
designed to receive state information and generate an action
vector. This input state is first converted to a state relative to
the target point (the guidance objective), xer, and contains
the target-relative state information [pner , peer , pder , ψer].
The action vector contains the commanded target-relative
heading ψerc , side slip angle βc, relative altitude, herc and
airspeed VTc (because wind is neglected, course angle χ and
heading ψ are equivalent, as well as airspeed Va and velocity
VT ).

The guidance model was designed to achieve several
objectives. Firstly, the model ensures that the UAV turns
towards the target point only when able to do so, i.e.
approximately when the target point is outside of the turn
diameter achievable, d.

ψerc =

{
ψer if ψer < π/2 or

√
pner

2 + peer
2 > d

0 if ψer > π/2 and
√
pner

2 + peer
2 < d

(9)

Secondly, when rolling, the side-slip angle β must be near
zero in order to maintain altitude, so the model sets βc = 0.
Thirdly, the model commands the target altitude based on the
relative vertical position pder , setting herc = −pder . Finally,
changes to altitude must be reflected in the commanded
velocity as airspeed has a large affect on rates of climb or
descent, so a continuous function is defined:

VTc = Vcruise ·
(
1 + tan−1

(
−pder

|pder |max · π

))
, (10)

where |pder |max is the maximum expected altitude error and
Vcruise is the cruise velocity.

B. Low-level Proportional-Derivative Controller

The low-level (actuation) controller receives the action
vector [ψerc , βc, herc , VTc ] from either the RL agent or
guidance model and produces actuations [δa, δe, δr, δT ]
which are the settings of the ailerons, elevator, rudder, and
throttle, respectively. This low-level controller was designed
with proportional-derivative (PD) control and successive loop
closure techniques from classical control. The gains for the
PD controllers were designed using root locus analysis [31]
followed by manual tuning.

1) Lateral Low-Level Controller: In order to avoid un-
intended dynamic coupling, the aircraft changes heading by
rolling instead of yawing. Successive loop closure converts
commanded relative heading ψerc into a commanded roll
angle ϕc with proportional control. ϕc is limited to the range
[−π/4, π/4] so that it does not interfere with longitudinal
control. The heading used in this calculation is target-relative,
ψer.

ϕc = kpψ (ψerc − ψer), kpψ = 0.71 (11)

The aileron deflection δa is then specified using PD control
with states ϕ and p:

δa = kpϕ(ϕc − ϕ)− kdϕp, kpϕ = 0.17, kdϕ = 0.007 (12)

Similarly, a proportional controller was used to control β
with δr.

δr = −kpβ (βc − β), kpβ = −0.075 (13)

2) Longitudinal Low-Level Controller: A small aircraft
must pitch to change altitude, therefore successive loop
closure is used to translate commanded relative altitude herc
into a command in pitch orientation θc.

θc = kph(herc − pder ), kph = 0.001 (14)

The subsequent elevator deflection δe is specified using PD
control with states θ and q.

δe = kpθ (θc − θ)− kdθq, kpθ = kdθ = −0.7 (15)

Throttle δT is controlled with δ∗, the trim throttle setting,
and proportional control with velocity VT .

δT = δT
∗
+ kpv (VTc − VT ), δT

∗
= 0.76, kpv = 0.06

(16)

V. METHODS

This problem is formalized as a fully observable, determin-
istic Markov Decision Process (MDP) [33] with state space
S and action space A. The state uses target-relative position
coordinates and heading.

S = {pner , peer , pder , u, v, w, ϕ, θ, ψer, p, q, r} (17)

Similarly, the action space uses a target-relative commanded
altitude and heading:

A = {ψerc , βc, herc , VTc} (18)

The RL algorithm observes the states st at some time t
and takes some action at based on its policy. The agent
then receives a reward rt+1 based on the new state st+1

as determined by the action taken and the environment
dynamics. This custom environment is constructed using the
OpenAI Gym environment framework [34].

The aircraft selected for study is the Zagi Flying Wing
aircraft shown in Fig. 1. The defining aerodynamic, propul-
sive, and descriptive measurements for this aircraft are taken
as specified in [31]. The dynamic environment will interface



with the PPO and warm-start agents as shown in Fig. 3. The
full relative state vector xer with Euler angle orientation is
scaled to intended element ranges of [−1, 1]. This observa-
tion vector is used as the input vector for both the RL agent
and warm-start agent, the latter descales the inputs before
calculation.

