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Introduction: Mechanical Shock Testing2

[1]
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Common Pulse Shapes [2]

Introduction: Pulse Shapes
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Introduction: Programmer Material Properties6

• Programmer materials - shape the pulse 
of a wave, via

• Increasing Duration

• Decreasing Peak Acceleration

• F-1 and F-3 material deck was based on 
prior Hopkinson bar test data [6]

▪ Linear Piecewise elastic model

Felt 
Grade

Tensile Strength
[psi]

Density
[lb/sq. yd]

F-1 500 16

F-3 400 16

F-5 400 12.24

F-11 200 8.48

F-5 Wool Felt [3] F-3 Wool Felt [4]

[5]



Prior ¼ Model Simulation

• Input velocity was applied to the anvil

• Velocity damping was applied to the felt

• Less destruction of felt at high impact velocities

• Large effect on wave pulse

• Order of mixed felt (F-1 and F-3)

• With F1 in the back, and F-3 in the front, similar 
result from prescribed test velocity

• When F1 was in front of the F3

• Aberrations in the model during compression

7

Inherited Simulation [7]



Method – Low G Acceleration Drop Shock Setup

• Drop Shock Testing

• Table drop height: 184 [in]

• Impact Velocity Goal: 62 [ft/s]

• Max output from tests: 1457 
G

• Factors

• Stack Height

• Surface Area

• Programmer Material

8



Method-Drop Shock Parametric Studies

• Experimental Tests

• Four Felt Materials

• Two Stack Heights (3" and 
6")

• Three Cross-Sectional Areas

• Four Densities

9

Exp. Sim. Material
Height of 

Stack [in]

Cross-Sectional 

Area [in2]

F-3

3

39

29.25

20.25

6

39

29.25

20.25

F-1 6

39

29.25

20.25

F-5 6

39

29.25

20.25

F-11 6

39

29.25

20.25

• Simulation Tests

• Two Felt Materials

• Two Stack Heights (3" and 6")

• Three Cross-Sectional Areas



Method – High G Acceleration Cascading Impact Setup10

Test setup of Anvil - Carriage

3-Body Impact of Ram-Anvil-Carriage setup

• Cascading Impact Test

• Carriage velocity goal: 196 [ft/s]

• Max Acceleration: 2200 [G]

• Validation shot compared to Test 1

• Stack Height: 18 [in]

• Anvil Velocity Change: 157 [ft/s]

• Parameters Investigated:

• Programmer material

• Carriage weight

• Stack height

• Cross-sectional area



Method-Physical Test Cases10

Test #
Stack

Height [in]
(F-3 felt)

Cross-
Sectional

Area [in^2]

1 18 81

2 24 76.5

3 3.5 81

4 24
2 of 81

22 of 40.5

5 24
2 of 81

22 of 40.5



Method– Photometrics11

• Internal photometric software

• Tracking Ability

• Acceleration

• Velocity

• Displacement

•Filtering and Windows

• Butterworth

• Savitzky-Golay

• Rolling Average

• Background Oriented Schlieren

• Allows for tracking of wave through 

the programmer material



Results – Drop Shock Photometric Response12



Drop Shock Pulse Properties: Programmer Materials

Key Points:

• Cross-Sectional Area: Increases

• Max Acceleration: Decreases

• Duration: Increases (F-1 Decreases)

• Density: Increases

• Max Acceleration: Decreases

• Duration: Increases

• Exception: F-5 has an outlier

13



Drop Shock : Felt Stack Height & Cross-Sectional Area14

Key Points:

• Stack Height: Increases
• Acceleration: Decreases
• Duration: Increases

• Simulation overpredicts experiment
• Little difference between F-1 and F-3

Similar linear relationship seen in experimental and 
simulation.



Photometrics Experimental Drop Shock15

Wave Speed Before Reflection:

• F-1 = 219.7 ft/s

• F-3 = 191.6 ft/s

• F-5 = 121.1 ft/s

Key Point:

• Denser felt = higher speed 
at the first impact.



Results– Cascading Apparatus16



Cascading Apparatus – Simulation v. Experimental17

Key Points:

• Similar area under the acceleration 
curve is demonstrated by the velocity curve.

• Demonstrate simulation's ability to model key 
features of the pulse



Cascading Apparatus – Carriage Weight Simulation Study18

Key Points:

• Carriage Weight: Increases

• Max Acceleration: F-1 Decreases, F-3 Decreases

• Duration: F-1 Increase, F-3 Increase

• Velocity: F-1Inconclusive, F-3 Inconclusive



Cascading Apparatus – Pulses (Simulation)

Key Points:

Carriage Weight: Increases

• First shelf or hump: Decreases
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Increasing carriage weight = better Haversine



Cascading Apparatus: Stack Height Simulation Study20

Key Points:

• Stack Height: Increases

• Max Acceleration: F-3 Decreases

• Duration: F-3 Increases

• Velocity: F-3 Decreases



Cascading Apparatus Stack Height Simulation Study21

Key Points:

• Stack Height: Increases

• First shelf or hump: Decreases

Increasing stack height = better Haversine!



Cascading Apparatus: Cross-Sectional Area Simulation Study22

Key Points:

• Cross-Sectional Area: Increases

• Max Acceleration: F-1 Decreases, F-3 Increases

• Duration: F-1 Inconclusive (outlier), F-3 Decreases

• Velocity: F-1Inconclusive, F-3 Decreases

More data would help us gain 
better insight.



Cascading Apparatus: Cross-Sectional Area Simulation Study23

Key Points:

• Cross-Sectional Area: Decreases
• Double hump: less pronounced/Decreases

Less cross-sectional area = better Haversine!



Conclusions

• Simulation overpredicts acceleration compared 
to experiment

• Drop Shock & Cascading Apparatus Similarities

• Stack Height: Increases

• Max Acceleration: Decreases

• Duration: Increases

• Cross-Sectional Area: Increases

• Max Acceleration: Decreases

• Duration: Increases

• Exception: F-1 was Inconclusive for Cascading 
Apparatus

24
Cascading Apparatus

Drop Shock



Conclusions

• Decreasing Double Hump

• Stack Height: Increase (Does decrease max 

acceleration)

• Cross Sectional Area: Decrease (Potential 

for buckling)

• Material Density: Decrease

• Carriage Weight: Decrease
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Future Work

• Create stress-strain curve using:

• photometrics

• accelerometer data

• Characterize F-5 and F-11 wool felt/Generate material input deck

• Hopkinson Bar Test

• OR photometrics

• OR pre-existing accelerometer data

• Wider & finer parameter sweep for cascading impact test

• Conduct a graded-density felts test study

26
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