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ABSTRACT 
A digital twin has intelligent modules that continuously monitor the condition of the individual 
components and the whole of a system. Digital twins can provide nuclear power plants (NPP) 
operators an unprecedented level of monitoring, control, supervision, and security by contributing a 
greater volume of data for more comprehensive data analysis and increased accuracy of insights and 
predictions for decision making throughout the entire NPP lifecycle. NPP operators and managers 
have historically relied on limited, second hand or incomplete data. With proper implementation, 
digital twins can provide a central hub of all intel that allows for a multidisciplinary view of an NPP. 
This equips operators and managers with the ability to have more information, context, and intel 
that can be used for greater granularity during planning and decision making. Digital twins can be 
used in many activities as the technology has many different concepts surrounding it. From the 
various definitions of a digital twin within the industry, digital twins can be differentiated by levels of 
integration/automation. The three main models include digital model, digital shadow, and digital 
twin. Digital twins offer many potential advancements to the nuclear industry that could reduce 
costs, improve designs, provide safer operation, and improve their overall security. 
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EXECUTIVE SUMMARY 

Digital twins have a long history in industry with the concept first being introduced over fifty years 
ago and have long been presented as a valuable tool across industries. For the purposes of this 
report, digital twins are being defined as a high-fidelity digital replica of a device, process, or asset. 
Digital twins enable better analyses and operational predictions in addition to optimizing processes. 
However, for digital twins to be truly useful, they require a one-to-one correspondence with the item 
being modeled. The nuclear industry is interested using digital twins for the reasons stated above but 
is somewhat cautious to do so because of the one-to-one replication required. Digital twins are a 
novel advancement in modeling and simulation and are therefore attractive to high consequence 
industries as they provide a viable means to reduce risks. This report provides a detailed analysis of 
current digital twin implementations in other industries, digital twin use cases within nuclear power 
plants, risks arising from an expanded attack surface, and a review of the security mechanisms 
associated with each use case.  
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ACRONYMS AND TERMS 
Acronym/Term Definition 

AI Artificial Intelligence 

AR Advanced Reactor 

ATT&CK Adversarial Tactics, Techniques, and Common Knowledge 

BP British Petroleum 

DCS Distributed Control System 

DCSA Distributed Control System Architecture  
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GE General Electric 
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ICS Industrial Control System 

IEEE Institute of Electrical and Electronics Engineers 

IoT Internet of Things 

ML Machine Learning 

NASA National Aeronautics and Space Administration 

NPP Nuclear Power Plant 

O&M Operations and Maintenance 

OT Operational Technology 

PDE Partial Differential Equation  

UQ Uncertainty Quantification 

V&V Verification and Validation 
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1. INTRODUCTION 
Digital twins are hardly a new concept, depending on which resource is being consulted. Some 
publications state that digital twins were developed by the National Aeronautics and Space 
Administration (NASA) in the 1960s following the Apollo 13 accident [1, 2]. Others state that digital 
twins were created by Dr. Michael Grieves in 2002 [3, 4], or that the Defense Advanced Research 
Projects Agency is responsible for originally conceiving the digital twin concept [5]. Ultimately, it is 
fair to assume that NASA is responsible for introducing the concept of a digital twin when they built 
physical duplicates to match the systems they had in space. However, the recent, and rapid, 
development of modern technology like the Internet of Things (IoT) enabled the development of 
the truly digital twin which Grieves proposed [3, 6].  

Initially, a digital twin was defined as a “set of virtual information constructs that fully describes a 
potential or actual physical manufactured product from the micro atomic level to the macro 
geometrical level” [3]. Put more simply, a digital twin is a high-fidelity digital replica of an asset, 
either a device, process, or structure [7, 8] that uses both historical and real time data [9, 10] that 
allows for analyses, predictions, and operation optimizations throughout the lifecycle of the asset. 
One group of authors identify three levels of digital twins: (1) Partial–in which the digital twin 
connects to limited data sources or sensors for basic devices to capture key metrics; (2) Clone–this 
level contains all data and measurements from multiple sources for an asset; and (3) Augmented–this 
digital twin enhances collected data with data from outside sources or intelligence, which is extracted 
through a data analytics engine and may use machine learning algorithms. Regardless of which level 
is being implemented, a functional digital twin requires the model of the physical object, data from 
that object, a one-to-one correspondence with the object, and the ability to monitor the object. The 
elements of control and analytics are optional depending on use case [10]. 

There is a common perception that digital twins have numerous benefits such as reducing costs, 
reducing risk and design times,  reducing complexity and reconfiguration time, improving efficiency, 
improving maintenance decision making, improving security, improving safety and reliability, and 
improving processes and tools. Most importantly though, is that there are few realworld 
implementations that can validate these assumptions [11]. Despite this, digital twins are presented as 
a valuable tool for industries. The interest in their use for nuclear applications is gaining traction, but 
the nature of nuclear is highly conservative for good reason. Digital twins, as a technology, must be 
evaluated for the risks they present to the plant before any consideration can be made about the 
potential benefits they could produce. Furthermore, there remains a need for a better understanding 
of the current state of digital twin technology, understanding how regulatory guidance could relieve 
technical issues, and understanding of the development of the necessary infrastructure to support 
regulations [12].  
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2. CURRENT IMPLEMENTATIONS AND INDUSTRY USE CASES 
Currently, there are few implementations of digital twins within the nuclear industry and even fewer 
that have been published about. Other industries, however, have been implementing digital twins in 
a variety of ways while many researchers have sought to understand theoretical applications that may 
one day become reality. For example, aircraft engine manufacturers are using digital twins to 
simulate engine fleets for monitoring their operation(s). By using digital twins to monitor fleet 
operations, manufacturers can optimize flight operations and maintenance, which ultimately lowers 
costs. Furthermore, the digital twins are used for automated anomaly detection to isolate and 
identify faults. Unfortunately, for the purposes of this report, the models that the manufacturers use 
are proprietary and further details have been withheld [13].  

Another digital twin use case was created and used to bolster aircraft health monitoring. 
Traditionally, monitoring aircraft safety is done through a combination of deterministic physics 
models and ground inspections to track and record potential fatigue damage. In this case, the digital 
twin was designed to allow researchers to study the growth of cracks along the leading edge of the 
airplane’s wing without having to waiting for a crack to develop to study. This digital twin was 
ultimately found to decrease the amount of time needed for a diagnosis and more effectively predict 
crack growth for future prognoses. At the time, the authors believed that the United States Air 
Force was investigating the use of their proposed digital twin model for both legacy and new aircraft 
to lessen maintenance related costs and aircraft downtime [14]. In the same vein, another digital twin 
was built to support aircraft fleet maintenance and incorporated the maintenance history, other 
aircraft data, and an on-board health management system to supplement the digital twin’s results. 
Ultimately, this digital twin was able to perform incredibly accurate fault diagnosis without first 
initiating any form of damage to subsequently study [15]. 

