Inhibiting the Formation of Zinc Hydroxy Sulfate for High-Performance Aqueous Zn Batteries by Stabilizing the pH of Electrolyte

<u>Won-Gwang Lim¹</u>, Zane M.A Grady¹, Matthew Fayette¹, Xiaolin Li¹ and David Reed¹

¹Battery Development and Reliability Group, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by **Battelle** Since 1965

Introduction: Aqueous Zn batteries (AZBs), particularly the systems with mildly acidic conditions have attracted tremendous attention because of the integrated merits of Zn anode (*i.e.*, low redox potential, high theoretical capacity, and resource abundance) and the improved reversibility in mildly acidic aqueous electrolyte.^{1,2}

 MnO_2 -Zn battery is of particularly interest because it uses no critical raw materials and the cathode has high theoretical capacity of ~616 mA h g⁻¹ based on two-electron redox reaction. However, despite these advantages, MnO_2 -Zn battery grapples with several challenges stemming from the undesirable behavior of aqueous electrolyte. One of the most remarkable phenomena of MnO_2 -Zn battery is the unavoidable electrochemical reactions involving H⁺ and a dynamic change of the H⁺ concentration in electrolyte during cycling, which causes the irreversible precipitation of non-conductive zinc hydroxy sulfate (ZHS) byproducts at the interface of electrode/electrolyte.^{3,4}

Difference in ZHS formation/dissolution reaction

Objective: Achieve high cycle stability of MnO₂-Zn battery by inhibiting the irreversible formation of ZHS byproducts at the interface of electrode/electrolyte

Conventional electrolyte (1M ZnSO₄)

Approach: Develop pH-stabilized electrolyte by using pH buffer additives

- In the case of using BE, ZHS was formed during discharge process and residual ZHS was observed even after charge process.

- In the case of using pHSE, ZHS was not formed during discharge process

Electrochemical performance of MnO₂-Zn batteries

- MnO_2 -Zn cell with BE showed the capacity retention ratio of 50.4% (68.1 mA h g⁻¹) after 150 cycles, whereas MnO_2 -Zn cell with pHSE showed the capacity retention ratio of 70.7% (108.4 mA h g⁻¹) after 150 cycles.

- MnO_2 -Zn cell with BE showed the remarkable increase of overpotential, whereas redox overpotential was well-maintained in the case of using pHSE.

- Irreversible accumulation of ZHS on the surface of electrode during cycling impedes charge transfer behavior and causes the continuous chemical decomposition of electrolyte.

- pH buffer additives can stabilize the pH of electrolyte at ~2.5 throughout the H⁺ insertion/desertion of MnO_2 cathode. This stabilization of H⁺ concentration in electrolyte inhibits the chemical formation reaction of ZHS solid byproducts.

Results and Discussion:

Ex-situ pH measurement results

BE: baseline electrolyte (1M ZnSO₄) pHSE: pH stabilized electrolyte (1M ZnSO₄ with pH buffer additives)

- Potential range: 1.0-1.8 V (vs Zn/Zn²⁺)

Conductive layer at electrode/electrolyte interface

- Incorporation of conductive layer on the surface of cathode can suppress the Mn^{2+} dissolution and reactivate the Mn^{2+}/Mn^{4+} electrochemistry.

- Under N/P ratio of 3.4, MnO_2 -Zn cell showed capacity retention ratio of 92.6% after 150 cycles.

Summary and Perspective

- Stabilization of the H⁺ concentration of electrolyte by pH buffer additives in response to the unbalanced H⁺ insertion/desertion electrochemistry in MnO_2 cathode can inhibit the irreversible formation of ZHS solid products on the surface of electrode, which resultingly improved cycle stability of MnO_2 -Zn aqueous batteries.

Acknowledgements

- This work is supported by the U.S Department of Energy (DOE) Office of Electricity under Contract No. DE-AC05-76RL01830 through Pacific Northwest National Laboratory Project No. 70247 (Long Duration & Cost Competitive Energy Storage).

_ _

	Contact: Won-Gwang Lim	References:
u.s. department of ENERGY	Battery Development & Reliability Group	1. Yuan, L. et al. Energy Environ. Sci. 14, 5669-5689 (2021)
	Energy & Environmental Directorate	 Song, J. et al. Mater. Today 45, 191-212 (2021) Lim, WG et al. Small Methods, 8, 2300965 (2024) Yang, H. et al. Adv. Mater. 35, 2300053 (2023)
	Pacific Northwest National Laboratory	
	Email: wonkwang.lim@pnnl.gov	
	Tel: (509) 518-7311	