E
n

v
ir

o
n

m
en

t
R

ei
n

fo
rc

em
en

t 
L

ea
rn

in
g 

A
ge

n
t

W
a

rm
-S

ta
rt

A
ge

n
t

Air craft 
Dynamic 

Model

Deep Reinfor cement Learning:
Proximal Policy Optimizaton

Warm-Star t
Actor  Network

Warm-Star t
Guidance Model

Warm-Star t 
Actor  Loss

obser vations (state)

rewards

state

state

state

 gradient descent

Guidance 
model action

WS actor  action

PPO
action

Reward 
Structure

WS
action

tr ansfer  
learning

Fig. 3. Agent-environment configuration for the flight guidance problem
with PPO and warm-starting

A. PPO and Warm-Start Optimization

Proximal Policy Optimization (PPO) was selected due to
the appealing proximal aspect of PPO, i.e. the intentionally
conservative policy update “which attains the reliable perfor-
mance of TRPO, while using only first-order optimization”
[5]. Similarly, [35] highlights PPO as the best performing
algorithm for quadcopter control, which uses the a similar
nonlinear kinematics model as in Section III-A.

1) The Mechanics of PPO: Of all probability distributions
that map states to actions (or policies π), the optimal policy
π∗ can be stated as an argument maximum of the expected
reward over a trajectory over all policies [36]. This trajectory
τ is a series of actions and associated states sampled from
the environment. By shaping rewards, i.e. defining what
outcomes result in a positive or negative reward over a
trajectory, R(τ), the RL algorithm will learn to generate
trajectories that result in intended goals.

π∗ = argmax
π

E
τ∼π

[R(τ)] . (19)

Proximal Policy Optimization (PPO) [5] uses a surrogate
objective that seeks to conservatively update the policy based
on the advantage, an estimate of the relative value of an
action compared to the expected value over a distribution of
actions, as opposed to the reward directly. This is evaluated
with the action-value function Qπ , an expectation of return

for the distribution of explored actions from state s given that
you act according to policy π, and the value function V π ,
an expectation of return if you start in state s and always act
according to policy π [36].

Aπ(s, a) = Qπ(s, a)− V π(s) (20)

The policy learns through gradient descent, where the
actor and critic networks are optimized in the direction
of negative loss gradient. When optimizing based on the
advantage, PPO clips potentially detrimental changes to the
policy, removing the incentive for change if the probability
ratio of the new policy to the old policy, rt = π/πold , is
outside a region around the current point of optimization
for a given state-action pair. This region is defined as
[1− ϵPPO, 1 + ϵPPO] where ϵPPO is a chosen hyperparam-
eter. Minimization of the actor loss, La, (a form of error)
will allow the actor to produce high-value actions.

La(π) = E [min (rtA
π, clip (rt, 1− ϵPPO, 1 + ϵPPO)A

π)]
(21)

In order to calculate advantage for use in actor loss, an
estimate of the value function, denoted Vϕ(s), is also learned
through gradient descent. Use of the sum of discounted future
rewards R̂, and minimization of critic loss, Lc, allows the
critic network to estimate the value function.

Lc(Vϕ(s)) = E
[(
Vϕ(s)− R̂

)2
]

(22)

For this study, the neural networks (NNs) used for actor
and critic are feed-forward multi-layer perceptrons (MLP).
Noise is added to the output of the actor to encourage
exploration during training, but it is deterministic during
evaluation.

2) The Mechanics of Warm-Starting: As noted in [37],
PPO may progress slowly and become stuck in local optima,
which results in a poor or incapable policy. Hyperparam-
eter tuning, reward shaping, and curriculum learning can
help overcome such difficulties, but if they do not achieve
intended performance, warm-starting should also be tried.
Warm-starting is a form of imitation learning that trains
the actor network to produce outputs that match a designed
model (e.g. a guidance model) by using the mean squared
error between the actor network’s generated output µπ , the
mean of the distribution, and the models’ command xc.

J (π) = E
[
(µπ − xc)

2
]

(23)

Minimizing this alternative actor loss directly trains the
actor network, while allowing the critic network to learn by
experiencing the state-space and reward landscape. It can
then be disabled and an RL algorithm can begin training on
the initialized actor and critic networks, giving the algorithm
a range of feasible and high value actions from the start. This
transfer learning can lead to convergence on RL problems
that would stall on uninitialized networks, as we show in the
results.



B. Reward Shaping

With the environment, inputs, actions, and algorithm de-
fined, reward shaping is needed in order to appropriately
describe the intended goals of an agent’s guidance objectives.
The reward for an agent entering a small distance from the
target is 1, which describes the intended behavior.