Besides studying aircraft maintenance, the U.S. Airforce has also employed digital twins to protect 
the United States’ critical infrastructure in space, namely to secure satellites from cyberattacks. 
Because satellites must be protected to the same extent as other critical assets on the ground, 
cybersecurity must be implemented into every level of the satellite’s lifecycle, however, the remote 
location of the satellite necessitates the need for a digital twin to resolve complex issues. To address 
cybersecurity concerns, the U.S. Air Force partnered with Booz Allen to test global positioning 
system satellites to find vulnerabilities and craft protective measures. Booz Allen and the Air Force 
conducted a thorough model-based systems engineering review to construct an incredibly detailed 
digital twin of a Block Imaging Infrared Radiometer  satellite. This digital twin was then connected 
to software-defined radios to emulate real radio frequency links to then simulate a control station, 
space vehicle, and man-in-the-middle attack. The digital twin was also used for Booz Allen to 
conduct penetration tests and attacks designed to gain control of radio links. Because of the digital 
twin, Booz Allen was able to go past the penetration tests to also recommend, and subsequently test, 
strategies for detecting and mitigating threats [16]. 

In other industries, General Electric (GE) uses digital twins to monitor, flag, and diagnose irregular 
engine behaviors as a means of early detection for possible engine failures. GE has also created 
digital twins that are enterprise scale to simulate system interactions that are complex and full-scale. 
These digital twins are designed for operators to test “what-if” scenarios and allow for investigations 
into key performance indicators and their impact on the highest probability scenarios being tested. 
Additionally, GE’s digital twin can incorporate data such as weather, expected device performance, 
and other operations into scenarios to develop a robust understanding of how different elements 
can impact the overall enterprise [10].  
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Much like digital twins are being used in the aerospace industry to test “what-if” scenarios, they are 
being used by the oil and gas industry for the same purpose. British Petroleum (BP) uses a digital 
twin program called APEX, which is a simulation and surveillance system developed to test “what-
if” scenarios in addition to optimizing daily operations. APEX is also used to detect irregularities 
within BP’s wells, flow regimes, and pressures. In one situation, an APEX simulation was used to 
inform shutdown procedures when a pipeline required maintenance and oil flows needed to be 
rerouted. BP’s engineers state that the use of APEX in this situation protected the flow of oil and 
enabled the efficient delivery despite pipeline maintenance because engineers used data gathered 
from the simulation to adjust flow routes and speeds [17].   

Outside of the aerospace and oil and gas industries, digital twins have been used in the health 
industry as well. Unsurprisingly, because of the COVID-19 pandemic, researchers were prompted to 
find methods to safely assess patient health with the added challenge of doing so remotely. 
Researchers designed and tested a digital twin, based on both the IoT and internet of robotic things 
to enable an environment in which medical practitioners could conduct remote health monitoring of 
their patients. This version of a digital twin is still in its infancy but is indicative that digital twins are 
beneficial across many different industries [18]. 
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3. NUCLEAR USE CASES 
Simulation and modeling have been core tools for nuclear power since the advent of digital 
computing. It is natural for the nuclear industry to adopt novel modeling and simulation 
advancements; being a high consequence industry, any potential risk reduction avenue is of 
significant interest. Simulating processes and design elements allow designers to make informed 
engineering decisions before resorting to expensive physical tests. These digital models in the past 
were typically limited in fidelity or to a single element or system, due in part to computational 
limitations. As computational capacity costs decrease and simulation methods advance, the nuclear 
industry has been advancing more integrated simulations and models. Digital twins are the 
culmination of this advancing simulation capability, intending to be full-scope digital representations 
of physical systems. 

 
Figure 1. Physical asset life cycle phases, associated lifetimes, and activity of the digital model, 

twin, and shadow1 [19] 

The novelty and genericism of digital twins lend to a loose definition and plethora of use cases. It is 
perhaps best to describe the spectrum of digital twin applications in the context of the Nuclear 
Power Plant (NPP) lifecycle. Generally, this breaks down to three operational phases: design and 
commissioning, operation, and decommissioning. In each phase the digital twin fulfills different 
roles and consequently may have a different construction. Kochunas & Huan offer an interpretation 
of how digital twins interact with the lifecycle of a nuclear power plant and describes three distinct 
digital representations of the plant as shown in Figure 1. The digital model, digital shadow, and 
digital twin taxonomy purports that only one of these is the true digital twin, yet some in the 

 
1 The width of these lifetimes indicates level of interaction with the digital object. 
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industry would contend that each of these is a type of digital twin [20]. It is useful for the purposes 
of a complete understanding of digital twin use cases in the nuclear industry to use these definitions 
despite the debate on what constitutes a true digital twin.  

Researchers from Germany had proposed a framework for cyber-physical digital twins and claims 
that a digital twin could be interfaced with the real world in “an elegant programming architecture” 
allowing simulations to to be evaluated against real world observations leading to subsequent 
improvements within the physical world [21]. Many design flaws can be easily rectified through the 
insights generated by a digital twin. Depending on the consequential concerns, system verifiability 
needs, availability requirements, and monetary resources of a NPP, different implementations of a 
digital twin representation of the physical plant are available to satisfy different needs. The needs of 
a physical plant must align with the level of automation provided by the selected digital twin as 
shown in Figure 2. 

 
Figure 2. Digital model, shadow, and twin levels of automation [22] 

Future nuclear system design can be virtually prototyped based on the actionable inputs of the 
virtualized digital twin and production processes can be significantly optimized to bring in as much 
needed efficiency. Production customization, configuration, and composition can be quickly 
accomplished in an agile manner with the constant inputs of the digital shadow. And the next 
version of the nuclear system can be improved with a greater understanding of system expectations 
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and operations of the digital model. Considering all challenges and advantages, effective deployment 
of a digital twin can be multifaceted, with a digital model being a manually configured cyber digital 
twin, a digital shadow used for monitoring/predictive maintenance, and a digital twin for a fully bi-
directional automated deployment for NPP system advancement. 

3.1. Digital Model 
Nuclear designers have long been using modeling as a design aid for developing their NPP and their 
importance has grown with their complexity and fidelity. Neutronic, thermohydraulic, mechanical, 
and electrical models are conventionally independent, but integrated full-scope simulations to 
provide powerful insights. These are somewhat idealized models that are not necessarily based on 
any physical asset, which is what distinguishes this category as unique. This represents the many of 
the existing modeling and simulation tools in nuclear engineering, such as MCNP, RELAP, 
MOOSE, and MELCOR. The focus is fidelity; Monte Carlo, Computational Fluid Dynamics and 
Finite Element Analysis provide exceptional fidelity at the cost of computational demand. Real-time 
solutions are not feasible for these iterative solution methods, but the dynamics of real-time 
operation are highly valuable to a wide genre of design and engineering interest. 

