Stabilizing Zn Anodes by Molecular Interface Engineering with Amphiphilic Triblock Copolymer

Xiujuan Chen¹, Peiyuan Gao², Wei Li¹*, Nhat Anh Thieu¹, Zane M. Grady², Novruz G. Akhmedov^{3,‡}, Konstantinos A. Sierros¹, Murugesan Velayutham^{4,5}, Valery V. Khramtsov^{4,5}, Xiaolin Li², David Reed², and **Xingbo Liu^{1,*}**

¹ Department of Mechanical, Materials and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA ² Energy & Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA ³ C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, Morgantown, WV 26506, USA [‡] Present address: Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA ⁴ In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA ⁵ Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506, USA

Introduction

Aqueous Zn-based electrochemical technologies hold promise for large-scale energy storage applications, yet challenges persist in the unsatisfied Zn reversibility arising from an unstable Zn anode/electrolyte interface. Therefore, optimizing the Zn/electrolyte interface is of great significance in improving the reversibility of Zn anodes. Introducing functional electrolyte additives has shown promise in stabilizing interfacial reactions. Creating a dynamically stable interfacial environment that can regulate the hydrophobicity of the Zn anode/electrolyte interface is crucial to designing functional electrolyte additives.

WestVirginiaUniversity.

- Amphiphilic Pluronic triblock copolymers featuring hydrophobic poly(propylene oxide) (PPO) and hydrophilic poly(ethylene oxide) (PEO) segments are proposed as a new class of electrolyte additives to develop a functionally stable Zn anode interface
- □ Pluronic additives are beneficial for constructing a hydrodynamic interphase, where the hydrophobic PPO center shields the Zn surface from water-induced side reactions and PEO side blocks guide the homogeneous Zn²⁺ redistribution.

	Approach and Objective			
Pluronic triblock copolymer				
PEO	PPO	PEO	Hydrophobic all	Polym

Optimizing electrolyte formulation ive candidates Molecular Molecular % EO composition weight

Reference:

Contact:

400

Current density: 1 A g

400-

2 300-

West Virginia University Tel.: 304-293-0120

Email: xingbo.liu@mail.wvu.edu