


LDES National Consortium Workshop 2024

Eric Watson, Director of Sales, North America





## **CHARGE**





## **DISCHARGE**





CO<sub>2</sub> can be stored as a liquid at ambient temperatures in carbon-steel pressure vessels, no cryogenics or chillers needed



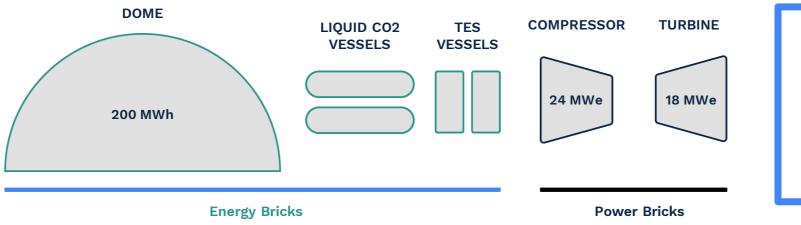
CO<sub>2</sub> is a clean fluid. In comparison, air needs to be filtered/managed for pollutants and needs moisture control, CO<sub>2</sub> in closed loop doesn't need conditioning



CO<sub>2</sub> is not corrosive or erosive. Ideal for turbomachinery, less maintenance needed relative to operating similar machinery with air.



CO<sub>2</sub> is widely available. No need for rare earth metals or electrolyte






### Long Duration, High RTE, Low Cost, Ready-to-Build

### **Standard Configuration**

#### 20MW/200MWh Frame



CHARGING

Time

24MW/10h

DISCHARGING

Time

18MW/10h

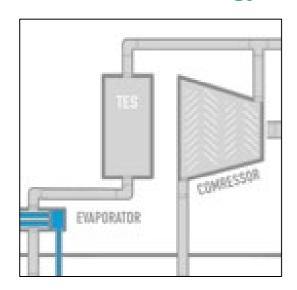
Site-Independent Design (Wind resistance, snow load, seismic)



First 2.5MW Plant successfully operational and Grid Connected for over 2 years

Over 2 years of plant operation have confirmed:

- Maturity of the technology
- Performance validated by










### Thermal Energy Storage System (TES), Designed by Energy Dome, TRL 7+



Lab Scale Testing with Politecnico of Milan in 2021



Efficiency/Performance maximized via recovery of heat of compression in the TES system

**Our Solution** = Packed Particle Bed using inert material

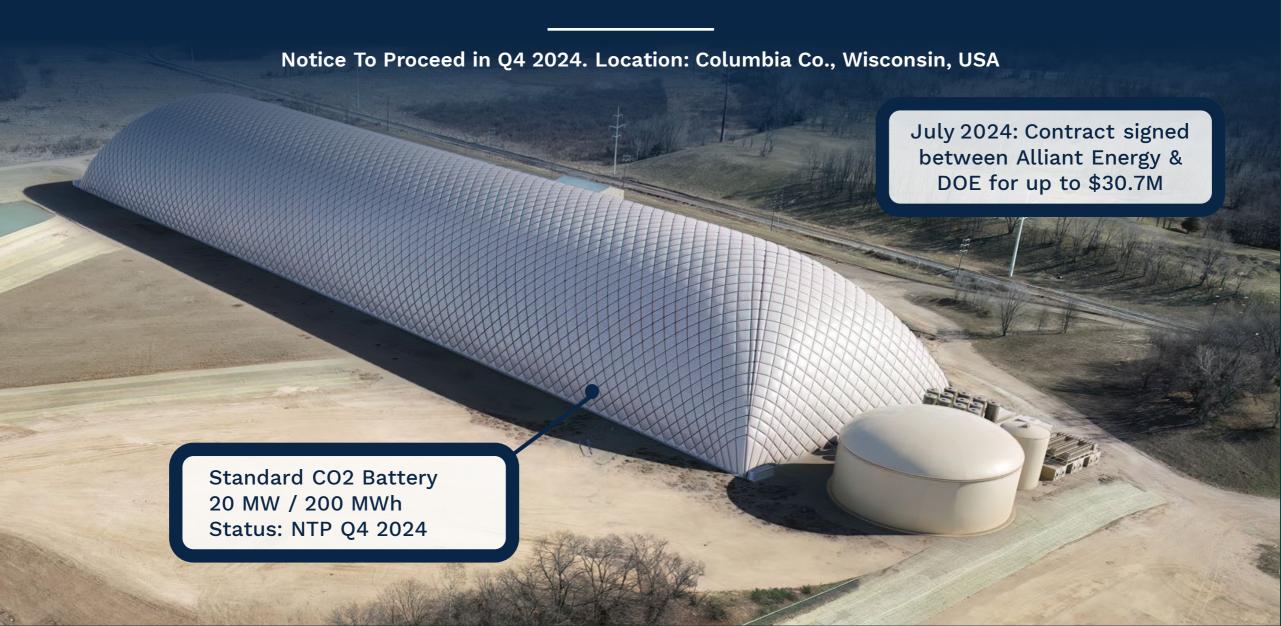
- No moving parts, completely recyclable
- Highly efficient, on expansion CO<sub>2</sub> after the TES is only 5°C less than the original inflow from the compressor