 
Figure 3. Digital model data flows [22] 

As advanced reactor designs have become increasingly focused on multiunit Small Modular Reactor 
concepts and integration with renewable energy sources, the real-time control system dynamics have 
become more important to study [23]. Multiple heat source management, grid dynamics, load 
following, and combine control rooms are novel development for nuclear power and require the 
introspection offered by real-time dynamic models. Advanced control system design is aided by 
these types of simulations for Verification and Validation (V&V) and critical to cybersecurity 
research and design [24, 25]. Control system components are inherently real-time, so simulations 
must be real-time to interface with them. To reduce the computational time for each timestep to 
match or exceed real-time costs model fidelity but enables use cases valuable during operation of the 
physical plant. 

Digital models of a NPP allow for system integration. Through 3D NPP visualizations on a 
virtualized system level, the digital model can verify constraints such as the spatial footprint and 
within physical connections. By connecting to a digital model, a wide range of interactions can be 
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simulated and manually maintained as seen in Figure 3. These interactions include data transfer, 
control functionality, analyzing mechanical and electrical behaviors, and simulating incident response 
procedural scenarios. The integration effort on-site and the associated downtime for the customer or 
partner is significantly reduced with a digital model. Use cases for digtial models can be found in 
Table 1. 

Table 1. Digital model use cases 
Use Case  Description 

Design & Engineering A digital model identifies complex design problems, provides a sandbox 
to conduct operational failure analysis, and anticipates production 
issues. Through experimentation using a digital twin (DT) model, 
innovative designs can be developed, and operations can be maximally 
optimized. 

Verification & Validation A digital model determines if a physical system or component satisfies 
its operational and system-level requirements through V&V. System 
requirements are established to provide adequate direction for 
engineers to ensure quality assurance during the developmental stage 
of the physical asset’s life cycle.  

3.2. Digital Twin 
The line between a digital model and twin can be understood through the relationships they have 
with data flows regarding the physical system they represent as shown in Figure 4. The digital twin is 
a closed loop model, where information is automatically exchanged between it and the physical 
system allowing it to update its calculation parameters and predictions [19]. A shadow or model 
requires some measure of human interaction to modify its state and/or influence on the operations 
of the physical plant whereas the digital twin’s ultimate purpose would be to automatically interact 
with the physical plant to perform a function. A plethora of perspective uses have been identified by 
academia and industry that vary in their direct influence on the plant. 

 
Figure 4. Digital twin data flows [22] 

Sensor data, when gathered and aggregated, can give consolidated and accurate details on the 
prevailing state of the physical system. Additionally, the sensor and state data can be combined with 
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historical data to facilitate predictive analytics to extract functional as well as non-functional aspects 
of the physical machines. Human operators are empowered with advanced introspection to ensure 
the longevity and productivity of the nuclear power plant. A digital twin allows automated collection 
of various information across the physical asset’s complete lifecycle and analyzes it to promote 
better system design, improve quality management, create high-performance systems, offer 
connected informational/operational intelligence, streamline diagnostics, provide predictive 
maintenance, and create opportunities for future smart control systems.  

When paired with machine learning (ML) or artificial intelligence (AI), the digital twin can become a 
powerful control system with predictive capabilities [26]. A digital twin in association with data 
analytics and algorithms can generate insights that can be leveraged to produce premium and 
breakthrough services. With ML/AI, these devices can be self-managing, diagnosing, healing, 
learning, etc. Not only can the digital twin provide the training data for ML/AI, but it could also be 
used to by the ML/AI to determine the best control actions for optimal plant performance. This 
could provide a truly autonomous reactor control system and reduce or eliminate the need for an 
operator. This capability would be valuable for remote community deployment and integration with 
renewables by automatically predicting grid conditions and needs. The current perspective on these 
use cases is that they are immature and that their enabling technologies need further research and 
development to be viable from a regulatory perspective [27].  

Continuous monitoring of autonomous NPP data collected from the attached IoT devices including 
sensors, controllers, actuators, etc. has clear advantages for quality management when compared to 
the standard processes of randomized system inspections. Based on the collected data, the digital 
twin of the physical object can mirror every aspect of the production process to proactively identify 
where quality issues exist and originated. The production processes can also be fine-tuned to be as 
optimized and organized as possible with a digital twin prototype. To further add, the digital twin 
contributes to the process of aggregated data analysis to ascertain whether there is potential for 
improved processes to enhance the systems and allow them to operate at optimal performance. Use 
cases for digtial twins can be found in Table 2. 

Table 2. Digital twin use cases 
Use Case  Description 

Autonomous Control 
Systems 

A digital twin is a model-based autonomous engineering tool that can bring, 
with the integration of ML/AI, autonomy to NPP systems. The bidirectional 
automated data flows contribute to the capability to have unmanned systems 
with the ability to operate without human intervention. 

Cloud Control Systems A digital twin, as a cloud-based control systems (CCS), consists of controller 
methods and algorithms remotely placed in the cloud far from the physical 
NPP systems. The remote-control system has the same capabilities as a 
physical DT with the additional convenience, and safety benefit, of being 
remote. 

3.3. Digital Shadow 
Most use cases that are expected to be deployed in the nuclear industry are classified closer to digital 
shadows. Allowing automatic influence and operational changes to a nuclear power plant without 
human intervention is unacceptable in the current environment. Digital twin automated control 
systems for nuclear power are at a low readiness level. A digital shadow automatically receives data 
from the physical system from which it can update its parameters and make predictions that inform 
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the actions of an operator. To relay the insights gained from the digital object back to the plant, a 
human must make the ultimate decision and manually make the operational change as shown in 
Figure 5. This paradigm is much more acceptable for designers, regulators, and control system 
vendors. The risk profile is substantially reduced and provides an opportunity to gain operational 
experience with digital twins.  

 
Figure 5. Digital shadow data flows [22] 

 

Predictive maintenance stands to be the most readily deployable use for digital twins in the nuclear 
industry. Driving lower maintenance costs through predictive modeling makes predictive 
maintenance a popular use case across industry [9]. With the faster maturity and stability of machine 
and deep learning algorithms, predictive and prescriptive insights are being extracted in time and 
used for the longevity of equipment. Whether the equipment needs repair or continuous monitoring 
of its health condition and performance level, all the real-time and runtime information helps plan 
rational maintenance and reduce unplanned downtime. Digital twins can monitor connected 
products minutely for any threshold anomaly [13]. With the predictive analytics capability, digital 
twins can provide real-time alerts to move from reactive incident response to condition-based 
maintenance. A digital twin can analyze performance data collected over time and under different 
conditions. The knowledge acquired is particularly useful when maintaining any product intelligently. 
The combined analytics on both historical and runtime data supplies their quoted information to the 
administrator or operator when a component of a system needs to be repaired. Thus, data collection 
and deeper investigations of data heaps ultimately empower people to take a final call on the 
maintenance aspect. Nuclear power plants could have their maintenance costs significantly reduced 
by accurately predicting when components need replacing rather than relying on overly cautious 
maintenance schedules. 

