Development of Temperature Sensitive Paint for Energy Storage System (ESS) Safety

Chanaka Kumara, Beth Armstrong and Hsin Wang

Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830

Introduction

Existing issue

- Safety and reliability are the primary concerns of the energy storage systems (ESS).
- Thermal runaway is the most reported safety issue of Li-ion batteries in ESS.
- It is challenging to monitor the temperature of every single cell in a bank of hundreds and thousands of batteries.
- Battery failure usually starts from a hot spot at a single cell, it presented an impossible task to use temperature sensors effectively.
- The batteries may continue to overheat without flames leading to a thermal runaway event slowly over time.
- ESS needs a large-area temperature monitoring system.

Results

Copper-thiol compound-1

Onset gas release temperature : Mercaptan detector: 73-78 °C

At different heating rates:

- gas release rate increases.
- gas release quantities increase.
- gas release onset temperature increases.

After heating

Medium

Potential solution

• A temperature-sensitive paint: The low-cost paint can be applied to every cell and cover all surfaces for an ESS.

Our approach

- Entrap/attach molecules (e.g., thiols) in larger molecules designed to release the gas when a specific threshold temperature is passed.
- A special gas detector placed nearby or coupled to the ventilation system will sound an alarm if the designated molecule is detected.

Thermal-sensitive compound synthesis and characterization **Copper thiol compound-1**

Thermal runaway event simulation

The thermal sensitive compound coated battery pouch foil was place on the heating stage

EDS

Energy(kev)

Released gases were detected as function of time and temperature using several sensors

Gas detector 2-multigas detector- VOC and sulfide gas

As-coated After heating

The onset of gas release temperature is tunable..!

Copper-thiol compound	Onset gas released temperature (°C)
Compound - 1	72-75
Compound - 2	84-96
Compound - 3	120-127
Compound - 4	152-163
Compound - 5	172-174

Conclusions

- Copper-thiolate compound thermally decomposes to release volatile compounds (VOC and sulfur-containing) when critical temperature is reached.
- Critical thiol release temperature can be tuned by changing the chemistry of the compounds
- Gas detection depend on the type of gas release and detector/ sensor used

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Electricity, Energy Storage System Safety & Reliability Program and ORNL DRD SEED money program.

References

BESS Failure Event Database :

https://storagewiki.epri.com/index.php/BESS_Failure_Event_Database?oldid=1944

- Process Safety Progress 2023, 42 (4), 664-673
- Temperature sensitive coatings, U.S. Patent Application No.18/119,373, March 9, 2023

