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ABSTRACT 

Burnup measurement is an important step in material control and accountancy (MC&A) at 
nuclear reactors.  BNL has been investigating using machine learning (ML) method to improve 
the accuracy of burnup measurements, specifically for fuel coming out of pebble bed reactors 
(PBRs).  In the early phases of the project, we developed a simple PBR burnup model and used 
it to generate synthetic gamma-ray spectra datasets. In parallel, we developed a multilayer 
perceptron (MLP) machine learning regression model for burnup prediction.  The model 
outperformed the conventional linear regression model in our tests.  In FY2023, we further 
improved the burnup model and completed a full-core PBR simulation model so we could 
validate the simulation with the existing data of well-studied PBR reactors, i.e., PBMR400.  In 
parallel, we are also looking into the explainability of the MLP regression model.  This annual 
report details what we have accomplished in these two tasks this year. 
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ACRONYMS AND DEFINITIONS 

Abbreviation Definition 

ARS Advanced Reactor Safeguards 

CNN Convolutional neural network 

DOE Department of Energy 

LIME Local Interpretable Model-Agnostic Explanations 

LWR Light-water Reactor 

MAPE Mean Average Percentage Error 

MC&A Material Control and Accountancy 

ML Machine Learning 

MLP Multilayer Perceptron  

R2 Coefficient of Determination (square of the Pearson correlation coefficient) 

IAEA International Atomic Energy Agency 

ID Inventory Difference 
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1. INTRODUCTION 

Advanced pebble bed reactor (PBR) designs pose new challenges in material control and 
accountancy (MC&A) because the fuel materials, distributed in many discrete pebbles, are 
continuously circulated through the reactor core and the refueling path compared to the bulk fuel 
assembly design in conventional reactors, e.g., light water reactors.  PBRs are fueled with hundreds 
of thousands of fuel pebbles.  During the normal operation of a PBR, ejected pebbles are returned 
to the reactor or discharged depending on the fuel burnup and physical condition.   

The burnup measurement is usually based on detection of radiation signatures of fission products. 
Years of research has shown that measurements of fission products, such as 134Cs, 137Cs, 154Eu, etc., 
can be applied independently or in combination to infer or predict the level of burnup in the fuel  
(Akyurek, Tucker, & Usman, 2014).  A simple criterion for selecting an isotope for burnup 
indication is the exhibition of a strong gamma photopeak. However, it remains challenging to 
measure this complex source due to self-shielding effects, strong radiation background and 
intervening materials. Another challenge is the required high throughput in the burnup 
measurements. Accommodating this throughput necessitates limited measurement time and thus 
impacts efficiency of this measurement. A high-performing spectral analysis method is therefore 
required to identify patterns swiftly and accurately in the time-constrained gamma spectrum 
measurements.   

In this study, BNL develops machine learning (ML) methods to interpret gamma-ray spectra and 
predict the burnup values of the pebbles.  ML has achieved widespread success and adoption across 
numerous domains that require pattern recognition and analysis in varied data types (Butler, 2018) 
(Carleo, 2019). Modern deep learning approaches have supplanted hand-crafted features by learning 
entirely novel, yet meaningful, features and data representations directly from the raw data via deep 
neural network architectures; this has led to state-of-the-art and even superhuman performance on a 
broad range of detection, interpretive, and analytical tasks.  In the first two years of this project, we 
have developed multilayer perceptron (MLPs) and convolutional neural networks (CNNs) for 
burnup prediction.  To support the ML algorithm development, we developed a modeling and 
simulation workflow to simulate the burnup of a single pebble and detector response in 
spectroscopic measurements.  Our latest results have demonstrated that ML is able to improve the 
prediction accuracy by a factor of 4 compared to the single or multiple photopeaks based linear 
regression method.  

