Ductile Failure Prediction in Additively Manufactured Metals via 3D Characterization

THE UNIVERSITY OF

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2024-10177PE

NEW MEXICO

Thomas Cisneros Ivana Hernandez Suhanna Bamzai

Mentors: Andrew Polonsky (lead), Ashley Spear, John Emery, Chad Hovey, Dan Moser, Paul Chao

² **Motivation**

- Increasing need for reliability and safety (Ex: Automotive, Healthcare, Aerospace)
- **Additive Manufacturing (AM):**
	- Produces complex geometries with unprecedented design freedom and customization
	- Generates non-uniform material properties, extreme anisotropy, and *inherent porosity* [1, 2].

Goal: Validate different failure prediction approaches given the set of experimental data.

• **Prediction models**:

- Direct Numerical Simulation (DNS): Gold standard of failure prediction [3, 4].
- Void Descriptor Function (VDF): Lightweight prediction model [5-6].

³ Experimental Data Overview

Additive Manufacturing of Samples

4 Workflow Outline

⁵ **Methods:** Pre-processing (Crop Data)

⁶ **Methods:** Pre-processing (Image Analysis)

recon3d

GitLab Repository

 \bigcirc

⁷ **Methods:** Pre-Processing (Pore Statistics)

Methods: Experimental Data Analysis

Image J was used to manually locate fracture site.

 \bigcirc

- Pixel (2D) data was given which was converted to real space data in µm.
- ParaView was utilized to visualize both the asbuilt and fractured samples to identify the fracture location.
- This method was applied for all 26 samples.

⁹ **Results:** Experimental Data Analysis

 \bigcirc

Scale is in mm

10 **Results:** Experimental Data Analysis

Porous

Equivalent diameter 4.36% increase

 \bigcirc

Scale is in mm

11 **Results:** Experimental Data Analysis

Most Porous

Scale is in mm

12 **Methods: DNS Workflow**

13 **Methods:** DNS – Mesh

- CUBIT was utilized to add node sets to be used for boundary conditions.
- Pore elements deleted.

Methods: AM 316L SS property specification

- Hill plasticity model:
	- Anisotropic/rate dependent yield
	- Plasticity captured via Voce hardening
	- Scalar damage model

Hill plasticity

$$
\theta^2(\hat{\sigma}_{ij}) = F(\hat{\sigma}_{22} - \hat{\sigma}_{33})^2 + G(\hat{\sigma}_{33} - \hat{\sigma}_{11})^2 + H(\hat{\sigma}_{11} - \hat{\sigma}_{22})^2 + 2L\hat{\sigma}_{23}^2 + 2M\hat{\sigma}_{31}^2 + 2N\hat{\sigma}_{12}^2
$$

Damaged Cauchy stress

Void volume

fraction

Voce Hardening

Yield Fitting constant $\hat{\sigma}_{ij} = \frac{\sigma_{ij}}{(1-\phi)}$ $\sigma_f = Y_0 \left\{ 1 + \sinh^{-1} \left[\left(\frac{\dot{\epsilon}_p}{f} \right)^{1/n} \right] \right\} + A \left((1 - \exp(b \epsilon_p) \right)$

 \bigcirc

$$
\dot{v}_{v} = \sqrt{\frac{2}{3}} \dot{\varepsilon}_{p} \frac{1}{\eta} (1 + \eta v_{v}) \left[(1 + \eta v_{v}) \frac{m}{\eta} - 1 \right]
$$

$$
\cdot \sinh \left[\frac{2(2m-1)}{2m+1} \frac{\langle p \rangle}{\sigma_{f}} \right] - (v_{v} - v_{0}) \frac{\dot{\eta}}{\eta}
$$

16 **Results:** Mesh size effect

Porous

Methods: Void Descriptor Function (VDF)

- Identifies positions along gauge section highly populated by critical pore structures [4]
	- Signals where fracture is likely to occur
- Quantifies the inter-relationships of pores to quickly predict failure [4]
	- Factors: pore location, size, and distance to free surface

