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1 Introduction 
Our nation is presently facing extensive, unmeasurable risk to our national security and critical 
infrastructure (NS&CI) missions through our widespread dependence on largely inscrutable third-
party and legacy software. In recent decades, software has been integrated into every facet of 
government and society, including NS&CI missions. Our nation’s historical choices on how to 
leverage software widely have resulted in economic opportunity and prosperity, but also a 
tremendous gap between our total dependence on software for NS&CI missions and our extremely 
limited capability to understand and validate that software.  

Despite rigorous testing, software typically contains unexpected behavior that can imperil the 
missions that rely upon it. Focused efforts to improve development practices are laudable but are 
insufficient to address the vast volume of third-party and legacy software already in use, let alone 
the accelerating pace of new and updated software requiring mission analysis. Ideally, to ensure 
mission success, mission owners would routinely analyze all mission-relevant software to seek 
technical evidence about its potential behavior before putting it into operation. Unfortunately, the 
technical tools and capabilities to do so do not currently exist. The broad set of mission questions 
that need to be addressed, the vast array of software upon which we depend, and the speed at 
which answers are needed, are all challenging requirements of the software understanding problem 
that exceed current technical capabilities.  

Every U.S. government (USG) agency faces this same challenge. The technical analysis capabilities 
needed by different agencies and missions share extensive commonality yet are typically developed 
in isolation, squandering the potential for a larger return on investment for the broader 
government. The net result is that our nation faces potential catastrophe as our vital missions and 
most sensitive systems across the government rely on software components that we cannot 
adequately characterize, leading to extensive, unknown, and unbounded mission risk. Our 
confidence today in NS&CI mission software is largely based on unsubstantiated assumption, not on 
reliable, technical evidence. 

Establishing high confidence in the software that underpins the nation’s NS&CI systems requires 
empowering mission owners to pose mission-specific questions about that software’s possible 
behavior and to gather technical evidence packages about that behavior to inform risk mitigate and 
acceptance decisions. Building the necessary technical analysis capabilities will require a significant, 
coordinated, national-level effort. 

This document serves as a roadmap to guide research, development, and engineering investments 
toward the technical tools and capabilities needed to create those evidence packages, enabling 
mission owners to adequately understand the software upon which our NS&CI missions critically 
depend. 

1.1 Document Purpose and Scope 

The purpose of this document is to present a technical research, development, and engineering 
roadmap toward the capabilities that will enable the U.S. government to achieve greater 
understanding of software behavior within NS&CI mission spaces. The authors acknowledge that 
this roadmap is based on particular foundational assumptions and our perspective about likely 
viable solutions. Though this perspective is informed by extensive familiarity with the academic 
literature and years of direct research experience, we fully expect that this roadmap will need to 
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change in the future—perhaps radically—as more is learned and as technology advances. Thus, we 
view this roadmap is an initial draft. 

 
Figure 1: Visual summary of the technical topics is in this roadmap. 

 A secondary purpose of this roadmap is to inform policy makers, program managers, and other 
high-level decision makers as to the scale of the research, development, and engineering needed to 
create the address the software understanding needs of NS&CI missions. 
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The scope of the document includes the following: 

• Background and rationale, explaining some of the reasoning behind the roadmap (Section 2) 
• Foundational assumptions that underpin the roadmap (Section 3) 
• Cross-cutting approaches that span multiple research areas of the roadmap (Section 4) 
• The research thrusts and sub-thrusts of the roadmap (Section 5) 
• A discussion of the prioritization and sequencing for pursing the roadmap (Section 6) 

Figure 1 presents a visual overview of the technical elements discussed in the roadmap, including 
the research thrusts (R#), Cross-Cutting Approaches (CC#), and Foundational Assumptions (FA#). 

The following topics are out of scope for this document: 

• Roles and responsibilities 
• Timeframes and resourcing estimates for achieving roadmap goals 
• Strategies for cultivating and growing the technical community necessary to execute this 

roadmap 
• Policy impediments that currently prevent the existing pockets of community with technical 

interest in this problem domain from coming together organically 

This document is a companion to “The National Need for Software Understanding”1.  For a thorough 
explanation of the software understanding problem, root causes, and needs, see that report. 

