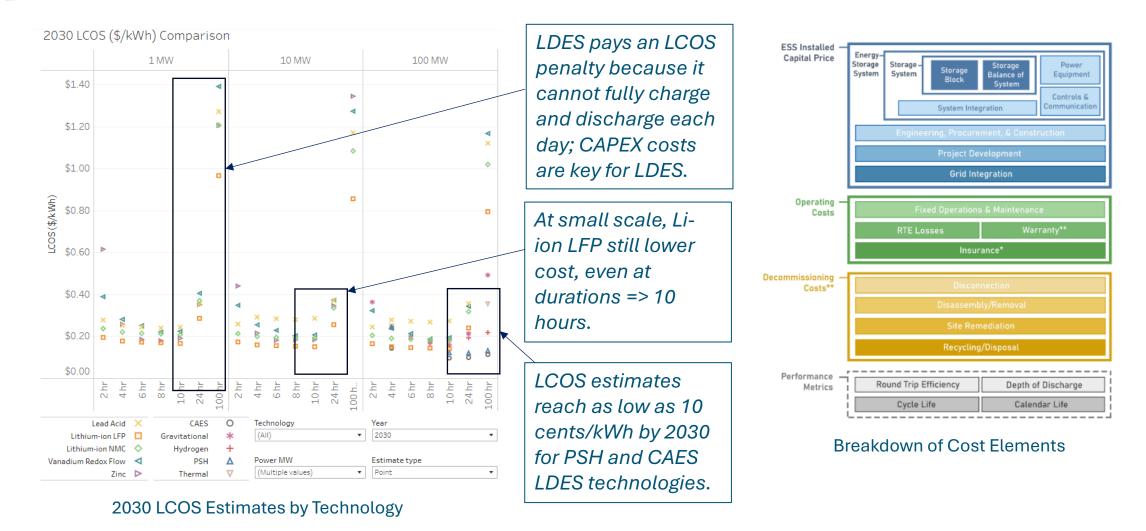


LDES National Consortium Workshop

Long-Duration Energy Storage Cost Definition, Levelized Cost of Storge and Storage Innovations 2030

Patrick BalducciArgonne National LaboratoryManager, Power Systems and Markets Research

Contributors: Hill Balliet and Venkat Durvasulu, Idaho National Laboratory



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525 SAND2024-00410PE.

This project is funded by the Infrastructure Investment and Jobs Act, also known as the Bipartisan Infrastructure Law (BIL), as part of the DOE Technology Commercialization Fund (TCF), administered by the Office of Technology Transitions in collaboration with the Office of Clean Energy Demonstrations.

LDES Current and Forecast Cost Estimates

Source: ESGC Storage Cost and Performance Database. Available at https://www.pnnl.gov/ESGC-cost-performance

Storage Innovations (SI) Technologies

Identify individual innovation opportunities

Step 1: Assess R&D trajectory status quo Step 2: Assess gaps with respect to improving technology cost/performance Step 3: Define interventions that could be relevant to energy storage gaps Step 4: Assess potential impacts of investment

Assess portfolios of interventions

Step 5: Implement Monte Carlo model Step 6: Evaluate portfolios of interventions

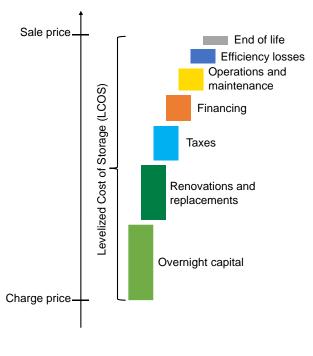
Analyze modeled outcomes

Step 7: Conduct suitability evaluations Step 8: Report on metrics

Innovations Defined and Assessed through SME Interview and Follow-on Data Sharing

SME Interviews

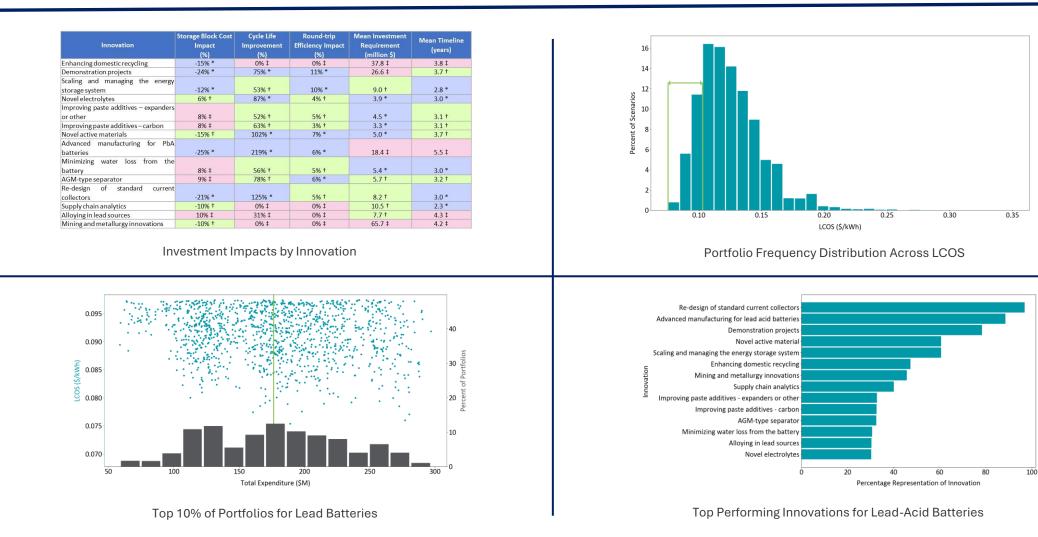
- 24 of 24 targeted groups interviewed for lead-acid batteries
- SMEs represented industry groups, academia, and vendors
- Follow-on forms (suitability, investment, and impacts); 17 forms returned
- SMEs provided input covering suitability for ESGC goals, innovation areas, R&D budgets, and impacts