Digital twins are also being investigated for use in providing advanced anomaly detection useful for 
cybersecurity [28]. A digital twin is constructed to represent the network of a plant and would allow 
live comparisons and metrics to detect abnormal behavior. Security audits and software deployments 
could be done on the twin before the production equipment, reducing downtime and risk. Such a 
model could provide a testing ground for equipment modification and upgrades to ensure the design 
of the network conforms to the necessary cybersecurity requirements. Digital shadows connect 
ERP/MES systems to provide appropriate information toward increased operator productivity and 
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improved production quality. Observation of the digital shadow through a 3D nuclear system 
visualization can additionally provide ease in troubleshooting. 

An important use case particularly valuable to the nuclear industry for the digital twin is in the 
opportunities presented in decommissioning. A twin or shadow that has collected operational data 
for the lifetime of the plant would be a valuable asset for future designs. This would be exceptionally 
valuable for material science digital twins to compare and validate models with destructive tests on 
plant components [29]. Materials science for nuclear energy is arduous, having a material digital twin 
that can be validated at decommissioning of the plant would provide insights on material behavior 
and performance in real operational environments. This could lead to operational life extensions for 
other plants and open a window for significant advancement of materials qualification for future 
plants. Digital shadows can aggregate and analyze data from different and distributed assets to 
provide unified real-time visibility and insight toward higher performance and quicker decision-
enablement with greater confidence.  

GE is implementing a variant of a digital twin as a sensor layer, similar to a digital shadow, referring 
to these systems as “digital ghosts.” Digital ghosts can be used to secure not just the critical 
infrastructure but also the operational technology in an organization’s data center. Like a digital 
shadow, the digital ghost has the capability to detect if something is not performing correctly and 
can identify the exact sensor that was compromised. That alone typically takes operators “days or 
weeks to pinpoint where the problem is. The digital ghost does that within seconds” [8] Typical OT 
cybersecurity is about analyzing network traffic, application security, endpoints, firewalls, etc. GE’s 
digital ghosts focus more on how the underlying physical assets operate. GE’s primary objective in 
creating this variant is to understand the “physics of what normal looks like, how do the controls 
normally operate these assets” [8]. With that knowledge and other simulated or historical data, 
developers “could build a really good representation of how an asset should be operating” [8]. Use 
cases for digtial shadows can be found in Table 3. 

Table 3. Digital shadow use cases 
Use Case  Description 

Maintenance Prediction A digital shadow allows for condition-based maintenance involving 
monitoring of equipment condition, performance, and regular baseline 
operations to reduce the chances of operational failure through automated 
unidirectional data flows. 

Cyber Intrusion 
Detection 

A digital shadow provides the ability to detect abnormal system activity 
through unidirectional data flow monitoring. 
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4. DIGITAL TWIN ATTACK SURFACE 
Like “digital twin,” “attack surface” is a somewhat contentious and evolving term useful for 
describing the risks of a digital system from which security measures can be distilled [30]. The 
concept has been developed with purely digital systems as the primary focus. The definitions offered 
do not account for two factors that are essential to evaluating the cyber risk of current state of digital 
twins: digital twins are cyber-physical systems; many are theoretical or have no example system to 
analyze. The unique nature, use cases, and development maturity of digital twin technology requires 
us to develop metrics for an attack surface that are relevant and actionable. Described below are 
metrics that can describe an approximate attack surface for digital twins. It is critical to note that 
these metrics are important, and centric, to digital twins only.  

Consequence is the first dimension of the attack surface, which also implies the value of the target 
for adversaries. For a cyber-physical system, the risk of an attack must be measured by the 
consequence of system impact. The scale of this risk differs from a typical IT system, where data 
loss or theft may cause monetary, reputational damages, or indirect harm to human life. An attack 
on a cyber-physical system is a direct risk to human life or severe environmental damage. Borrowing 
and adapting the guidance from the International Atomic Energy Agency (IAEA) publications NSS 
17-T and NSS 33-T [31, 32], we can define this in a scale of consequence in order of increasing 
severity: 

0. No consequence or negligible consequence 

1. Limited consequences – Degraded prevention, detection, and response capabilities to 
threats. 

2. Moderate consequences – Causing an Anticipated Operational Occurrence, impact to 
plant performance. 

3. High consequences – Design basis accidents, releases within authorized limits. 

4. Severe consequences – Beyond design basis, unacceptable radiological consequences. 

System Verifiability is a measure of how a system can be verified and the certainty to which it can 
reliably verified to operate in all conditions. This is beyond simply validating that the bytes have not 
changed, but ensuring that the system will operate as intended in and beyond the operational ranges 
it is expected to perform in. All systems of consequence must undergo V&V but how can advanced 
systems with a high degree of complexity and be properly tested? Below are four categories of 
verifiability listed by increasing uncertainty. 

1. Inherently verifiable – Low complexity systems with limited functions e.g., analog system 
in a test configuration 

2. Verified by burn-in – All operational conditions can be recreated in-situ or via emulation  

3. Diverse modeling and simulation – Operational conditions cannot be replicated without 
modeling and simulation; extraordinary signals and data cannot produce unknown system 
state 

4. No verification possible – Extraordinary signals and data can produce unknown system 
state 

The attack surfaces of each use case for digital twins are discussed in the sections below. These 
require some discussion on the nuances for each. A complete understanding of the attack surface 
cannot yet be distilled in a series of concrete metrics, much of the information is qualitative. The 



 

22 

novelty of digital twin cannot be developed. With further development and standardization, a more 
solidified attack surface can be produced. Until a more concrete attack surface can be developed, it 
is difficult to determine specific tactics and techniques that facilities must defend their digital twins 
against. However, with the information provided in the sections below, paired with some basic 
operational assumptions [33], it is possible to give some examples of tactics that should be 
considered when assessing attack surface risks. These tactics are sourced directly from the MITRE 
Corporation’s Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) framework. 
The ATT&CK framework is a knowledge base of matrices focused specifically on cyberattack 
behaviors that is across industries as well as by the federal government to develop robust threat 
models and methodologies [34]. The ATT&CK tactics listed in the sections below are some 
examples that must be considered but are not wholly representative of all tactics that comprise the 
attack surface. 

4.1. Digital Model 
Modeling and simulation are, currently, the most direct and current use of digital twin technology 
and share most of the same security issues of conventional modeling and simulation platforms. 
Designers rely on modeling and simulation to develop and test design decisions and safety systems. 
Errors and flaws in the design suites can precipitate into costly design revisions, or in the worst case, 
safety impacts. However, a single modeling tool does not dictate the ultimate design of safety 
components. Diversity of modeling is a key piece of determining these critical design decisions. 
These models are bounded to reality by validating them against experiments, benchmarking, and 
plant data [33]. This provides some inherent resilience to cyber-attacks, as single models are not 
trusted completely for critical safety determinations.  

