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• Increasing need for reliability and safety (Ex: Automotive, Healthcare, Aerospace)

• Additive Manufacturing (AM):

• Produces complex geometries with unprecedented design freedom and customization

• Generates non-uniform material properties, extreme anisotropy, and inherent porosity [1, 2].

Goal: Validate different failure prediction approaches given the set of experimental data.

• Prediction models:
• Direct Numerical Simulation (DNS): Gold standard of failure prediction [3, 4].

• Void Descriptor Function (VDF): Lightweight prediction model [5-6].

Motivation2
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Experimental Data Overview3

Laser Powder Bed FusionCAD file 

Fabrication Parameters

Normalized Energy Calculations [7]

Tensile Testing

As-Built Samples

Grayscale Segmented

Fractured Samples
Grayscale Segmented

Micro-CT before Fracture Micro-CT after Fracture

Stress (MPa) Strain (%)

26.8918 -0.00402

27.11515 0.001831

27.47726 0.00209

27.78574 0.001993

28.35874 0.001997

Stress-Strain Data

Additive Manufacturing of Samples

3D Characterization Techniques 

Data Acquisition

316L SS specimens (26)

6 mm



Workflow Outline4

Raw and Segmented Data

recon3d
GitLab Repository

Binary to Semantic

Instance Analysis
Pore Processing
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npy to Mesh

Image and data Pre-processing

Crop Data

Experimental Data Analysis

Direct Numerical Simulations (DNS)

Void Descriptor Function (VDF)

Stress (MPa) Strain (%)

26.8918 -0.00402

27.11515 0.001831

27.47726 0.00209

27.78574 0.001993

28.35874 0.001997

Stress-Strain Data
Sierra/SM

Stress-Strain 
normalization



Methods: Pre-processing (Crop Data)5



Methods: Pre-processing (Image Analysis)6

binary_to_semantic instance_analysis downscale npy_to_mesh

• Identifies air, pores, and 
metal independently.

• Converts segmented 
data (air = 0 & metal = 1) 
into semantic data, 
creating three classes:

• air = 0
• metal = 1
• pores = 2

• Output: semantic 
segmentation tiff 
images.

• Identifies each pore 
individually

• Provides different pore 
metrics using semantic 
data as input. 

• Output: h5 file with all 
the information 
collected from each 
pore

• Pads an image stack at a 
given resolution until it 
is evenly divisible by a 
target resolution before 
downscaling to the 
target resolution.

• Output: downscaled tiff 
images, a .vtr file, and an 
.npy file.

Resolution = 4 µm

Resolution = 20 µm

recon3d
GitLab Repository

• Input: .npy file

• Intermediate outputs: 
Creates a Sculpt (.i) input 
file

• Output: Runs Sculpt to 
create an Exodus (.e) 
mesh file 



Methods: Pre-Processing (Pore Statistics)7



Methods: Experimental Data Analysis

• Image J was used to manually locate fracture site.

• Pixel (2D) data was given which was converted to 
real space data in µm.

• ParaView was utilized to visualize both the as-
built and fractured samples to identify the 
fracture location.

• This method was applied for all 26 samples.
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Results: Experimental Data Analysis9

Fracture Location ≈ 4.692 mmMetal

Pores

Least Porous

Necking

Scale is in mm

Fracture

Equivalent diameter 0.22% increase



Results: Experimental Data Analysis10

Fracture Location ≈ 2.048 mmMetal

Pores

Porous

Scale is in mm

Fracture

Equivalent diameter 4.36% increase



Results: Experimental Data Analysis11

Fracture Location ≈ 4.184 mmMetal

Pores

Most Porous

Scale is in mm

Fracture

Equivalent diameter 2.29% increase



Methods: DNS Workflow12

Mesh creation –
voxel size

Different sample 
simulations

Sierra/SM simulation 
workflow

• Select material model
• Material properties
• Build input deck
• Debug input deck

• Predict failure in porous 
samples

• Varying resolution 
simulations

• Run simulations
• Calibrate parameters 

porous mesh



Methods: DNS – Mesh13

• CUBIT was utilized to add node 
sets to be used for boundary 
conditions.

• Pore elements deleted.

80 µm voxel 40 µm voxel 20 µm voxel



Methods: AM 316L SS property specification14

• Hill plasticity model:

• Anisotropic/rate dependent 
yield

• Plasticity captured via Voce 
hardening

• Scalar damage model

[4, 8-9]

Hill plasticity

Yield Fitting 
constant

Fitting exp

Damaged Cauchy stress

Void volume 
fraction

Voce Hardening



Results: Stress-strain response – different damage exponent (m)15

40 µm voxel sizem ∝ damage

[4]



Results: Mesh size effect16

40 µm voxel 20 µm voxel80 µm voxel

~13k elements
20 processors

0.25 hr wall time

~100k elements
40 processors

1.4 hr wall time

~800k elements
330 processors

2.46 hr wall time

Porous



Methods: Void Descriptor Function (VDF)17

• Identifies positions along gauge section highly populated by critical pore structures [4]

• Signals where fracture is likely to occur

• Quantifies the inter-relationships of pores to quickly predict failure [4]
• Factors: pore location, size, and distance to free surface

Crop Data Obtain Geometries Calculate Pore Metrics



Results: Void Descriptor Function18

Most Porous Porous Least Porous

Max VDF value 0.03496 0.00606 0.000175

Location (mm) 3.641 3.462 3.371



Results: Comparison – Fracture Locations  19
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Conclusion

• VDF takes significantly less time than DNS (~0.269 seconds compared to ~25+ minutes)

• DNS showed a lower percentage error indicating a more accurate model

• Mesh resolution affects failure location accuracy.

• This project serves a stepping stone in advancing the broader scope of the research 
effort.
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Fracture Location (mm)

Least Porous Porous Most Porous

EXP 4.692 2.048 4.184

DNS 4.12 2.05 4.20

VDF 3.371 3.462 3.641 22.40

69.04

19.43

12.19

0.10

0.38
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Future Work

Experimental Data Analysis

• Automated fracture location

• Better inform data-driven predictive models

• Further analysis on Normalization energy values

Direct Numerical Simulation

• Full sample set simulations

• Smaller voxel size mesh simulations 

• Fracture initiation (void)

Void Descriptor Function

• Optimization in progress

• Account for surface roughness
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