In 2023, we focus on validating the simulation model and investigating the explainability of the ML 
models in burnup prediction tasks.  This report details the research results this year. 
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2. MODELING AND SIMULATION 

2.1. Addition of Collimator Model to Transportation Simulation 

In our early research, all data related to burnt pebbles was generated with the assumption that the 
ejected pebble is measured with a detector. In real operation, pebbles ejected from a PBR core are 
highly radioactive and can only be measured behind a collimator. To model the photon 
transportation from the pebble surface to the detector surface more accurately, we updated our 
Serpent model to include a Lead collimator. Although we have the option of varying the thickness 
and aperture of the collimator, we arrived at an optimal thickness and aperture size of 8 cm and 1 
cm respectively. 

  

      
 

 
Figure 1 Modeling collimator in Serpent. Top left: basic collimator model. Dark green is 
collimator material, e.g., lead or tungsten. Light green is free space. Purple is the fuel pebble. 
Top right: simulation of photo flux before and after the collimator. Bottom: gamma-ray 
spectra of a fuel pebble with and without a collimator 

Understanding that the inclusion of collimation to our model might introduce some reduction in the 
efficiency or performance of the simulation. We also studied the various implementations of 
weighting windows to combat this. The two approaches studied were the basic and adaptive 
approaches. The basic approach works by creating a mesh over the full geometry and assigning 
importance to each. Then during the transport process, it preferentially tracks particles that lead to 
target location (i.e., radiation detector). The adaptive approach is slightly different and is better 
suited to the complex shielding problem. The adaptive approach adds an extra step of dynamically 
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creating new importance when there are material density changes encountered by a radiation particle 
along its track. 

Weighting windows are not currently in use as the performance of the simulation is not hampered 
by the inclusion of collimation as much in our current configuration as we still achieve low 
uncertainties. 

2.2. Independent Transport and Burnup  

The initial model used in generating the spectra applied in the ML task was done with the aim of 
efficiently generating the data in an automated fashion. This process allows for large sets of data 
with varying sensitivity of a few parameters to be produced in a relatively short amount of time. 
However, a few situations arise that make a combined burnup and transport model combined to be 
relatively challenging. A few of these scenarios include: 

1. Verifying the output from a single burnup level with a variety of transport setups or 
configurations. 

2. Testing some of the aspects of either the burnup or transport in a timely fashion. 

For these reasons and others, the automation model was split into an independent burnup and 
transport models. To perform this split we re-wrote the Python script that automates the generation 
of the Serpent burnup model to output a binary file that contains the composition and other 
parameters from each burn step. A second python script was written that requires the binary output 
file from the initial burnup simulation to generate a source term form the transport simulation. The 
script also supports using a binary file containing multiple burn steps to generate multiple source 
terms for a given transport configuration. 

2.3. Model of Full PBR Reactor Core 

Earlier approaches to generating data sets for this project were based on a simplified 3x3x3 lattice 
model. Such models are useful to give a generic perspective of what the burnup and transient 
isotopic composition would be. However, these simplistic models do not represent any true reactor 
system which means the flux and power profiles as well as burnup levels attained in the reference 
pebbles for the lattice model are simply theoretical. For this reason, we attempted to create a full 
core model of a well-documented PBR reactor design (i.e., PBMR). The model can be used in two 
ways, either as an independent model that directly produces data for the ML algorithm or one to 
specify operational parameters for the lattice model which then generates the data for ML. 
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Figure 2 Full-core PBR simulation model with 5 zones 

2.4. Comparisons between Serpent and ORIGEN Simulation Results 

To develop and validate the performance of the full core model, we compared the Serpent and 
Origen models. Three reactor metrics were compared: specific isotopes, the neutron and gamma 
emission rates. 