Rtgt = 1, if agent enters
(∣∣∣∣∣∣[ ˙⃗pb/i]

i

∣∣∣∣∣∣2
2
≤ r2

)
(24)

If the NN generates an action outside of the realizable
command space (e.g. negative airspeed) then the agent is
penalized Rba = −1 for that action. Finally, the convex
penalty Rxer is applied for incremental encouragement of
advantageous exploration. Smaller states are encouraged for
distance convergence and smoother flight.

Rxer = −xerQxer, (25)

This is a convex penalty where Q is a diagonal matrix
with elements 4 · 10−7 · [10, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1], de-
signed such that over the expected number of steps needed
to reach the target, the sum of the Rxer penalties is limited
to

∑Tf
0 Rxer < 1. The total reward for a time step is then:

Rtotal = Rtgt +Rba +Rxer (26)

C. Training Considerations

Across hyperparameters, networks with hidden layer sizes
of 5x512 nodes performed best, with smaller networks
converging more slowly, and larger networks producing
diminishing returns. Thus, a hidden network size of 5x512
was chosen. Hyperparameters were hand-tuned to the values
in Table II to avoid policy collapse and optimize agent perfor-
mance. The discount factor, γ, was further tuned considering
the large amount of time steps needed for the average agent
to reach the target [5].

TABLE II
HYPERPARAMETER VALUES

Lrn.rate Std.dev. γ λGAE ϵPPO Crt.dis. Minibatch EpochsPPO
2 · 10−5 .05 .99995 0.95 .05 .5 1024 10

The environment and algorithm are then parallelized to
simultaneous fixed-wing simulation aircraft agents by vector-
izing the calculations. The guidance policy is trained through
a series of episodes that begin at a randomized state or pose
and move according to the state and action until either the
singular terminal condition (i.e., the target is reached) or until
the end of the episode. These initialized poses are a Gaussian
distribution with mean and standard deviation as follows:

TABLE III
RANGE FOR ONE STANDARD DEVIATION OF INITIALIZED STATES

position u velocity orientations rotation rate
0± 500m 17± 13 m/s 0± π/4 (yaw: 0±π) rad 0± 1 rad/s

D. Actor Evaluation

Four actor evaluation tests were used to measure what
percentage of 64 agents reach the target from random initial
conditions with a set seed. The standard test (Test 1) is
identical to training. After a sufficient number of time steps,
the policy is evaluated on percentage of successful runs. The
three other tests are similar to the standard test except for
the following differences. The state generalization test (Test
2) expands initial conditions by a factor of 1.5. The noise
test (Test 3) includes noise on target sensing in the form of
target movement, moving position a standard deviation of
1m per time step in each direction. Finally, in the motion
generalization test (Test 4), the location of the target follows
a circular pattern with low-frequency vertical motion at a
speed of 11 m/s. These four tests evaluate the effectiveness
of a policy to learn guidance and generalize to unseen
conditions.

VI. RESULTS AND DISCUSSION

Three sets of ten policies were trained to compare the
effectiveness of PPO with and without a limited warm-start
period (WaSP). The first set was trained with PPO only for
33000 time steps on 32 parallel agents, which took about
four hours an Intel i7-8650U CPU. The second set was
trained with a warm-start period (WaSP only) for 512 time
steps on 32 parallel agents and saved for evaluation. The
brevity of this period intentionally restricts the performance
of the WaSP only policies to act as a starting point for
subsequent PPO training. These warm-started policies are
then trained using PPO for 32000 time steps on 32 parallel
agents thereby resulting in PPO policies with a limited warm-
start period (WaSP+PPO). The training time for WaSP+PPO
was approximately 4 total hours on an Intel i7-8650U CPU.

A. Comparison of Trained Policy Sets

The 10 PPO only policies, 10 WaSP only policies, and 10
WaSP+PPO policies were evaluated using the standard test
(Test 1) of Section V-D. The results are collected in Fig. 4,
showing the distribution of policies sorted by percentage of
agents that reached the target.

Results show that PPO only policies are only able to
guide an average of 2% of agents to the target. WaSP
policies averaged 32% with a relatively even distribution,
and WaSP+PPO policies have an average performance of
57%, but with an approximately bimodal distribution. The
successful cluster contains 5 policies that have an average of
95% of agents reach the target while the failed cluster has 4
policies that complete an average of 10% of agents.

