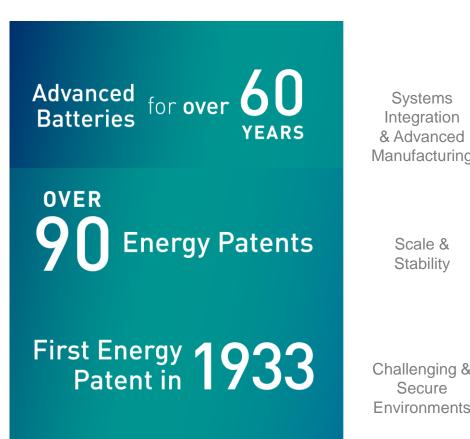
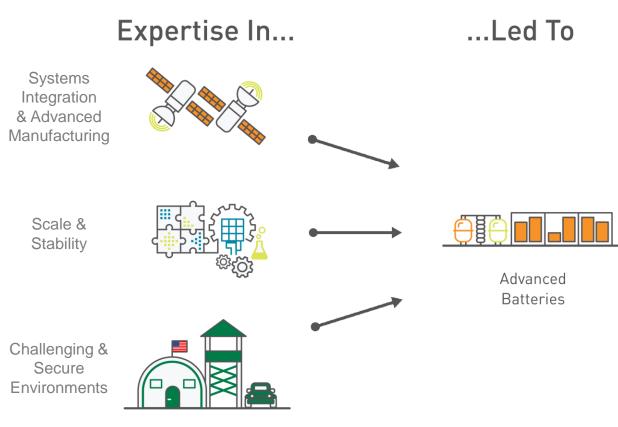


GridStar® Flow

LDES National Consortium Annual Workshop

September 2024





About Lockheed Martin Energy

Lockheed Martin is a global security and aerospace company engaged in the development, manufacture and integration of advanced technology systems. 116,000 employees in >30 countries.

Lockheed Martin in California

Impact by Numbers

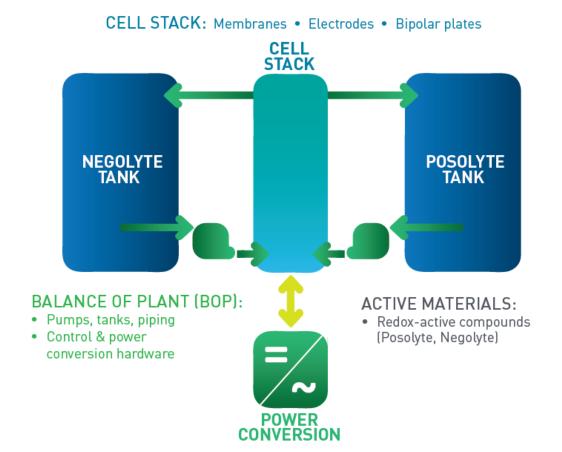
9,700+ working employees and 9,900+ retired employees in California

2,100+ Californiabased suppliers spending \$16.9B with those suppliers.

100+ facilities located in California housing the development and production of several key mission portfolios.

From a church "factory" in Santa Ana to a small garage in San Francisco, Lockheed Martin's founders developed their aerial innovations and continued throughout the years to grow in the state helping to establish the robust Aerospace industry in California today.

Glenn L. Martin takes flight in Santa Ana and opens his Los Angeles Factory in 1912



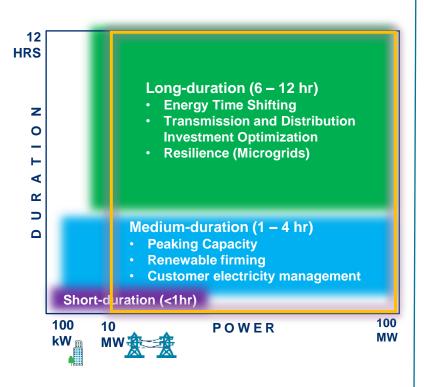
Allan and Malcom Lockheed Model G takes flight in the San Francisco Bay

Flow Battery Architecture and Opportunity

Architectural advantages

- Decoupling of power and energy enables low cost long-duration storage
- Energy capacity insensitivity to duty-cycle affords operational flexibility (e.g., deep or frequent cycling, storage at high states-ofcharge)
- Straightforward expansion
- Safety (e.g., water-based electrolytes)

Energy Storage Applications


ENERGY STORAGE APPLICATIONS

For the 20+ services energy storage can provide...

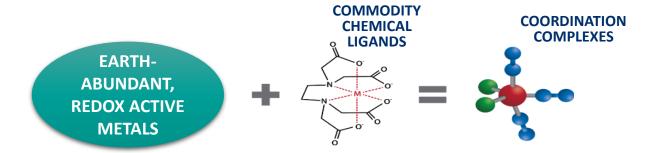
Wholesale Energy Markets	End User / Customer	
Price Arbitrage	Demand Response	
Portfolio Optimization	Demand Charge Management	
Grid Systems	Transmission Rate	
T&D Upgrade Deferral	Management	
T&D Congestion Relief	Capacity Rate Management	
Substation On-site Power	Energy Rate Management	
Microgrids	Electric Service Reliability	
Islanded Microgrids	Electric Power Quality	
Grid-Connected Smart Microgrids	Ancillary Services	
Renewables	Frequency Regulation	
Solar Energy Time-shifting	Load Following	
Wind Energy Time-shifting	Reserve Products –	
Solar Smoothing / Firming	Spinning / Primary	
Wind Smoothing / Firming	Voltage / VAR Support	
Short-duration Medium-duration Long-duration		

APPLICATION REQUIREMENTS

...various size, duration, cycling and response characteristics are required.