# FIRST FULL-SCALE CO2 BATTERY




# FIRST FULL-SCALE CO2 BATTERY



- 99% of all equipment has been ordered. 18 MW Turbine is in transit. 24 MW Compressor has been delivered.
- Foundations, anchors, and all civil works are nearing completion.
- Mechanical assembly of the dome has begun. Inflation expected in September.
- Transformer has been manufactured and successfully tested.
- First funding tranche from Breakthrough Energy Ventures has been unlocked
- On-Track for system-wide commissioning in Q4 2024. Operational data and commercial operation to follow shortly.



# COLUMBIA ENERGY STORAGE PROJECT



# Full-Scale Plant - Wisconsin

- 20MW / 200MWh
- Partnership with Alliant Energy in Wisconsin
- Operational by 2027
- Selected by US DOE for 50% cost-share
- Installed on a retiring coal facility in WI
- US supply chain for ITCs and cost reduction

#### **DOE: Columbia Energy Storage Project**





Long-Duration Energy Storage
Demonstrations Projects Selections for
Award Negotiations

Office of Clean Energy Demonstrations

Alliant Energy and its project partners, including WEC Energy Group, Madison Gas and Electric, UW-Madison, Madison College, Shell Global Solutions US and the Electric Power Research Institute, are teaming up to construct one of the first carbon dioxide-based energy storage systems in the United States, in Wisconsin.













## The CO2 Battery is highly competitive against other storage technologies

|                               | C12 BATTERY     | Lithium-Ion Battery           | Pumped Hydro                        | CAES                                                         |
|-------------------------------|-----------------|-------------------------------|-------------------------------------|--------------------------------------------------------------|
| BOP RTE                       | 75%             | 80-85%                        | ~70-75%                             | 60-62%                                                       |
| EOP RTE                       | 75%             | 68-73%                        | ~70-75%                             | 60-62%                                                       |
| CAPEX                         | \$225-\$250/kWh | Highly volatile,<br>\$350/kWh | Highly dependent on site conditions | Highly dependent on site conditions, FOAK COD still far away |
| LIFETIME                      | 30+ y           | 10 y                          | 50 y                                | 40 y                                                         |
| TIME OF<br>IMPLEMENTATI<br>ON | 1 – 2 y         | 1 – 3 y                       | 5 – 7 y                             | 5 – 7 y                                                      |
| SUPPLIER<br>LOCALIZATION      | WORLD           | 80% CHINA<br>20% WORLD        | WORLD                               | WORLD                                                        |







Eric Watson, Director of Sales, North America <a href="mailto:e.watson@energydome.com">e.watson@energydome.com</a> (cell 520-262-0963)

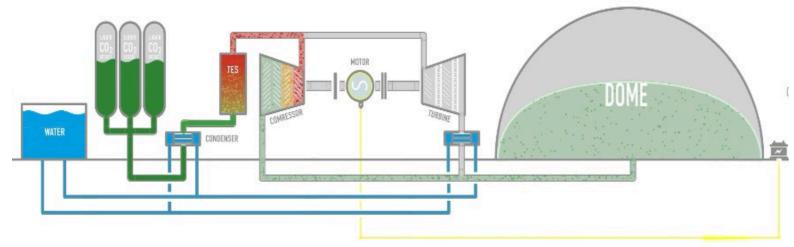


www.energydome.com



@energy dome

#### **HEAD OFFICE**


Via Giovanni Durando 39 Milano, MI 20158 Italy

#### **US OFFICE**

245 Main St Cambridge, MA 02142



## How it works



### 3 Main States

- 1 Charging
  - CO2 withdrawn from atmospheric gasholder (Dome), and compressed by interrefrigerated compressor
  - Heat generated from compression stored into Thermal Energy Storage System (TES)
  - CO2 is condensed into liquid state
- <sup>2</sup> Idle
  - Liquid CO2 stored at ambient temperature in CO2 vessels
- 3 Discharging
  - Liquid CO2 is evaporated and heated by recovering heat from TES
  - Reheated CO2 expands in turbine, returning power to the grid
  - Gaseous CO2 is stored in Dome at ambient temperature and pressure without emissions to atmosphere