Crop Data \longrightarrow Obtain Geometries \longrightarrow Calculate Pore Metrics

g pores ^職 axis_vectors **職** centroids ^職ellipsoid_surface_areas **職** ellipsoid_volumes **a** equivalent_sphere_diameters ^職nearest_neighbor_IDs **u** nearest_neighbor_distances ^職 num_voxels **職** semi-axis_lengths

18 **Results: Void Descriptor Function**

19 **Results:** Comparison – Fracture Locations

Conclusion 20

- VDF takes significantly less time than DNS (~0.269 seconds compared to ~25+ minutes)
- DNS showed a lower percentage error indicating a more accurate model
- Mesh resolution affects failure location accuracy.
- This project serves a stepping stone in advancing the broader scope of the research effort.

Percent Error (%)

This research was conducted at the 2024 Nonlinear Mechanics and Dynamics Research Institute hosted by Sandia National Laboratories and the University of New Mexico.

Ivana would like to acknowledge the NNSA Minority Serving Institutions Internship Program (MSIIP) administered by ORISE on behalf of the NNSA for sponsoring her internship at NOMAD.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

References 22

- 1. Sames, W. J., List, F. A., Pannala, S., Dehoff, R. R., & Babu, S. S. (2016). The metallurgy and processing science of metal additive manufacturing. International Materials Reviews, 61(5), 315–360. <https://doi.org/10.1080/09506608.2015.1116649>
- 2. Lewandowski, J. J., & Seifi, M. (2016). Metal Additive Manufacturing: A Review of Mechanical Properties. In Annual Review of Materials Research (Vol. 46, Issue 1, pp. 151–186). Annual Reviews. <https://doi.org/10.1146/annurev-matsci-070115-032024>
- 3. Karlson, K. N., Skulborstad, A. J., Madison, J. M., Polonsky, A., & Jin, H. (2023). Toward accurate prediction of partial-penetration laser weld performance informed by three-dimensional characterization – Part II: μCT based finite element simulations. Tomography of Materials and Structures, 2, 100007. <https://doi.org/10.1016/j.tmater.2023.100007>
- 4. Bergel, G., Karlson, K., & Stender, M. (2020). Assessing the Influence of Process Induced Voids and Residual Stresses on the Failure of Additively Manufactured 316L Stainless Steel. Office of Scientific and Technical Information (OSTI). <https://doi.org/10.2172/1593545>
- 5. Erickson, J. M., Rahman, A., & Spear, A. D. (2020). A void descriptor function to uniquely characterize pore networks and predict ductile-metal failure properties. In International Journal of Fracture (Vol. 225, Issue 1, pp. 47–67). Springer Science and Business Media LLC. <https://doi.org/10.1007/s10704-020-00463-1>
- 6. Watring, D. S., Benzing, J. T., Kafka, O. L., Liew, L.-A., Moser, N. H., Erickson, J., Hrabe, N., & Spear, A. D. (2022). Evaluation of a modified void descriptor function to uniquely characterize pore networks and predict fracture-related properties in additively manufactured metals. In Acta Materialia (Vol. 223, p. 117464). Elsevier BV.<https://doi.org/10.1016/j.actamat.2021.117464>
- 7. Thomas, M., Baxter, G. J., & Todd, I. (2016). Normalised model-based processing diagrams for additive layer manufacture of engineering alloys. In Acta Materialia (Vol. 108, pp. 26–35). Elsevier BV. <https://doi.org/10.1016/j.actamat.2016.02.025>
- 8. E. Voce. (1948). The Relationship Between Stress and Strain for Homogeneous Deformations, J. of the Institute Metals, 74:537-562
- 9. R. Hill. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London, A193:281-297.

Future Work

 23

Experimental Data Analysis

- Automated fracture location
- Better inform data-driven predictive models
- Further analysis on Normalization energy values

Direct Numerical Simulation

- Full sample set simulations
- Smaller voxel size mesh simulations
- Fracture initiation (void)

Void Descriptor Function

- Optimization in progress
- Account for surface roughness