A total of 13 depletion steps and 12 decay steps were used for the simulation. The cooling steps of 
the simulation were defined as decay only to save the unnecessary time used by Serpent in 
performing transport after each cooling step. Five special pebbles, which would be in each of the 
five artificially designated but commonly used radial channels of the core, were selected. The 
boundaries of these five radial channels were defined as 100, 109, 135, 150, 176 and 185 cm radii. 
The simulation in Serpent was performed to achieve a core average burnup of about 90 
GWd/MTU. When this is done, the average neutron spectra and power in each of the five pebbles 
were extracted from the Serpent results and input to ORIGEN. The 252-group neutron spectra 
from Serpent were then used by ORIGEN to produce the one-group library needed for depletion 
and decay calculations. This approach aimed to verify Serpent’s isotopic transmutations and decay 
results. This approach also eliminated the need to build a 3D core model in SCALE and is 
consistent with the Serpent model and the potential discrepancies in neutron spectra between the 
Serpent and SCALE results, although 3D SCALE models exist for PBMR-400. The isotopic 
concentrations of a few nuclides of interest and neutron and gamma source terms produced from 
the ORIGEN calculations were compared with those from the Serpent calculations.  

  
 Top view Zoomed In Quarter Core 
 

  
Cut through Side View Pebble in Core 
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There are two stages of simulation in Serpent; the burnup and decay phase is where the transient 
compositions, spatial and local power as well as 252 group fluxes are tallied. The second phase uses 
the reactor state at the steps corresponding to cooling times in Table 2 to start a source transport 
simulation which is used to determine the 25-group gamma and 21-group neutron emission spectra 
after the specified cooling period elapses. Both phases of the Serpent simulation were performed 
with about 5 million neutron histories (this is possible because Serpent provides functionality to 
resume a simulation based on a previous run using pre-generated binary files). The highest 
uncertainty in all results was recorded in the pebble fluxes. The bin uncertainties were on the order 
of 10 – 20 %. 

 

Table 1 Burnup simulation results with the full-core PBR model 

Pebble 
Volume 
(cm3) 

Burnup 
(MWD/kgU) 

Initial 
density of U 

(g/cm3) 

Initial 
mass of U 

(gU) 

Initial 
mass of U 

(kgU) 

Duration of 
Burnup 
(days) 

Power 
(MW) 

Specific 
power 

(MW/KgU) 

1 9.8E-01 6.98E+01 9.20 9.00 9.00E-03 4.66E+02 1.35E-03 1.50E-01 

2 9.8E-01 6.20E+01 9.20 9.00 9.00E-03 4.66E+02 1.18E-03 1.33E-01 

3 9.8E-01 5.15E+01 9.20 9.00 9.00E-03 4.66E+02 9.76E-04 1.10E-01 

4 9.8E-01 3.86E+01 9.20 9.00 9.00E-03 4.66E+02 7.32E-04 8.29E-02 

5 9.8E-01 3.33E+01 9.20 9.00 9.00E-03 4.66E+02 6.31E-04 7.14E-02 

 

As mentioned earlier, three reactor fuel parameters were extracted for the spent fuel and compared 
between Serpent and Origen. These three parameters were obtained for five radials zones (i.e., a 
pebble in each radial zone) of the PBMR core. Figures 3-6 show the selected isotope compositions 
and neutron and gamma emission rates for the 2nd radial zone from the center of the reactor core. 
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Figure 3 Comparison of the neutron emission rates. 
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Figure 4 Comparison of the gamma emission rates. 
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Figure 5 Comparison of the burnup composition of selected isotopes. 
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Figure 6 Comparison of the burnup composition of selected isotopes (cont’d). 
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3. EXPLAINABILITY OF ML MODEL 

Our earlier results in this project [3] have shown that a deep learning-based ML approach can be 
successfully applied to improve PBR burnup prediction. However, deep learning methods produce 
solutions that are inherently difficult to interpret, so investigating the explainability of the models is 
important for the ML approach to be accepted by the community.  In this section, we describe our 
approaches to introduce ML explainability to our methods and thus better interpret the outcome 
and impact. 