This regulatory guidance only applies to safety systems or systems important to safety, systems that 
fall outside are too numerous and would be too costly to perform this level of V&V. Digital twins 
present an additional potential issue in that some are not mathematically based models. Figure 6 
shows a simplified process for developing and validating a simulation model of some physical 
phenomena that starts at developing a mathematical model. The mathematical model is a numeric 
quantification of a physics phenomenon that can be validated through experiment. This allows 
validation across all the domains of the simulation development cycle. Digital twins may use ML or 
AI methods that effectively bypass the mathematical modeling phase, converting sensor and 
actuator data directly into a simulator. This presents a major issue in quantifying the validity of such 
a digital twin as it breaks a critical link that bounds the simulation to a mathematically definable 
problem space. 
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Figure 6. Simplified view of model V&V [34] 

Conventional mechanistic simulation using mathematical models has known boundaries and defined 
behavior with any given input. An AI/ML digital twin may not have these definable boundaries and 
behavior. For a mathematical model, we can predict with certainty the response with each input over 
entire numeric fields. An AI/ML model is not necessarily deterministic and could treat each 
numerical value in a range differently. If we have a 32-bit float as the input to the AI/ML, there are 
232 possible values that may activate different solution pathways. As we increase the number of 
floating-point inputs the problem space exponentially increases. It becomes impossible to validate 
the behavior of an AI/ML model across such vast problem spaces where each combination of 
thousands of 32-bit or 64-bit values must be examined. Hidden attack methods that hide within this 
enormous problem space within AI/ML are being discovered and will continue to present serious 
issues to their use in safety related applications [35].  

Digital twins present a major risk as sensitive information about a given plant is required and stored 
for the digital twin to operate properly. This is the case regardless of whether the digital twin is 
either a mechanistic model or an AI/ML model. Both methods produce exceedingly high-fidelity 
models of the plant and its systems, making it an ideal target for testing attacks and for theft of 
intellectual property. An adversary could use the digital twin to carefully craft an attack, either cyber 
or physical, to create the most significant impact with the least effort. If the digital twin contains the 
firmware or images of the industrial control system (ICS) components, malware could be 
constructed that perfects exploits against the plant equipment. If combined with a network 
architecture, a sophisticated cyber-attack can be developed and tested before deployment to the site. 

 



 

24 

Table 4. Digital model use case, consequence, verifiability and MITRE ATT&CK tactics 
Use Case Consequence Verifiability 

Design and Engineering 4 - Severe Consequence 3 – Mechanistic Models 
4 – AI/ML  

MITRE ATT&CK Tactic(s) 
Execution (TA0002) – Adversaries attempt to run malicious code using one of fourteen known 
techniques [36].  
Impact (TA0105) – Adversaries use the Impact tactic to either manipulate, interrupt, or destroy 
industrial control systems. Any of the twelve techniques within this tactic can be used by adversaries to 
disrupt control processes or initiate attacks that have a long-term impact [37]. 

4.2. Digital Twin 
The concepts for cloud ICS and autonomous control are just beginning to gain research interest for 
nuclear applications. Both concepts present a similar attack surface as they will have a direct 
influence on the operation of the physical process. Each present a use case for digital twins; the 
cloud control system operates as an on-demand digital twin of a distributed control system (DCS) 
while autonomous control systems may use a digital twin as a reference model to predictive control. 
These use cases expose the control system to a direct route of influence from the digital twin. The 
avenues for adversary access are also greatly expanded by the implied operational cases for both. A 
cloud system is a highly networked system that is physically distant to the process it is controlling. 
Autonomous control implies remote operation or a reduced staffing requirement. Both require 
centralization of sensor data and actuator control [38, 39]. The risks of each are dependent on what 
systems are controlled and how centralized the control of the reactor is. 

 
Figure 7. Comparison of Cloud and Autonomous Control Systems. 
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These systems interface directly with the control elements of the NPP and have a direct pathway to 
impact system operations. As shown in Figure 7, the control systems in these concepts become 
highly interconnected, which expands the potential impact an adversary can have by compromising 
any individual component. The supply chain risk also expands as these become complex systems 
demanding components and software from multiple suppliers and sources.  

For a cloud control system, the potential consequence may be reduced or mitigated by allowing it to 
operate only those functions that cannot degrade the plants safety. For an autonomous system, 
separate safety systems or physical mechanism that can be assured to prevent any consequence of 
malicious operation may offer mitigative solutions. The consequence of malicious operation for 
both types of digital twin is high, but not severe assuming that they would not interact or substitute 
an independent safety system. 

The verifiability of these systems is similar, especially for the cloud control concepts that use 
reference model control and AI/ML schemes. The digital twin reference model within the 
autonomous or cloud control system may be verifiable, but the AI/ML controllers cannot be readily 
verified as previously discussed. The exception to this would be cloud control systems that emulate a 
deterministic controller like current PLCs. This would be verifiable through in-situ testing and 
emulation of the process under control. 

Table 5. Digital twin use case, consequence, verifiability and MITRE ATT&CK tactics 
Use Case Consequence Verifiability 

Autonomous Control Systems 3 – High Consequence 4 – AI/ML Control 

Cloud Control Systems 2-3 – Moderate to High 
Consequence 

4 – AI/ML Control 
2 – Emulated PLCs 

MITRE ATT&CK Tactic(s) 
Command and Control (TA0101) – Adversaries attempt to communicate with, and gain control of, 
compromised systems to gain access to the industrial control system environment [37]. 

 

4.3. Digital Shadow 
Maintenance prediction and operational anomaly detection are digital twin use cases that are already 
seen in commercial deployment. These uses can impart only a minimal risk to the safety of the plant 
because there is always a human in the loop. A cybersecurity network monitoring digital twin 
imparts a similar risk, though it is not mature enough for commercial deployment currently. These 
systems are diagnostic agents that provide predictions and analytics to aid the operation of an 
already commissioned plant. The predictions for operations and maintenance (O&M) cannot impact 
safety system design or operation. While the system may not be verifiable, it has no major 
consequence for malicious operation or failure.  

The cybersecurity application may have a more serious impact if it fails, allowing malicious actors to 
go undetected on the network. This would constitute a degradation of the plants ability to detect and 
prevent cyber-attacks, thus the consequence would be in the limited category. The more serious 
threat would be as a pivot point for adversaries. This generally applies to all digital twin technologies 
as we are adding a new complex digital system to the OT environment, but this becomes more of a 
primary concern to the digital twin use cases that cannot directly alter or impact the plant operation. 
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Table 6. Digital shadow use case, consequence, verifiability and MITRE ATT&CK tactics 
Use Case Consequence Verifiability 

Maintenance Prediction 0 – Negligible Consequence 4 – AI/ML Prediction 

Cyber Intrusion Detection 1 – Limited Consequence 4 – AI/ML Detection 

MITRE ATT&CK Tactic(s) 
Inhibit Response Function (TA0107) – This tactic consists of fourteen techniques that adversaries 
can use to prevent or alter expected responses that may be initiated in the event there is a change 
within the ICS environment [37].  
Impact (TA0105) – This tactic, and its associated techniques, can be used jointly with Inhibit Response 
Function where adversaries alter responses to provide a false sense of security to operators with the 
aim of obfuscating attack targets/goals [37]. 