As seen in Fig. 5, PPO only policies failed to properly
command heading, similar to [27] and [19]. Agents often
spiral out from initial conditions, in a way which might
be locally optimal, as some agents can hit the target with
this approach by falling from a random starting location.
In contrast, WaSP+PPO policies demonstrated guidance that
took into account the target’s position. Investigation of failed
WaSP+PPO trajectories show a tendency to spiral around
the target, untrained to the long term requirement to fly past
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Fig. 4. Histogram of evaluated policies for each training method (note y
axes ranges). Results show an improvement with averages of 2% for PPO
only, to 32% for WaSP only, then to 57% for WaSP+PPO.

the target until outside the vehicle’s turning diameter. The
guidance model in Section IV-A is designed to account for
this in Equation 9. This behavior was learned by successful
WaSP+PPO policies and some WaSP+PPO trajectories were
able to improve upon the designed guidance model with a
tighter turn and a shorter path to target.

B. Comparison of Best Actors from Each Method

To serve as a consensus standard of comparison, an addi-
tional set of policies was trained using the Stable-Baselines
3 (SB3) [38] implementation of PPO without any warm-
starting for 106 time steps. As a best case analysis, the
most successful agents from PPO only, WaSP only, and
WaSP+PPO were evaluated on tests 1-4.1 The guidance
model from Section IV-A, the best PPO only policy from
SB3, and a random action baseline were also included as
benchmarks.

The WaSP+PPO method had marked improvement over all
other RL methods in the standard test, state generalization
test, and noise test, but performed marginally in the motion
generalization test. In contrast, the PPO only methods per-
formed similarly to the random action baseline. The results
are comparable between the parallelized version of PPO [36]
and the SB3 implementation [38].

Comparing the WaSP+PPO policies to the performance
of the designed guidance model showed comparable perfor-

1The performance of these polices during testing is included as a
supplementary downloadable video. To aid in video clarity the number of
agents was reduced from 64 to 32 and the evaluation period was abbreviated.
This supplementary video is available at autonomy.sandia.gov/warmstart.
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Fig. 5. 3D trajectories from PPO only, failed WaSP+PPO, successful
WaSP+PPO, and designed guidance model agents. The trajectories start in
the same initial condition.

TABLE IV
PERFORMANCE OF BEST ACTORS AND DESIGNED GUIDANCE MODEL

Algorithm Std. test Gen. test Noise test Motn. test
evaluated (Test 1) (Test 2) (Test 3) (Test 4)

Random actions 3.1% 1.6 % 3.1% 1.6%
PPO only 3.1% 3.1% 4.7% 1.6%

SB3 PPO only [38] 4.7% 3.1% 4.7% 3.1%
WaSP only 60.9% 57.8% 51.6% 9.4%

WaSP+PPO 100% 100% 98.4% 37.5%
G. model (no ML) 100% 100% 100% 61.2%

mance for the standard test, state generalization test, and
noise test, but not the motion generalization test. This is
likely due to the fact that the WaSP+PPO agent was not
trained for motion, while PD control is characteristically
robust; the classical guidance model works across all initial
conditions, is robust to sensing noise, and can track a moving
reference. These tests represent baseline performance metrics
for RL fixed-wing guidance for relatively simple tasks. Suc-
cessful execution of these objectives consequently enables
application of RL guidance to more complex use cases that
require more generalized behavior than PD guidance affords
(i.e., cases where no explicit expert system baseline exists).

VII. CONCLUSION

This paper demonstrates successful use of a warm-start
period for training on dynamic environments as well as a
proof-of-concept PPO-trained guidance autopilot for fixed-
wing UAVs. PPO with a limited warm-start period was able
to train a 6-DOF fixed-wing guidance loop that, on average,
improved performance of standard PPO policies by a factor
of 28 and performance of warm-start period only policies by
a factor of 1.7. Though variation exists, this technique results
in some policies which consistently achieve 100% success
at the intended task and is able to generalize to new initial
conditions and noise. The more agile flight found by some
warm-start period plus PPO agents suggest that training RL
policies with this method can improve performance over the

https://autonomy.sandia.gov/warmstart


guidance model initially imitated. Finally, this method may
improve the effectiveness of RL on other highly constrained
nonlinear dynamic environments, such as robotic locomotion,
pick and place tasks, or autonomous vehicles.

A. Future Work

Currently planned work aims to mature a hardware imple-
mentation of an RL guidance autopilot to achieve RL-guided
fixed-wing flight2. Further efforts may use this method in
conjunction with the low-level RL controller in [26] to
investigate a full-stack (i.e. state to action) fixed-wing RL
controller, or even an end-to-end system (i.e. full stack neural
agents with sensor input). These advances in 6-DOF fixed-
wing RL should result in improvements over state-of-the-art
in guidance under highly-complex objectives.
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