Lead-Acid Battery Taxonomy of Innovations

Innovation Category	Innovation		
Raw materials sourcing	Mining and metallurgy innovations		
	Alloying in lead sources		
Supply chain	Supply chain analytics		
Technology components	Re-design of standard current collectors		
	AGM-type separator		
	Minimizing water loss from the battery		
Manufacturing	Manufacturing for advanced lead acid		
	batteries		
Advance material development	Novel active material		
	Improving paste additives - carbon		
	Improving paste additives - expanders or		
	other		
	Novel electrolytes		
Deployment	Scaling and managing the energy storage		
	system		
	Demonstration projects		
End of life	Enhancing domestic recycling		

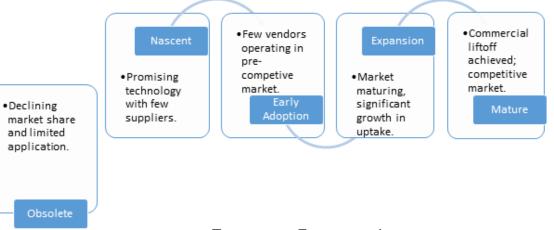
New LCOS Formulation: Combine the Best Parts of Common Formulations to Meet Criteria

- 1. Show how much cost is added to electricity by storing it
- 2. Consider the time value of money and inflation
- 3. Consider taxes
- 4. Consider financing costs
- 5. Consideration of incentives like investment tax credits
- 6. Apply to all bidirectional electricity storage technologies
- 7. Inputs should be unambiguous
- 8. The full life cycle of the project should be included
- 9. Costs should be amortized over the longest practical project lifetime
- 10. The LCOS formula should be readily usable and easy to apply to a wide range of technologies


Formulation	Li-ion Result		
DAYS	\$0.241/kWh		
LAZARD	\$0.278/kWh		
ESGC	\$0.240/kWh		
Proposed	\$0.251/kWh		
LCOS Results for Li-Ion			

Build-up of LCOS

2030 Framework Study Results (Lead-Acid)


Top 3 Innovations by Technology

Techno	ology	Innovation #1	Innovation #2	Innovation #3
CAI	ES	Demonstration Projects	System Modeling and Design/Operation Optimization	Mechanical Compression/Expansion
Hydro	ogen	Liquid Hydrogen Carriers	Hydrogen Carrier Advancements	Demonstration Projects
Lead-	Acid	Re-design of Standard Current Collectors	Advanced Manufacturing for Lead Acid Batteries	Demonstration Projects
Li-io	on	Rapid Battery Health Assessment	Controls to Improve Cycle Life	Impurity Reduction Techniques
Sodiur	m-ion	Cathode-electrolyte Interface	In-operation Materials Science Research	Electrolyte Development
PS	н	Hybrid PSH Projects	Testing Durability of New Materials and Structures	3D Printing at Large Scale
Redox	flow	Novel Active Electrolytes	Manufacturing for Scalable Flow Batteries	Accelerate Discovery Loops for Battery Metrics and Materials
Superca	pacitor	Cell Packaging	Hybrid Components	Automated Manufacturing
Thermal Stora		Single-tank Storage	Heat-to-electricity Conversion Improvements	Large-scale Demonstrations
Zin	nc	Separator Innovation	Pack/system-level Design	Demonstration Projects

- Most technologies require both basic and applied research to achieve deep LCOS reductions
- Developing technologies (e.g., redox flow and sodiumion) require technology improvement while advanced manufacturing, control systems, and demonstration projects favored for more mature technologies

A Biannual Report to Inform Evolving Investment Opportunities: Refine List of Technologies

- SI 2030 Framework Study to be updated and published bi-annually
- Technology taxonomy framework established to systematically review and update the list of technologies
- Work more closely with industry groups
- Automate data collection process through online system
- Design website framework and layout
 - Links to current reports
 - Enable user to review and interact with key SI 2030 graphics and findings by technology
 - Advanced visualization techniques to present cross-technology results
 - Consider allowing users to query data to expand research base

Taxonomy Framework

- 1. What sort of information and actions on the part of DOE would benefit the industry most while pursing paths towards cost reductions and how could SI 2030 guide such investments (e.g., targeted FOA development)?
- 2. What would you like to see on the SI 2030 Framework Study webpage?
- 3. How important is it to develop a consistent LCOS definition and what improvements could we make?
- 4. How can we improve the quality of the information we provide?
- 5. How do we improve industry engagement?
- 6. What other information would be of most use?

