Pumped Storage Development

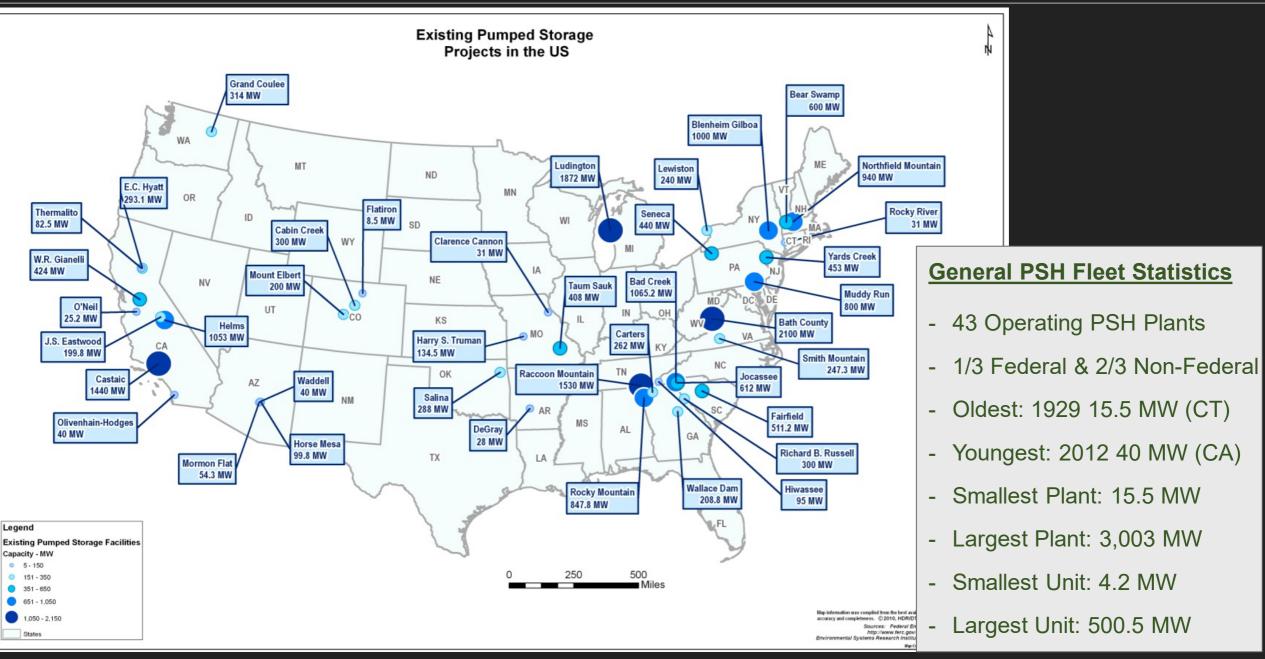
Mike Manwaring, PG Regional Sector Lead, Energy Michael.Manwaring@stantec.com

<u>Global PSH Experience</u>:

 \bigcirc

- > 17,500 MW of Constructed PSH
- > 17,000 MW of Refurbished PSH

Engineer-of-Record:


- Last two U.S. PSH projects built:
 - ✓ 40 MW Lake Hodges (California)
 - ✓ 1,035 MW Rocky Mountain (Georgia)
- Largest PSH plant in the world
 - ✓ 3,003 MW Bath County (Virginia)