1.2 Alignment to Related National Documents 

This document expands upon several national level strategies, implementation plans, and other 
roadmaps. 

• Software understanding is a key capability needed to meet the national emergency declared 
in Executive Order 13873, “that foreign adversaries are increasingly creating and exploiting 
vulnerabilities in information and communications technology and services, which store and 
communicate vast amounts of sensitive information, facilitate the digital economy, and 
support critical infrastructure and vital emergency services, in order to commit malicious 
cyber-enabled actions, including economic and industrial espionage against the United 
States and its people.”2 

• Software understanding is a necessary aspect of “Enhancing Software Supply Chain Security” 
as called for in Executive Order 140283 to provide the technical insight and evidence needed 
to implement “more rigorous and predictable mechanisms for ensuring that products 
function securely, and as intended”. 

 
1 D. Ghormley, T. Amon, C. Harrison, and T. Loffredo, “The National Need for Software Understanding”, Sandia National 
Laboratories, Jan 17, 2024. 
2 United States, Executive Office of the President. Executive Order #13873: Securing the Information and Communications 
Technology and Services Supply Chain. May 15, 2019. Federal Register, vol. 84, no. 96, pp. 22689-22692, 
https://www.govinfo.gov/content/pkg/FR-2019-05-17/pdf/2019-10538.pdf. 
3 United States, Executive Office of the President. Executive Order #14028: Improving the Nation’s Cybersecurity. May 12, 
2021. Federal Register, vol. 86, no. 93, pp. 26633-26647, https://www.govinfo.gov/content/pkg/FR-2021-05-17/pdf/2021-
10460.pdf. 

https://www.govinfo.gov/content/pkg/FR-2019-05-17/pdf/2019-10538.pdf
https://www.govinfo.gov/content/pkg/FR-2021-05-17/pdf/2021-10460.pdf
https://www.govinfo.gov/content/pkg/FR-2021-05-17/pdf/2021-10460.pdf
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• Furthermore, software understanding is key to performing many types of independent 
validation of the Software Bills of Material (SBOMs) required by Executive Order 140283 and 
included in CISA’s Open Source Software Security Roadmap4. 

• Federally mandated Zero Trust Architecture (ZTA) adoption is intended to defend against 
increasingly sophisticated and persistent threat campaigns5. In light of the repeated 
infiltration of software supply chains by such campaigns, software understanding is 
necessary to analyze the software that underpins ZTAs to establish its trustworthiness 
through technical analysis rather than presumption or developer attestation6.  

• Software understanding is necessary to achieve the goals of the National Cybersecurity 
Strategy, in particular Strategic Objective 5.5: Secure Global Supply Chains for Information, 
Communications, and Operational Technology Products and Services7. 

• “Software understanding is a vital aspect of CISA’s Secure By Design strategy”8. 

1.3 The National Challenge 

The scope of the national challenge that this roadmap is designed to address is described in detail in 
the report “The National Need for Software Understanding”9. As a reminder, Figure 2 depicts the 
scale of the Software Understanding problem as contemplated by this roadmap. Although point 
solutions may exist for certain combinations of questions and systems, this roadmap seeks 
approaches capable of scaling to the scope of the national need (see Section FA1 for more 
information). This roadmap also favors the use of mathematically precise and rigorous approaches 
where feasible, although other approaches can be useful, or even essential, for progress on some 
technical challenges.  

 
4 Cybersecurity and Infrastructure Security Agency, “CISA Open Source Software Security Roadmap.” September 2023. 
https://www.cisa.gov/sites/default/files/2024-02/CISA-Open-Source-Software-Security-Roadmap-508c.pdf. 
5 Shalanda Young, Office of Management and Budget, Executive Office of the President. “Moving the U.S. Government Toward 
Zero Trust Cybersecurity Principles.” https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf 
6 See https://www.gao.gov/products/gao-22-104746, https://www.gao.gov/assets/d24105658.pdf and 
https://www.gao.gov/assets/gao-24-107231.pdf 
7 https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf, see also 
https://www.whitehouse.gov/wp-content/uploads/2024/05/National-Cybersecurity-Strategy-Implementation-Plan-Version-
2.pdf 
8 Cybersecurity & Infrastructure Security Agency, “CISA’s Efforts Towards Software Understanding”, April 26, 2024. 
https://www.cisa.gov/news-events/news/cisas-efforts-towards-software-understanding 
9 D Ghormley, T. Amon, C. Harrison, and T. Loffredo, “The National Need for Software Understanding”, Sandia National 
Laboratories, Jan 17, 2024. 

