

Distortion Compensation for Additive Manufacturing

Amit Hegde George Bourgikos Salvador Orozco Martinez

August 6th, 2024

Mentors: Michael Stender Carl Herriott Christie Crandall Ellen Wagman Sannmit Shinde

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2024-10176PE

2 Agenda

- 1. **Project Background:** Manufacturing Process
- 2. **Project Workflow:** Numerical Analysis and Code
- 3. **Results:** Validation and Parametric Study

Background & Motivation

Problem Definition: Distortion in Metal Additive Manufacturing

- Modern-day industry demands for high quality and exact metal AM components
- High temperature gradients and heat transfer rates generate significant residual stresses and ultimately cause distortion in the part

LPBF Basic Process:

5

- 1. Layer of material is spread over build platform
- 2. Laser fuses first layer of the model
- 3. New powder layer is spread across previous layer
- 4. Further layers are fused and added
- 5. Process repeats until the entire model is finished

https://www.youtube.com/watch?v=v7Zy5juMJ-M

Post-Processing for Metal AM

1. Heat Treatment:

6

- Relieves internal stress and improves physical and structural properties
- Annealing
- Quenching

- 2. Electrical Discharge Machining (EDM)
 - High-precision
 - Flexible and safe detachment of component from 3D printing platform (build plate)

Baseplate Removal

Proposed Investigation

- Validate the digital model with experimental testing.
- Investigate the ability of computational analysis to reduce distortion effects in metal AM by:
 - 1. Predicting the deformation of parts by simulating the printing process, heat treatment, and baseplate removal procedures of a part in Sierra.
 - 2. Compensating for the predicted distortion of a part by modifying the 3d geometry.
 - 3. Conducting a parametric study to gain insights into the behavior and performance of the process under different boundary conditions.

Project Workflow

Finite Element Simulation (SIERRA)

Layer Activation + Inherent Strains

Printing Process:

- Layers are activated one at a time
- Artificial strains are applied to each layer
 - Inherent Strain values are calibrated using experiments
 - Representative of total "left-over" strain after melting and solidification
- Total mechanical response is calculated
- Acceptable accuracy and greater computational efficiency vs highfidelity simulation

Heat Treatment:

- Material properties are temperature dependent
- Surface temperatures and heat flux are applied, and mechanical response is calculated

EDM Baseplate Removal:

Layer of elements is deactivated allowing internal stresses to cause displacements

* High Fidelity Multiphysics Simulation *

Distortion Compensation (Python)

Validation

12 **Reference Geometry: Harmonica**

5 mm thick baseplate

Material	304L Stainless Steel
Constitutive Law	Linear Elastic
Mass Density	8030 kg/m^3
Thermal Conductivity	14.22 W/mK
Specific Heat Capacity	478.9 J/(kg C)
Inherent Strains	-2 % along x -2 % along y +2 % along z
Young's Modulus (at 22 C)	200 GPa
Poisson Ratio (at 22 C)	0.25
Yield Stress	0.21 GPa

Real Part Scans vs Simulated Results: Difference in Displacements

• Simulated displacements are largely within \pm 0.3 mm of actual displacements

Results and Discussion

Performance Enhancements and Code Quality Improvements

DISCO (Distortion Compensator): Python wrapper around SIERRA (C++)

Edits

Added parallelization to preprocessing algorithm.

Added parallelization to compensation algorithm.

Object Oriented Programming

Impact on Code

Reduced 0.5-1-hour preprocessing step to 3 minutes (x10 - x20 faster)

Similar improvement for compensation algorithm

Enhanced useability

Root Mean Square Error (RMSE)	Hausdorff Distance (HD)	Chamfer Distance (CD)
 Comparison of two different surfaces 	 Comparison of two different point clouds 	 Comparison two different point clouds
 RMS of displacements of top surface with respect to CAD file 	 Maximum distance between any pair of nearest neighbors (mm) 	 Average distance between pairs of nearest neighbors (mm)
 Indicative of local distortion of a 2D surface 	 Indicative of local distortion For similar point clouds, HD → 0 	 Indicative of average distortion For similar point clouds, CD → 0
• For similar surfaces, RMSE \rightarrow 0		· · · · ·

Parametric Study of Boundary Conditions: Location and Type 17

- Pinned
- Fixed

Case 2: Square Clamps • Pinned • Fixed			
--	--	--	--

Case 3: Parallel Clamps

• Pinned

Fixed •

Case 1a: Fixed Corner Clamps (Heat Treatment at 600 °C)

Lower RMSE does not mean lower overall distortion

Displacement (mm) x10

Case 1b: Pinned Corner Clamps (Heat Treatment at 600 °C)

20

²¹ Case 2a: **Fixed Square Clamps** (Heat Treatment at 600 °C)

²² Case 2a: **Pinned Square Clamps** (Heat Treatment at 600 °C)

ħ

Minimum Chamfer Distance

Clamping location affects distortion compensation: displacement

Clamping location affects distortion compensation: Von Mises Stress

25

Baseplate distortion after heat treatment (before EDM)

7 Key Takeaways

- Location of clamps can significantly impact distortion.
 - Clamps that are closer to the part cause concave (upward) bending
 - Clamps that are further away from the part cause convex (downward) bending
 - Possibly caused by thermal buckling of baseplate during heat treatment
- Clamps located towards the outer edges of the baseplate can relieve residual stress
- Pinned clamps cause less distortion than fixed clamps
- Distortion compensation is improved by moving clamps towards the outer edges of the baseplate

Conclusion and Scope for Future Work

- Improved the performance of a finite element workflow to predict and compensate for distortion of additively manufactured metal parts.
- Validated the accuracy finite element code with respect to experimental results.
- Investigated the effect of clamping boundary conditions on residual stresses and distortion.
- In the future:
 - Run additional parametric studies
 - Investigate the effect of different thermal boundary conditions
 - Calculate optimal clamping locations for specific geometries to reduce distortions

29 Acknowledgements

- This research was conducted at the 2024 Nonlinear Mechanics and Dynamics Research Institute hosted by Sandia National Laboratories and the University of New Mexico.
- The authors would like to acknowledge the support of our mentors, Michael Stender, Carl Herriott, Ellen Wagman, Christie Crandall, and Sannmit Shinde.
- Further appreciation is extended to the NOMAD team—John Emery, Deborah Fowler, Robert Kuether, Brooke Allensworth, and Aabhas Singh—for their organization and guidance.
- Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

- 1. X. Wang and A. Wang, "Finite element analysis of clamping form in wire and arc additive manufacturing," in *Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management*, Beijing, China, 2019.
- 2. "AMB2018-01 Description," NIST, Feb. 2018, Accessed: Jul. 31, 2024. [Online]. Available: https://www.nist.gov/ambench/amb2018-01-description
- 3. W. Dong *et al.*, "A new procedure for implementing the modified inherent strain method with improved accuracy in predicting both residual stress and deformation for laser powder bed fusion," *Additive Manufacturing*, vol. 47, p. 102345, Nov. 2021. doi:10.1016/j.addma.2021.102345
- 4. C. Alleman and S. Smith, *The microstructure aware plasticity model: Formulation and Usage Guide*, Oct. 2021. doi:10.2172/1855024
- 5. S. Afazov, W. A. D. Denmark, B. Lazaro Toralles, A. Holloway, and A. Yaghi, "Distortion prediction and compensation in selective laser melting," *Additive Manufacturing*, vol. 17, pp. 15–22, Oct. 2017. doi:10.1016/j.addma.2017.07.005