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Cybersecurity standards exist for adjacent systems, including bulk electric systems, power 
systems, distributed energy resources, and general cybersecurity principles, but a research 
gap exists for specific policy for battery energy storage systems.
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Cyb e rs e cur it y Fun d a m e n t a ls  In s p ir in g  t h is  Re s e a rch3

Unknown Probability of 
an Attack

• Hard to predict what 
vulnerabilities may be 
exploited

• New vulnerabilities can 
be discovered

• Different studies have 
differing results 
regarding the likelihood 
of cyberattacks

Zero-Trust Approach

• Do not assume a system 
or device is attack free

• Do not assume it is 
impossible to 
compromise a system

• Authentication, 
Authorization, and 
Validation can help with 
this

Defense-in-Depth 
Approach

• Add as many layers of 
protection to the system 
as reasonable / possible

• If one layer is 
compromised, backup 
layers exist stop threats

• Some layers may 
include: policy, physical, 
network, application, 
device

Fundamentals for battery energy storage system cybersecurity



En e rgy St ora ge  Ba ckgroun d4

• Increased need for energy storage systems

• Batteries are controlled by battery management systems (BMSs)

Pumped-Hydro Battery ESS Flywheels
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Fa ls e  Da t a  In je ct ion  At t a cks  (FDIAs )
• Detection and mitigation of FDIAs is 

crucial to the safe and reliable operation 
of the system

• Targets sensors and aims to change 
measurement before used in estimation

• Possible consequences:
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SoC when a -100 mV FDIA was injected 
to a voltage sensor at 2500 s
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SoC when a +100 mV FDIA was injected 
to a voltage sensor at 5500 s
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Ap p roa ch

• Step 1: Use battery models to 
represent dynamics of system

• Step 2: Use nonlinear estimator to 
estimate system states and 
measurements

• Step 3: Generate a priori  
measurement residual

• Step 4: Run a priori data through 
CUSUM algorithm for FDIA detection
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General process of SoC estimation and 
FDIA detection

Goal: to repurpose anomaly detection methods and detect FDIAs targeting the sensors of 
battery stacks, to increase the resiliency and reliability of grid-connected battery systems.



Ap p roa ch
Approach: detect FDIAs in the sensors of battery stacks using a three-pronged method 
of battery modeling, state estimation, and statistics-based detection mechanisms
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Summary of proposed approach

M
od

el
s • Equivalent circuit model (ECM)

• Ambient temperature 
dependent ECM

• Charge reservoir model
• Single particle model

Es
tim

at
or

s • Kalman Filter (KF)
• Extended KF
• Unscented KF
• Input noise aware EKF

D
et

ec
tio

n • Chi-squared test
• Normalized innovation error 

identifier
• Cumulative sum (CUSUM) 

algorithm

Studied Methods



Se le ct e d  Ba t t e ry Mod e ls
Equivalent Circuit Model

• Models the response of battery voltage 
(output) to the stack current (input)

• Good balance of accuracy and 
complexity

• Does not account for degradation
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Charge Reservoir Model

• Models charging and discharging as 
filling and draining of a cylindrical tank, 
respectively

• Required to supplement ECM, as it does 
not include SoC estimation



Ext e n d e d  Ka lm a n  Filt e r  (EKF)

• Used to estimate SoC and measurements

• Estimated measurements are compared to actual measurements to calculate the a 
priori measurement residual (used in detector)

• Compatible with nonlinear systems

• Theoretically less accurate than the unscented Kalman filter, but less 
computationally complex – we had similar results regardless of estimator 
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Simplified EKF Flowchart



Cum ula t ive  Sum  (CUSUM) Algor it h m

• Recursive sum applied for FDIA detection

• Uses a priori measurement residual calculated by 
the estimator and model

• In some cases, was able to identify the targeted 
sensor and classify the bias of the attack as positive 
or negative 
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General CUSUM Rules
Detection

If SH > UCL or SL < LCL  FDIA Detected
Identification

If SH or SL of Sensor X diverges  FDIA injected in Sensor X
Classification

SH > UCL  Positively biased, SL < LCL  Negatively biased Simplified CUSUM Flowchart



Sim ula t ion  Exa m p le  a n d  Re s u lt s11

Simulation Setup
Battery Models ECM + CRM

Estimator EKF

Detector CUSUM

Simulation time 8100 s

Simulations run 3200

Vulnerable Cells / 
Sensors

3 / 4

Attack range / 
resolution

± 20 𝑚𝑚𝑚𝑚 / 153 𝜇𝜇𝑚𝑚

Input Current ± 4.0435 A

Batch Results
False Positive Rate 0%

Detection Rate 99.90%

Output CUSUM charts when a +20 mV attack 
was injected in the 𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏,1 sensor at 5500 s.



Con clus ion  a n d  Ad d it ion a l Re s u lt s
• The proposed approach combined three existing methods (battery modeling, estimation, 

and statistical error detection) and was successful in detecting FDIAs in all tested scenarios
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Case Study A B C D E F
Cells 1 1 3 3 3 3

Model(s) ECM + CRM ECM + CRM ECM + CRM ATDECM + CRM SPM ECM + CRM

Estimator(s) KF EKF EKF EKF / UKF UKF INAEKF

Detector(s) CUSUM CUSUM / chi CUSUM CUSUM CUSUM / chi CUSUM / chi

False Positive 0% 0% / 100% 0% 0% / 0% 0% / 100% 0% / 100%

Detection 91.55% 92.95% / 100% 99.90% 99.5% / 99.6% 99.83% / 100% 99.16% / 100%

Identification n/a n/a n/a 95.81% / 95.75% 97% / 6.17% 98.43% / 87.46%

Classification 91.55% n/a n/a 95.81% / 95.75% 97% / 2.53% n/a

Key Takeaways:
1) CUSUM was highly accurate in detection, identification, and classification (where applicable)
2) CUSUM had a false positive rate of 0%
3) CUSUM outperformed other detectors studied and was compatible with all tested models / estimators



Fut ure  Work

• Run real time simulations using Speedgoat

• Apply discussed methodology to real battery data

• Evaluate computational burden of algorithms and determine viability of 

implementing methods in deployed BMSs

• Realize “worst-case scenarios” of FDIAs using uncertainty propagation
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