https://www.cisa.gov/sites/default/files/2024-02/CISA-Open-Source-Software-Security-Roadmap-508c.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf
https://www.gao.gov/products/gao-22-104746
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.cisa.gov/news-events/news/cisas-efforts-towards-software-understanding
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There are a variety of different types of so2ware in scope for this roadmap, including: 

• Enterprise so2ware, such as desktop opera=ng systems and applica=ons, web servers 
and services, cloud compu=ng and end point security so2ware, and more. 

• Enterprise and Internet network so2ware, including network backbone so2ware, 
boundary protec=on and filtering so2ware, secure communica=ons so2ware, server 
so2ware, network monitoring and administra=on so2ware, etc. 

• Mobile device opera=ng systems and applica=ons on end-point devices as well as the 
providers’ core network and core services. 

• Industrial control system (ICS) so2ware, Internet of Things (IoT) so2ware, and other 
embedded so2ware systems. 

• Custom so2ware used for defense applica=ons, such as so2ware used in military 
vehicles. 

• Design tools, including compilers, linkers, computer aided design (CAD) tools, 
programming environments, integrated circuit board and chip design and layout tools, 
and anything else used in the forward engineering of civil structures, cri=cal 
infrastructure, transporta=on systems, medical or life-safety equipment, digital 
hardware and so2ware, etc. 

Figure 2: Scale of the Software Understanding Problem. 
At the bottom of the diagram are notional examples of the nation’s critical infrastructure and national security 
physical systems. Just above those are notional examples of various software used in the design, development, 
deployment, maintenance, and operation of those systems. Flanking on the left and right are seals of various 

departments and agencies in the USG which own NS&CI missions. In orange in the center are notional questions that 
these agencies would ideally be able to answer questions about their software to have high confidence in their 

missions. 
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1.4 Terminology 

• Software understanding: the practice of understanding the intended and unintended 
functionality of a given software system. In most cases, especially in the presence of 
3rd party software, understanding is possible only by analyzing the software artifact directly, 
rather than relying on proxies or substitutes such as attestation, documentation, mitigations, 
or policies and procedures. Understanding is most needed before software is placed into 
use so that undesirable behavior can be prevented. While software understanding can be 
manual, and manual analysis is still done today across many missions, most missions 
require significant degrees of automation. “Software understanding” is a superset of 
“software measurability” and “software measurement” as discussed in the “Back to the 
Building Blocks: A Path Toward Secure and Measurable Software”10 and the “Federal 
Cybersecurity Research and Development Strategic Plan”11. “Software understanding” 
applies in both forward engineering contexts (e.g., during software development) as well as 
reverse engineering contexts (e.g., forensic software analysis). 

• Forward engineering: the process of designing, developing, or creating new software. 
Forward engineering includes the development of any software development artifact such as 
design documents, requirements, or source code, not just the final software product or 
binary. Improvements in forward engineering processes can help to shape the development 
of new software prevent unintended behavior that could fail to meet safety and other 
mission requirements or otherwise threaten the mission.  

• Reverse engineering: the process of analyzing, decomposing, and understanding existing 
software systems as delivered. Reverse engineering may include the attempted recreation or 
extraction of the design and structure of forward-engineered software systems. 
Improvements to reverse engineering processes can help in discovering and understanding 
the possible behaviors of existing software systems for various mission purposes. The scope 
of this roadmap is primarily focused on reverse engineering, not forward engineering, 
However, there is significant overlap in the goals, techniques, and research needed for both 
forward and reverse engineering, so some of the recommendations in this roadmap may 
apply to forward engineering as well. 