 

The lessons learned from the digital twin can then be applied to the real system. But if a digital 
model is affected by a cyberattack, any predictions are likely to be of questionable value, depending 
on data relevancy, interpretability, availability, and resulting data quality. The lessons learned would 
no longer be accurate and applying such lessons to the real system gives only a false sense of 
security. 
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5. SECURING DIGITAL TWINS 
The concepts, uses, and architectures of digital twins are rapidly evolving making it exceedingly 
difficult to determine specific methods to secure them. The focus here will be to discuss gaps in the 
technology and general methods that can be used to secure the use of digital twins. It must be 
assumed that the software development, security, and validation guidance from the Institute of 
Electrical and Electronics Engineers (IEEE), the International Electrotechnical Commission, the 
U.S. Nuclear Regulatory Commission, and IAEA are a baseline consideration. This section will 
cover the gaps and methods that are unique or critical to securing Digital Twins especially the 
AI/ML variety. Mechanistic models do not present the same degree of opportunities and challenges 
to security though these recommendations will still enable greater security. Each DT technology 
category is linked to its greatest need for security, though each can benefit from these methods. 
Later these use case categories will be linked with the security methods that apply to them. 

5.1. Digital Model – Verification 
The core issue with digital twins across the board is verifying that they will operate correctly with 
expected results, most of all this critical for digital models. This plagues the mechanistic digital twin 
models just as much as their AI/ML counterparts. When highly coupled multi-physics problems like 
an NPP are modeled, coupling effects between PDE sets can cause instabilities and break downs in 
the solution validity [40]. How can a system as complex as a digital twin be verified to not have 
malicious behavior or simply dangerous unanticipated behavior? No security can be reasonably 
assured if we cannot distinguish between benign and malicious. AI/ML systems face greater 
challenges to this verification, which is an area of rapidly evolving research [41]. The fundamental 
frameworks for verifiable AI/ML have not yet been established. This is potentially the greatest issue 
that potential digital twin technology must contend with if they are to be used in safety or related to 
safety systems. This will likely only begin to be alleviated through standardization which will allow 
research resources to focus on a specific framework. 

As a modeling and design tool, it will be critical to verify the accuracy of the tool especially as 
nuances of systems are being studied and used digital twins for them to make design decisions. The 
final designs will need to be verified through diverse modeling, simulation, and experimentation but 
that is not exceptionally different from conventional design processes. When design decisions are 
based on modeling that cannot be experimentally proven due to danger or expense, the validity of 
models becomes a safety issue. Maintenance prediction and cybersecurity may not require 
exceptional verification to provide useful benefits to NPPs. Even if autonomous systems have a 
fully verifiable DT model, it is not protective for unexpected conditions or malicious inputs. What 
these uses require or will benefit from is quantifying the uncertainty of the digital twin. 

5.2. Digital Twin – Uncertainty Quantification 
In a similar track to verification, uncertainty is an issue that needs to be quantified to allow digital 
twins to be valuable decision-making tools. This is critical for digital twin use cases where the twin 
will inform or direct action on the control system. Without knowing the uncertainty around the 
predictions of a digital twin, it is impossible to determine how much trust to put into its conclusions. 
Overconfidence in prediction can be disastrous especially when confronted with adversarial inputs 
[42]. Producing reliable Uncertainty Quantification (UQ) will be critical to starting to deal with 
adversarial actions against digital twins and all AI/ML models. Without a method to measure the 
real confidence of a predication from a digital twin, no derived action can be assured not to be 
malicious. 
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Uncertainty Quantification is a broad topic and area of research that will be a core piece of enabling 
digital twin verification. Improving the accuracy of digital twin models will require knowing how 
much uncertainty exist and where that uncertainty stems from [43]. When AI/ML control systems 
reference a digital twin for control prediction, they will also require a UQ to assess the safety or 
surety of a control action [44]. There exist some solutions for UQ in digital twins, but these suffer 
from large computational overhead and consequently struggle to meet the real-time operation 
necessary for most digital twin applications [19]. There are also lingering questions of uncertainty 
within UQ of digital twins considering the precision and accuracy of the information the digital twin 
was based on.  

5.3. Digital Shadow – Integrity Mechanisms 
The inputs to digital twins in the form of training models and real-time process data have significant 
influence on the system. This is most important to digital shadows that rely on data captured to 
inform correct predictions and recommendations. Unauthorized modification or destruction of 
data/operations while being processed, in transit or in storage must be prevented. The integrity of 
the system itself must be maintained to preserve confidence in the reliability and safety of the system 
operation. Preserving the system integrity is also essential to ensure non-repudiation and authenticity 
of commands/actions the system which are essential in its secure operation and support incident 
response capabilities.  

Secure communication protocols are critical between the digital twin and its physical counterpart, 
challenging current technology deployments especially in real-time operation. An adversary affecting 
a digital twin, or its physical representation can introduce divergence in the behavior or state. Given 
the bi-directional link between the two an attacker may negatively affect both through changes in 
either. The challenge here is if the digital twin is used to drive system evolution and maintenance 
such as in Digital Shadows, it can result in malicious changes made to the digital twin being 
propagated to its physical counterpart. Similar concerns are present when implementing digital 
models, albeit in more restricted form due to their reduced integration. 

Data integrity methods will be critical to all DTs as their data, training data, and historical data define 
their operation. Alteration of the data in a DT can result in potentially undefined behavior or if the 
adversary is sophisticated enough, precise malicious behavior [45]. This will be exceptionally difficult 
as the training data sets can be enormous, and the integrity of ever-increasing historical data will 
need to be maintained. The mechanisms that could detect and prevent integrity attacks are more 
novel and evolving than the AI/ML they are attempting to protect. For digital shadows, Zero Trust 
Architecture may provide the integrity mechanisms necessary to ensure reasonable protection. digital 
twins that may control or directly influence the physical operation of a plant may need to rely on 
physical safety mechanisms to ensure sufficient risk reduction. 

5.4. Passive and Inherent Safety 
Advanced Reactor (AR) designs were pursued with a core key interest: prevent accidents through 
physics rather than active systems. If staff can assure that the actions of the control system cannot 
cause harm to the public or environment, digital twin technology can gain significant leeway. Even if 
sensitive areas of a plant exist, if a digital twin implementation can prove to not have any possible 
impact to plant safety, the issues presented can be negated. Probabilistic risk assessment, systems 
theoretic process analysis, and other advanced analysis methods could define control functions of 
the plant where digital twins could be used for cost reduction and experience building. 
Implementing digital twins in practice will provide key feedback to implementing good design 
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elements and solid frameworks that lead to standardization, one of the critical necessities to 
formalizing validation schemes. 

