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Along with many advantages of using
carbon black (CB) slurry as a flowing
electrode, challenges such as clogging
and sedimentation has been observed.
Understanding the behavior of slurry
electrodes are crucial in improving
battery performance.

Non-ionic surfactants have been
observed to be good dispersants for
carbon black particles.1 Here, we
investigated the impact of non-ionic
surfactant (Triton X-100) on CB slurry
stability and performance by studying
its gravitational settling, rheological
response, and capacity/conductivity.
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• CB particles aggregate when dispersed in electrolyte, forming percolated network
arising from van der Waals attraction (gel formation)

• Percolated networks are weak and break under gravitational stress, leading to a
gel collapse

• With addition of surfactants:
• Sudden decrease in mechanical response is observed at 𝜶 ≥  𝟎. 𝟕 when the

mechanical network is disrupted and slurry becomes a low viscosity fluid
• Gradual decrease in electrical response is observed until 𝜶 = 𝟎. 𝟕  where the

CB particles can no longer contribute to electrical network of the system
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Fits an exponential decay model suggested by Manley et al.2 of a
gel collapse
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Slurry Performance  - Electrical Response

Catastrophic collapse is observed at higher surfactant
concentrations where 𝜶 (

 𝒎𝒔𝒖𝒓𝒇.

𝒎𝑪𝑩
) ≥ 𝟎. 𝟕 due to weak gel formation

Triton X-100 (n = 9-10)

[1] Porcher, W., et al. Journal of Power Sources, 2010, 195, 2835-2843
[2] Manley S., et al. Physical Review Letters, 2005, 94(21).
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The slurry conductivity and capacity is based on 3 variables:
• Slurry flowrate – structure and residence time of particles
• Scan rate – effective surface area measured

• Surfactant concentration (𝛼) – available surface area of CB particles

“Clogged” CB slurry

1. Sedimentation Experiment
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2. Rheological Measurements
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Gradual decrease in slurry conductivity observed with addition of surfactants
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CB particles form percolated network (gelation) but sudden
decrease in gel strength observed at 𝜶 (

 𝒎𝒔𝒖𝒓𝒇.

𝒎𝑪𝑩
) ≥ 𝟎. 𝟕 
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