• Binaries: a machine-readable version of a program designed for direct execution on a 
processor (e.g., x86 Windows PE file) or for interpretation by a virtual machine (e.g., Java 
bytecode), whether intended for use on a desktop, mobile, or embedded system. Note: 
although many software artifacts are delivered and used as binaries, many NS&CI-relevant 
software artifacts are not—for example, interpreted Python code or bash scripts. These other 
kinds of software are still relevant to software understanding, so this roadmap is not limited to 
binaries only, though the authors will use that the term “binaries” as an informal short-hand for 
the broader set. 

 
10 “Back to the Building Blocks.” The White House, February 2024, https://www.whitehouse.gov/wp-
content/uploads/2024/02/Final-ONCD-Technical-Report.pdf. 
11 “Federal Cybersecurity Research and Development Strategic Plan.” Cyber Security and Information Assurance Interagency 
Working Group, December 2023, https://www.whitehouse.gov/wp-content/uploads/2024/01/Federal-Cybersecurity-RD-
Strategic-Plan-2023.pdf. 

https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/01/Federal-Cybersecurity-RD-Strategic-Plan-2023.pdf
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2 Background and Rationale 
This section discusses some background and rationale which provide context for the roadmap 
below, in particular these three points: 

• BR1: Software Security vs. Understanding 
• BR2: Software Understanding as a Chain Link Problem 
• BR3: A Useful Analogy between Physical Sciences and Software Understanding 

Additional detail and rationale can be found in the report “The National Need for Software 
Understanding”, specifically sections 2-49. 

2.1 Background and Rationale, BR1: Software Security vs. Understanding 

Software understanding includes more than just software security. Software security is concerned 
with confidentiality, integrity, and availability, as well as issues such as authentication, authorization, 
and vulnerabilities. Most commonly, software security discussions center around issues that 
command broad or universal agreement about their negative impact on software (i.e. memory 
safety issues, common vulnerability classes, etc.). 

In contrast, software understanding is concerned with all of these, as well as a much broader range 
of questions, including bespoke, mission-specific questions that will never find universal consensus. 
For a more detailed list of example Mission Questions, see Appendix A of “The National Need for 
Software Understanding”. All software mission questions require an analysis of the software to seek 
evidence to answer the mission question at hand, but many questions are not traditional software 
security questions; rather, they are about understanding a key aspect of software behavior to inform 
mission decisions. This roadmap seeks to elucidate the research needs that are common across 
many such areas of software inquiry. 

One key issue worthy of special note is that there are circumstances in which disagreements arise 
regarding whether a particular behavior is a feature or a vulnerability. An example of this is the 
Log4j issue12. There are also mission-specific system behaviors that no security tool would consider 
a vulnerability (e.g., these two valves should never be open at the same time in this industrial control 
system). 

2.2 Background and Rationale, BR2: Software Understanding as a Chain Link 
Problem 

Software understanding is an example of a chain link problem. To analyze the possible behavior of a 
software binary, an analysis tool must first model the system and the software. Poor models result 
in poor analysis results, whether incomplete coverage, false positives, false negatives, inadequate 
precision, and more. An extensive set of models must work in concert to provide accurate, useful 
analysis results; models must capture relevant aspects of the initial program state, the semantics of 
the processor instructions, hardware peripherals, the memory usage patterns of the software, 
operating system calls, external library interactions, any concurrency or interrupts, remote network 
interactions, and more. Program control and data paths typically flow through many of these 
models and must be appropriately tracked to analyze the software’s behavior. It is this flow of 
control and data through the collection of models that creates the chain link problem. When any 

 
12 See Log4j issue report at https://issues.apache.org/jira/browse/LOG4J2-313 (accessed June 19, 2024). 

https://issues.apache.org/jira/browse/LOG4J2-313
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one of these pieces is weak, it can negatively affect the entire analysis and cause total failure 
through inaccuracy or failure to complete the analysis at all.  