3.1. Software Tools for this Research 

We selected techniques to examine ML explainability (also called XAI, for explainable AI) based on 
two criteria. First, the techniques must support the data and models we previously developed. These 
consisted of several thousand simulated gamma spectra and ML models of three types: multi-layer 
perceptrons (MLPs), convolutional neural networks (CNNs), and hybrid models using CNN input 
layers and MLP intermediate and output layers. Second, the techniques must offer explainability 
insights with respect to the input data. That is, they should identify simple features and relationships 
in the gamma spectra that are most responsible for the ML models’ predictions (as opposed to 
attempting to interpret the deeper abstract features that the ML models learn). 

Based on these criteria, we selected LIME (Local Interpretable Model-Agnostic Explanations) and 
SHAP (Shapley Additive Explanations), two open-source, model-agnostic techniques designed to 
examine raw feature contributions by dynamically producing surrogate inference models. The two 
techniques operate differently and complement one another well. LIME produces linear surrogate 
models for individual sample inferences by automatically perturbing input-space features and using 
these to train small linear models that are compared to the original ML result. SHAP, on the other 
hand, produces an ensemble of tree-based models by using the Shapley value concept from 
cooperative game theory to estimate the marginal contribution of individual features to all possible 
coalitions of features. 

An important challenge affecting both XAI techniques is that they are best suited to small feature 
sets and do not scale well to hundreds or thousands of features (SHAP is particularly sensitive in this 
respect). For gamma spectra signals, the set of input features is the number of channels, which in 
our case is 4096. We are nonetheless interested in resolving precise energies in the spectra that are 
key contributing features for the ML methods, so we designed a tiered strategy to carry out our 
explainability analysis. We begin by iteratively re-binning spectra and using these to perform LIME 
feature selection. This involves starting at a very coarse resolution (64 channel), applying the LIME 
technique, filtering energy ranges according to LIME-determined relevance, re-binning at a higher 
resolution, and re-applying LIME until prominent features are selected from the original spectra 
resolution. Following this, the final features are used for SHAP analysis for comparison to LIME 
results. 

3.2. Explainability Results 

Our explainability results follow from our iterative re-binning strategy with the LIME technique to 
narrow down the energy bands with likely causal relationships to burnup prediction. After several 
iterations we settled on a 3-stage re-binning and LIME feature selection approach. The first stage re-
bins the original 4096-channel spectra into 64 low-resolution bins and applies LIME to select 16 of 
these bins (i.e., 25% of the features). According to the LIME package’s explainability metrics, this 
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quarter of the features captures 88.74% of the explanatory power available to the LIME approach. 
Note that this does not necessarily correspond to a 88.74% correlation with true burnup, nor to 
84.74% of the performance of the ML method under investigation. Rather, this explanatory metric 
refers to the proportion of the maximum correlation possible between a linear combination of all 
available perturbation-based features and the ML model being explained. 

The choice of feature subset cutoff determines this explainability metric, and it is therefore 
advantageous for the purposes of explainability that the majority of this correlation be associated 
with as few features as possible (as was the case in our experiments), particularly as we need to 
further subdivide these features in our multi-stage approach. Note also that the rationale for these 
correlation metrics being considered “explainability” metrics is because LIME uses feature 
perturbations from individual examples to generate synthetic training data that originates entirely 
from the input to the ML model. The correlation between a linear surrogate model built on this 
synthetic data and the actual ML model’s prediction is therefore an attempt to explain which of the 
ML model’s input features had an outsized impact on its prediction. 

Because LIME operates only on individual prediction examples, we re-ran the LIME process for 
each of the ~200 examples set aside from the ML method’s training data for the purpose of testing 
and evaluation and determined feature explainability according to the aggregate of the explainability 
scores for all samples in the test set. We did this for 2 measurement conditions: 12-hour cooling and 
120-hour cooling (both with 1-hour acquisition time). Figure 7 shows LIME results for stage 1 in 
the 12-hour cooling condition. 