Bath County PSH, Virginia

Operating U.S. Pumped Storage Fleet

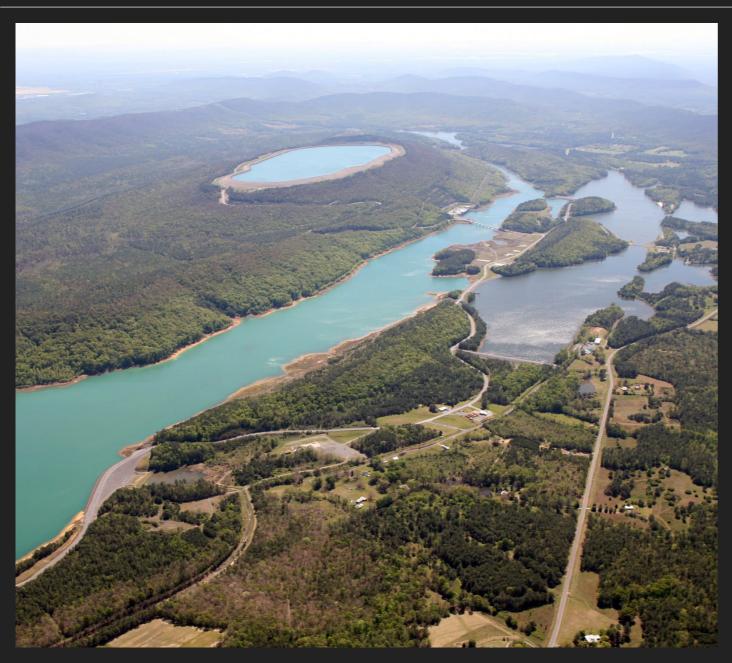
 \bigcirc

U.S. Pumped Storage Development Pipeline

Lake Hodges PSH San Diego, California

Owner: San Diego Co Water Authority Commissioned at 40 MW (2012) Part of "Emergency Storage" Project *Most recent U.S. PSH Built*

U.S. PSH Development History


Era	PSH Development Cause	Focus of Plant Operations	New PSH Development Challenges and Barriers	Technology Advancements
1960 - 1990s	development of nuclear and	System flexibility; Weekend pump cycle ; Energy arbitrage	Plant costs; Deregulation; PSH new technology	Tech: Complex underground caverns; Design: Pump/ turbine efficiencies; tunnel hydraulics
	(wind/ solar); upgrades of	Bulk system management; Daily (evening) generation; charging overnight	Large CapEx; undefined ROI / market revenue uncertainty; FERC Licensing timelines	Tech: U/G Construction Design: Adjustable Speed Pump/ Turbines
2010s	renewables growth; Plant	Duck Curve; Evening natural gas ramping; regional RE integration	Low-cost natural gas, IRPs did not foresee LDES need; market revenue uncertainty	Tech: RCC dams; Design: CFD modeling, Closed Loop PSH
2020s	-	Multiple unit stops/starts; Regional grid resiliency; renewable integration	Long-term PPAs (revenue certainty; Energy Storage competition; FERC Licensing	Tech: Advanced TBMs, Liner systems Desing: Modular PSH; Economic & Operations models
2030s		System flexibility; grid stabilization / grid management; energy security	Competing ES resources; long- term PPAs; Recognizing revenue for system benefits	Market Designs: revenues for energy security, decarbonized grid, RE integration, flexibility

Evolving Landscape in Pumped Storage

- ✓ (New) Interest in LDES from Utilities, Existing PSH Owners, Green Funds
- ✓ Grid Managers/Regulators understand LDES is critical to decarbonize
 - PSH offers grid security & resiliency benefits
 - Recognition of the need for different energy storage "tools"
- ✓ DOE Actively Engaged National Labs & Direct Funding Opportunities
 - Assess different storage technologies roles define the "toolbox"
 - Understand Environmental Impacts (CLPSH, GHGs, LIHI Certification)
- ✓ FERC & Regulatory Agencies:

 \bigcirc

- Recognize PSH is different than conventional Hydropower
- Project Operations (existing plants and new project designs)
 - Much more frequent unit Stops/Starts BUT lower overall MWhs
 - <u>Examples</u>: Northfield Mountain PSH (MA) | Bad Creek PSH (NC/SC)
 - New development focusing on very fast response in pump & generation

Rocky Mountain PSH Rome, Georgia

Owner: Oglethorpe Power Commissioned at 848 MW (1995) Upgraded to 1,035 (2011) 3 x 365 MW Units Each *Most recent large-scale PSH built*

Challenges for new Pumped Storage Development

- 1. Project Costs vs Revenue: How does a PSH project get paid?
 - ✓ Payment for Full Suite of Services:
 - Energy Security, Grid Resiliency, Renewable Integration, Fleet Optimization, Decarbonization
 - > <u>Options</u>: Long-term PPA, Rate Recovery, Performance Based Payments
 - ✓ Early PSH Project costs must be *realistic*
- 2. Project Development Timeline: 7-to-10-years is too long
 - ✓ *Utility Concerns*: energy markets vs technology innovation
 - ✓ Asset planning horizons (IRPs) are starting to includes LDES
 - ✓ <u>Options:</u> Expedited Licensing (closed loop)

Dinorwig PSH Wales, United Kingdom

Owner: First Hydro (Engie) Commissioned at 1,800 MW (1984) 6 x 300 MW Units Each Uber fastest response ~ 110 MW / second

QUESTIONS?

Pumped Storage Developments

Mike Manwaring, PG Regional Sector Lead, Energy Michael.Manwaring@stantec.com