Physical and physics-based safety may be the only risk reduction technique that could allow digital 
twin use in the NPP environment. The exceptional risk presented by making highly accurate models 
of an NPP’s digital and physical defenses can only be moderated if there is no reasonable pathway to 
consequence to the public. It cannot be expected that adversaries will never retrieve a digital twin of 
an NPP if one is created. If it documents a flaw in the safety or security systems and allows the 
adversary to experiment with methods to exploit that flaw, then the risk of NPP digital twin’s 
existing is extreme. At the same time, digital twins will play an important role in the design of ARs 
and eliminating such flaws. Validating that digital twins are accurate representations of reality will be 
critical to eliminating design flaws that could make digital twins a significant threat in the first place. 

5.5. Application to Use Cases 
Each use case has a central issue in its attack surface that informs the most critical mechanisms to 
secure that use case, but these are not the only applicable security mechanisms. Use cases in each 
category of digital twin are presented below with the security mechanisms that are important to 
them. These security mechanisms are ordered by the greatest to least impact for the use case. 

Table 7. Use cases and important security mechanisms 
Use Case Security Methods MITRE ATT&CK Tactic 

Design & 
Engineering 

Verification 
Uncertainty 
Quantification 
Integrity 

Execution (TA0002), Impact (TA0105) 
 
 
See Table 4 

Validation & 
Verification 

Verification 
Uncertainty 
Quantification 
Integrity 

Execution (TA0002), Impact (TA0105), Command and 
Control (TA0101), Inhibit Response Function (TA0107), 
Impact (TA0105)  
 
See Table 4, Table 5, and Table 6 

Autonomous 
Control Systems 

Uncertainty 
Quantification 
Passive and Inherent 
Safety 
Integrity 
Verification 

Command and Control (TA0101) 
 
 
 
 
See Table 5 

Cloud Control 
Systems 

Passive and Inherent 
Safety 
Integrity 
Verification 

Command and Control (TA0101) 
 
See Table 5 

Maintenance 
Prediction 

Integrity 
Verification 
Uncertainty 
Quantification 

Inhibit Response Function (TA0107), Impact (TA0105)  
 
 
See Table 6 

Cyber Intrusion 
Detection 

Integrity 
Uncertainty 
Quantification 
Verification 

Inhibit Response Function (TA0107), Impact (TA0105)  
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Use Case Security Methods MITRE ATT&CK Tactic 

Passive and Inherent 
Safety 

 
See Table 6 
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6. CONCLUSION 
Digital twins have a long history as being valuable modeling and simulation tools across industries 
dating back to the 1960s. They are a high-fidelity digital replica of a device, process, or asset that 
permit better analyses and operational predictions in addition to optimizing processes; regardless of 
what is being replicated. They are particularly important as they continuously, and simultaneously, 
monitor the condition of individual components as well as the whole system. For these reasons, 
digital twins provide NPPs with an increased level of monitoring, control, supervision, and security 
across use cases from digital models to digital twins and digital shadows. They also create 
opportunities for operators to have more accurate insights and predictions into NPP operations 
throughout the entirety of the plant’s lifecycle. Their implementation can reduce costs, improve 
designs, increase plant safety, and enhance facility security.  
 
However, despite these inherent benefits, there are still reservations regarding fully embracing the 
use of digital twins within the nuclear industry because of the one-to-one digital replications that 
serve as attractive targets to adversaries. There are three models and their subsequent use cases that 
are applicable to the nuclear industry: (1) digital models, (2) digital twins, and (3) digital shadows. 
Each of these use cases present their own challenges to an NPPs attack surface and are attractive 
targets if they are not properly implemented and secured. These issues should not dissuade 
continued and vigorous exploration of digital twin technologies in the nuclear field but serve as goals 
and milestones to achieve. Nothing presented disqualifies the use of this technology in NPPs which 
may be one of the industries with the most to gain. Modeling a nuclear power plant in real-time and 
making accurate predictions of its future state is so exceptionally valuable, it demands further 
investment. 
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APPENDIX A. ANNOTATED BIBLIOGRAPHY 
Alcaraz, C., & Lopez, J. (2022). Digital Twin: A Comprehensive Survey of Security Threats. IEEE 
Communications Surveys & Tutorials, 24(3). doi:10.1109/COMST.2022.3171465. 
 

Unlike many other reports that focus on digital twins, this paper goes into great detail regarding 
the operational requirements for a digital twin. This information is especially important because 
it is directly related to the threats that stem from associated attack vectors for each operational 
requirement. The threats that are reviewed in this paper directly impact security in terms of the 
confidentiality, integrity and availability triad, and numerous cyber-physical or operational 
technology security functions. Alcaraz and Lopez then go into great detail to list “protection 
measures” to reduce the security risks posed by digital twins. While the specific mitigations aren’t 
needed for this report, what Alacaraz and Lopez detail can be directly tied back to the tactics 
and techniques detailed in the MITRE ATT&CK Framework. 
 

Allen, B. D. (2021). Digital Twins and Living Models at NASA. The American Society of Mechanical 
Engineers (ASME) Digital Twin Summit. Retrieved from https://ntrs.nasa.gov/citations/20210023699 

 
Presentation provided by NASA that reviews the various defintions of digital twins and their 
use. The first digital twin was implemented by NASA in Apollo 13 to match the conditions of 
the spacecraft while also simulating solutions for exploration and predicting results. The 
presentation also reviews other areas in which the use of digital twins can be monumentally 
beneficial.  
 

Gabor, T., Belzner, L., Kiermeier, M., Till Beck, M., & Netiz, A. (2016). A Simulation-Based 
Architecture for Smart Cyber-Physical Systems. 2016 IEEE International Conference on Autonomic 
Computing (ICAC) (pp. 374 - 379). Wuerzburg, Germany: The Institute of Electrical and Electronics 
Engineers. Retrieved from 10.1109/ICAC.2016.29 
 

Proposes a framework for a cyber-physical digital twin and claims a digital twin can be 
interfaced with the real world in “an elegant programming architecture” which allows 
simulations to to be evaluated against real world obersvations which may lead to subsequent 
improvements within the physical world. Their framework consists of tiers 0 through 3 that 
represent the different levels of controls.  
 

Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020, May). Characterising the Digital Twin: 
Systematic Literature Review. CIRP Journal of Manufacturing Science and Technology, 29(Part A), 
36-52. doi:10.1016/j.cirpj.2020.02.002 

 
A thorough and systematic overview of literature on digital twins with publications ranging 
from 2009 to 2018. There is a common perception that digital twins have numerous benefits 
such as the reduction of costs, reducing risk and design times,  reducing complexity and 
reconfiguration time, improving efficiency, improving maintenance decision making, 
improving security, improving safety and reliability, and improving processes and tools. Most 
importantly though, is that there are few realworld implementations that can validate these 
assumptions. 
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Jorgensen, J., Hodkiewicz, M., Cripps, E., & Hassan, G. M. (2023). Requirements for the application 
of the Digital Twin Paradigm to offshore wind turbine structures for uncertain fatigue analysis. 
Computers in Industry, 145. doi:10.1016/j.compind.2022.103806 
  

This report reviews the “digital twin paradigm” and how it can provide a framework to lessen 
uncertainty that may be found in other analytical models using bolted joints on offshore wind 
turbines as a use case. While this use case is not in the nuclear industry, it is still beneficial to 
this report as it gives a detailed and thorough analysis of how digital twins can be used to 
garner additional information for important components.   