 
Figure 7 Left: The top 25% features selected by the LIME method (vertical light 

green bars) for the 12hr cooling dataset in the 1st stage of the 3-stage explainable 

feature-identification process, overlain on a representative spectra sample from this 

dataset. Right: The proportion of “explainability” due to each of the 64 re-binned 

features, ranked. The top 16 of 64 bins are selected for the next round, capturing 

88.74% of the method’s potential explainability. 

 

Stage 2 takes the top 16 bins selected in stage 1, maps these back to the corresponding 1024 raw 
energy channels in the original spectra, re-bins these by a factor of 16x to 64 new re-binned features 
(not contiguous) and re-applies the LIME process across the test set as described above. Again, the 
top 16 (25%) features are selected for the next round, and in this stage, these correspond to 78.95% 
of the available explanatory power. Figure 8 shows these stage 2 results, again for the 12-hour fuel 
cooling condition. 
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Figure 8. Left: Top 25% LIME features selected in stage 2 (darker vertical green bars) 
from the spectra subset selected in stage 1 (lighter green bars). Right: The top 16 of 
64 features in this stage account for 78.95% of the available explainability. 

 

In the 3rd and final LIME stage, the selected features from the previous stage were again mapped to 
the corresponding original energy channels (256 out of the original 4096), these were re-binned (by 
4x this time) to 64 final feature candidates, and LIME was used to determine the top explainable 
features. As no further stages are necessary, we this time selected the top 24 features, comprising 
96.71% of the LIME explainability. Figure 9 shows the location of these final features in the original 
energy space. 

 

Figure 9. Left: Final LIME-selected features (darkest green, N=24). Right: The top 24 
of 64 features account for 96.71% of available explainability. 

 

Having selected the top 24 energies that best explain the source of the ML model’s burnup 
predictions, we verified the significance of these features (as well as the intermediate features from 
the earlier 2 stages) by training new MLP models exclusively on these features selected from the 
original training data. As shown in Table 2, predictive performance of these revised models 
uniformly improves across all metrics after each LIME feature selection stage, strongly suggesting 
that our multi-stage LIME process correctly selected the dominant features used by the ML model 
(and thus removed the effects of noisy, uninformative features). We also compared linear regression 
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performance between the original spectra and the final selected features and found that the LIME-
selected features also significantly improve this analysis. 

 

Table 2. Validation of LIME-selected features with new MLP and LR models. Arrows 
indicate direction of better performance per metric: RMSE (root mean square error), 
MAPE (mean absolute percent error), R2 (correlation coefficient). 

  ⬇ RMSE ⬇ MAPE (%) ⬆ R2 

MLP Original spectra 0.66 2.04 0.9995 

 Stage 1 features 0.37 1.61 0.9998 

 Stage 2 features 0.27 1.33 0.9999 

 Stage 3 features 0.28 1.07 0.9999 

Linear Regression Original spectra 0.74 7.93 0.9992 

 Stage 3 features 0.53 5.16 0.9996 

 

The 24 spectra energies selected by our explainability process are shown in Table 3. We have not yet 
identified to which, if any, decay products these energies may correspond, but we hypothesize that 
some of these features may identify new photopeaks of interest for burnup analysis. It is also, 
however, possible that these energies do not correspond to real photopeaks and instead highlight 
key scattering energies that form the “background” signal from which the ML methods so 
effectively extract predictive abstract features. 

 

Table 3. Top 24 energies identified by our LIME-based explainability analysis, for the 
12-hour cooling condition dataset. 