GRIDSTAR FLOW OPTIONALITY

Optimized for Long-duration...


... but can flex among applications across durations.

GSF Addressable Applications

Engineered Electrolytes as Differentiators

Optimized for:

- Performance
- Safety
- Cost
- Supply chain reliability
- Manufacturability
- Maintainability

ELECTROLYTES ARE COMPOSED OF	Incumbent Flow Technologies	GridStar Flow	Why change?
Electroactive materials -charge carriers-	Metal ions	Earth-abundant metals and commodity chemical ligands	 Use affordable raw materials, established supply chains, and reliable partners. Complexes are larger, reducing crossover. Complexes and membrane are negatively charged, reducing crossover.
Liquid solvents -material transport-	Strong acids (pH <2)	Water (pH 10-11)	 More affordable balance of plant. Non-flammable, non-corrosive with modest pH

Patented and Proprietary Chemistry

GridStar Flow System Prototypes

Power: 250 kW_{AC}

Energy: 500 kWh (2 hr)

2017-18: ~1 year of testing

BETA Unit:

Power: 250 kW_{AC}

Energy: 1500 kWh (6 hr)

2018-20: ~ 1 year of testing

GridStar Flow S/N01:

Power: 250 - 500 kW_{AC}

Energy: 2.5 MWh (5 -10 hr)

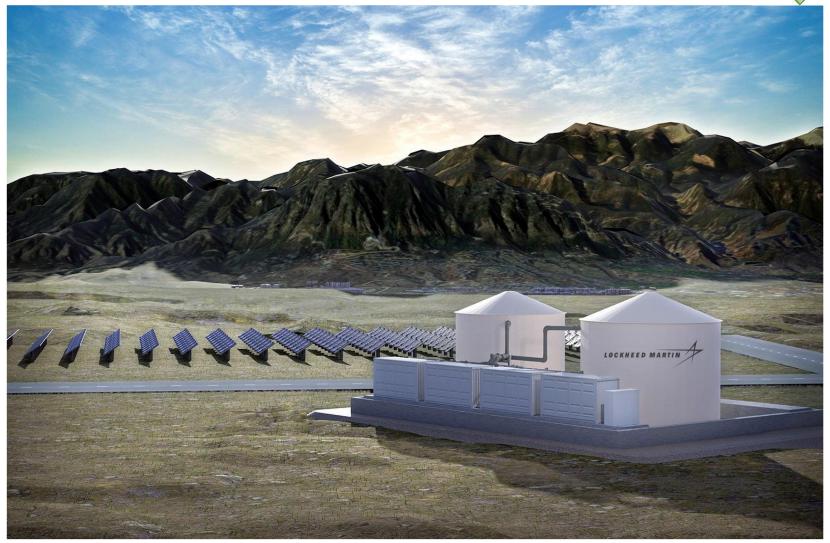
2020-24+: 3+ years of testing

First Commercial Scale GridStar Flow

GridStar Flow S/N01

- Located at 95,000 square foot Andover, Mass. facility
- 250 500 kW_{AC} , 2.5 MWh (5 -10 hr) system
- Commissioned Oct. 2020
- Design basis for customer-sited projects.

*GridStar Flow S/N01 pictured above shown without insulated tanks


First Customer Sited Project

- Pilot project with U.S. Army at Fort Carson, Colorado
- 1 MW | 10-hour (10 MWh)
 GSF demonstration to enhance grid resiliency
- Two-year test period using PNNL protocols for resilience and grid support
- Construction began in June 2023, estimated completion by EOY 2024

First International Project

- Teaming agreement with TC Energy for Saddlebrook Solar + Storage Project in Alberta, Canada
- 5 MW/25 MWh GridStar Flow energy storage system

Thank You

LOCKHEED MARTIN

<u>www.lockheedmartin.com/energystorage</u> (<u>video</u>)

North America

Dan Petcovic

Account Executive, Lockheed Martin Energy

Mobile: +1 (510) 617-7438

daniel.r.petcovic@lmco.com

Mark Wanamaker

Account Executive, Lockheed Martin Energy

Mobile: +1 (720) 212-1748

mark.j.wanamaker@lmco.com

APAC

Kevin Nitschke

Account Executive, Lockheed Martin Energy

Mobile: +61 (4) 8840 0556

kevin.nitschke@lmco.com

EMEA

Asif Khan

Account Executive, Lockheed Martin Energy

Mobile: +971 (56) 991 4092

asif.khan@lmco.com

Craig Husa

Director, Lockheed Martin Energy

Mobile: +1 (425) 395-6129

craig.s.husa@Imco.com