 
Kalidindi, S. R., Buzzy, M., Boyce, B. L., & Dingreville, R. (2022). Digital Twins for Materials. 
Albuquerque, NM: Sandia National Laboratories. doi:10.3389/fmats.2022.818535 

 
This article is specific to materials however some of the conclusions it draws are applicable to 
other industries. First, that the use of digital twins will allow for “unprecedented potential for 
consistent change management, allowing the optimization of intentional or unintentional 
product evolution over time.” Despite this, digital twins do not adequately capture nor archive 
material data at the macro level.  
 
Digital twins have thus far been used in the manufacturing and performance evaluation of 
complex engineered physical systems (e.g., turbine engines); Tao et al., 2018; Lim et al., 2021; 
Xie et al., 2021) and/or their components, where the focus has been largely on capturing 
accurately the macroscale geometry and the component-level performance metrics. Current 
digital twins do not address adequately the capture and archival of the materials data. 
 

Korolov, M., & Korolov, A. (2022, December 6). The Cybersecurity Challenges and Opportunities of Digial 
Twins. Retrieved February 2023, from CSO Online. 

 
In some use cases, digital twins can directly control the asset they mirrior which may double 
the attack surface as the asset and its digital representation can both be targeted. This is 
particularly concerning if the digital twin can send control commands. Some mitigations 
options include involving cybersecurity from the onset when building and implementing a 
digital twin to following NIST or TLS guidelines for encryption and access control.  
 
However, in some instances, digital twins are being used as decoys to lure adversaries, create 
warning systems in the event of a cyberattack, and as a testbed to find security vulnerabilities.  
“One company using digital twins as a kind of highly sensitive sensor layer is GE, which is 
building something they call ‘digital ghosts’” Digital ghosts can be used to secure both critical 
infrastructure and operational technology within a data center. Traditionally, OT cybersecurity 
focuses on network traffic, firewalls, and searching for viruses whereas GE’s digital ghosts 
provide insight into how underlying physical assets operate so that organizations can alert to 
and study abnormal facility behavior. The digital ghost would detect if something’s wrong and 
inform operators as to which device is compromised. A task which “typically takes operators 
days or weeks to pinpoint where the problem is. The digital ghost does that within seconds.” 
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Raj, P., & Surianarayanan, C. (2020). Digital Twin: The Industry Use Cases (Chapter 12). In P. Raj, & 
P. Evangeline (Eds.), Advances in Computers, Volume 117 (pp. 286-315). Cambridge, MA, U.S.: Academic 
Press. 

Identifies three levels of digital twins: (1) Partial, in which the digital twin is connected to 
limited data sources or sensors for basic devices and captures key metrics for that device; (2) 
Clone, this level contains all data and measurements from multiple sources for an asset; and 
(3) Augmented, this digital twin enhances collected data with data from outside sources or 
intelligence which is extracted through a data analytics engine and may utilize machine learning 
algorithms. 
 
At a bare minimum, a functional digital twin requires the model of the physical object, data 
from that object, and a one-to-one correspondence to the object, and the ability to monitor 
the object. The elements of control, analytics, are optional depending on use case. 
General Electric (GE) is using “DTs in the monitoring and diagnostics space to flag any 
irregular behaviours that could be early signs of an emerging issue. ML workflows are also 
extensively leveraged to detect any deviation as early as possible.” 
 
“GE has also created enterprise-scale DTs that simulate full-scale and complex systems 
interactions, which simulate several ‘what-if’ scenarios of the future and determine optimum 
key performance indicators for situations with highest probability. By leveraging large data 
sources for weather, performance, and operations, these simulations play out possible 
scenarios that could impact an enterprise.” 

 
Suhail, S., Jurdak, R., Hussain, R., & Svetinovic, D. (2022). Security Attacks and Solutions for Digital 
Twins. doi:10.48550/arXiv.2202.12501 
  

This report highlights the importance of digital twins to cyber-physical systems, industrial 
control systems, and operational technology. While digital twins are valuable and important 
tools for operators they also significantly increase an organization’s attack surface. There are 
concerns that digital twins may provide adversaries an avenue to stealthily attack cyber-
physical systems first using the digital twin as an entry point to then infiltrate the network of 
the physical plant. This report covers attacks using tactics and techniqes that relate back to the 
MITRE ATT&CK framework and then reviews potential risk mitigation options. Suhail, 
Jurdak, and Svetinovic provide detailed insight into attacks from the adversary’s perspective 
and then proposes three solutions to lessen the risk that digital twins pose. 

 
Tao, F., Zhang, H., Liu, A., & Nee, A. (2019, April). Digital Twin in Industry: State-of-the-Art. 
IEEE Transactions on Industrial Informatics, 2405 - 2415. doi:10.1109/TII.2018.2873186 

 
This paper did an indepth review of publications on digital twins ranging from xxxx to 2018; 
and eventually found only fifty papers that were worth reviewing across the numerous 
databases that they queried. They also investigated patents for digital twins across indsutry and 
also touched briefely on the concept of a cyber-physical digital twin and the associated 
challenges. As of 2018, the cross between cyber and physical was still a new topic and therefore 
there was no existing framework to reference. Another concern raised by Tao et al. is that a 
cyber-physical digital twin would be exposed to even more threats stemming from physical 
threats in addition to cyber threats. And because this concept is particularly new, the authors 
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conclude with a recommendation that standarized connection and communication protocols 
should be created.  
 

 

Yadav, V., Agarwal, V., Gribok, A., Hays, R., Pluth, A., Ritter, C., . . . Iyengar, R. (2021). Technical 
Challenges and Gaps in Digital-Twin Enabling Technologies for Nuclear Reactor Applications. Idaho National 
Laboratory. U.S. Nuclear Regulatory Commission. 
 

There is a need for a better understanding of the current state of digital twin technology; 
understanding how regulatory guidance could relieve technical issues; develop the necessary 
infrastructure to support regulations. 
Potential areas to implement DT      
 

Zaccaria, V., Stenfelt, M., Aslanidou, I., & Kyprianidis, K. G. (2018). Fleet Monitoring and Diagnostics 
Framework Based on Digital Twin of Aero-Engines. ASME Turbomachinery Technical Conference 
and Exposition (GT2018). Oslow, Norway: American Society of Mechanical Engineers. Retrieved 
from https://www.diva-portal.org/smash/get/diva2:1254117/FULLTEXT01.pdf 
 

Aircraft engine manufacturers are using digital twins to simulate engine fleets for monitoring 
their operation. By using digital twins to monitor fleet operations manufacturers can optimize 
flight operations and maintenance which ultimately lowers costs. Furthermore, the digital 
twins are used for automated anomaly detection to isolate and identify faults. Unfortunately 
for this project, the models that the manufacturers use are proprietary but it is indicative that 
digital twins are being used in some manner in an industry.  
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