Rank Energy (keV) Rank Energy (keV) Rank Energy (keV) 

1 891.153 9 36.873 17 280.953 

2 446.385 10 55.857 18 893.865 

3 443.673 11 896.577 19 205.017 

4 337.905 12 66.705 20 899.289 

5 118.233 13 61.281 21 272.817 

6 278.241 14 318.921 22 888.441 

7 180.609 15 58.569 23 316.209 

8 286.377 16 340.617 24 69.417 

 

Finally, we performed linear regressions on subsets of the final 24 selected energies to determine the 
potential for new high-accuracy burnup analysis based solely on classical regression and easily 
interpretable linear coefficients. Table 4 shows that with as few as 4 features (i.e., the top 4 energies 
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identified in Table 3), a linear regression model can be fit which predicts with ~80% accuracy the 
burnup of a fuel pebble, and that this improves to 93% with 8 features. 

 

Table 4. Linear regression on top-N LIME features (all features ~3keV wide). 

 ⬇ RMSE ⬇ MAPE (%) ⬆ R2 

Top-24 (all) 0.528 5.16 0.9996 

Top-8 0.698 6.81 0.9994 

Top-4 3.424 20.99 0.9848 

Top-2 6.113 58.74 0.9533 

 

We performed the same analysis on our second evaluation dataset, for fuel with 120-hour cooling 
time and 1-hour measurement time. The top 24 energies selected for that condition are shown in 
Table 5. We note that although several of the top energies are present for both conditions (12-hour 
and 120-hour), their order is significantly different, and many additional ones are unique to one 
condition or the other. This is expected, as the increased cooling time changes the spectral 
characteristics of the measured fuel, and we have already demonstrated previously that both ML and 
classical modeling performance is affected by changes in cooling time. Further, we see this as 
evidence that our ML model very effectively extracts features specific to the dataset and condition 
on which it was trained, but that these do not naively adapt to external conditions unseen at training 
time. 

 

Table 5. Top 24 LIME-identified energies for the 120-hour cooling condition dataset. 

Rank Energy (keV) Rank Energy (keV) Rank Energy (keV) 

1 2740.737 9 446.385 17 421.977 

2 2754.297 10 443.673 18 66.705 

3 888.441 11 2751.585 19 2770.569 

4 308.073 12 55.857 20 405.705 

5 118.233 13 389.433 21 61.281 

6 2735.313 14 348.753 22 351.465 

7 337.905 15 584.697 23 69.417 

8 58.569 16 354.177 24 454.521 

 

3.3. Additional and future work 

Following our LIME-based explainability analysis, we extended our investigation to SHAP-based 
explainability analysis. This method has thus far proved challenging due to stability issues with 
training SHAP tree ensembles on our LIME-selected features, but we believe SHAP will provide 
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useful insight. Whereas LIME is limited to single linear regressions, SHAP supports decision tree 
models that directly correspond with an explainable data path for a burnup prediction. 
 
Additionally, we have carried out initial work in estimating the uncertainty of our ML models by 
training ensembles of MLP-based and CNN-based models and estimating their prediction spread. 
The objective is not to formalize this process to accurately quantify the expected uncertainty of ML-
based burnup predictions. However, with this work, as well as a series of candidate burnup 
thresholds, we expect to be able to directly infer the operational advantage (in fuel usage) of relying 
on a more accurate ML-based burnup analysis versus a traditional approach. 
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4. CONCLUSIONS 

We have developed a full-core PBR burnup simulation model.  Overall, the simulation results from 
our model agree with the ones from the Origen model built by ORNL.  This is an indirect way to 
validate our simulation model.  We expect some experimental measurements will be carried out with 
actual TRISO particles in FY24 or later so that we can experimentally validate our simulation 
approach. 

We also looked into the simulation workflow in Serpent involving both burnup and photon 
transportation simulations and was able to setup a procedure to decouple these two simulation 
processes. This enables us to produce multiple datasets with different collimation and detector 
configurations, which could be a useful tool for optimizing PBR reactor design. 

We were able to accomplish the explainability analysis in the ML models and identify the energy 
bands that are of importance to the ML model predictions.  We also found such energy bands vary 
with fuel cooling time, which agrees with our early findings in the inference performance of our ML 
models. 
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