To illustrate, here are a few observations about chain link problems and how to apply those 
observations to software understanding: 

• A chain has multiple links. In software understanding analysis tools, there are multiple 
algorithms, tasks, and subtasks that must all work in concert to be successful. Simpler tools 
may have a single element that can be optimized for one particular task, analogous to a 
hammer; but software understanding requires many moving parts to work in concert, 
analogous to clockwork.  

• The chain is only as strong as the weakest link. When just one link is weak or flawed, the 
overall system is weakened or flawed. 

• Strengthening one link in the chain typically doesn’t make the chain stronger. In the inter-
related links needed for software understanding, improvements to one part of the analysis 
are often not reflected in an overall improvement of the chain—unless that one part 
happened to be weak link limiting the overall analysis. 

In software understanding, there are some additional observations that inform this roadmap: 

• In software understanding for third party systems, most links are weak – the overall ability to 
analyze software executables is very poor relative to the broad need. 

• In software understanding, modern software analysis experts currently cannot measure 
individual links to see which are strong and which are weak – that is, in this chain link 
problem of software understanding, no one can currently identify which links are the limiting 
factor for any given analysis challenge and no one can easily measure incremental progress 
on individual problems. 

• In software understanding, many tools are monolithic, not composed from easily reusable 
components. Consequently, the “links” of the software understanding chain are closely 
intertwined within a monolithic tool, making it challenging to even identify what a separate 
link may be. 

• In software understanding, different tool elements can have different sensitivities. Some 
elements of software understanding tools are fundamental with no sensitivities whatsoever, 
such as the technique of abstract interpretation or tools to resolve satisfiability (SAT) 
problems, which have been widely developed in both academia and industry for decades. 
Other elements of software understanding tools may be very particular to sensitive aspects 
of NS&CI systems or mission questions. Software understanding solutions should be 
pursued in such a way that foundational, non-sensitive techniques and solutions can be 
shared broadly, while mission sensitive elements can be restricted to appropriate parties.  

2.3 Background and Rationale, BR3: An Analogy between Physical Sciences and 
Software Understanding 

For many, it is difficult to understand the challenge of analyzing software. One analogy that may be 
useful comes from biochemistry. For centuries, scientists studied biological organisms at a high 
level, learning many useful things. The invention of the first microscopes and discovery of cells 
unlocked a new, deeper level of insight which led to additional understanding.  Prior to this 
invention, we understood many things, but that understanding was limited in the early years by 
gaps in our knowledge that we often didn’t know existed.  In recent decades, a series of 
breakthroughs have enabled scientists to analyze the low-level foundations of human biochemistry 
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in ways unimagined by previous generations, ushering in a revolution of understanding of metabolic 
pathways.13 

To achieve these unprecedented levels of understanding, the scientific community over the years 
first had to understand atoms with their electron shells, charges, number of protons, atomic weight, 
and more. But that alone was not enough. They also needed to understand how those atoms 
combine into molecules, types of bonds, molecular geometry, bond angles, molecular polarity, 
exothermic and endothermic reactions, and more. But that was still not enough. Biochemistry 
studied particular families of molecules such as enzymes, nucleic acids, carbohydrates, enzyme 
kinetics, and molecular signaling cascades. The community further need to understand DNA, RNA 
and the mechanisms that produce various proteins and how those proteins interact to create 
chemistry-based machines that underpin all of life. Once the right foundational prerequisites were 
in place, the scientific community achieved the ability to reason about metabolic pathways in ways 
previously unimaginable. 

This illustration describes a series of layers, from low-level to high-level, with higher levels 
dependent on lower levels. Questions regarding high-level layers often requires understanding the 
lower layers out of which the higher layers are constructed. But each layer adds new behaviors that 
are not present in the lower layers. 

Software is similar. In software, 1’s and 0’s comprise the lowest layer. These are collected into “bytes” 
which are then grouped together to form executable instructions, which are the atomic unit of 
software execution (similar to the physical atoms of chemistry in this analogy). These instructions 
combine into sequences called basic blocks (analogous to molecules in chemistry). These basic 
blocks are combined into functions, which interact with each other in a variety of ways (analogous to 
proteins in biochemistry). A program (an organism in the analogy) is made up of functions, ranging 
from just one in simplistic cases to hundreds of thousands in more typical computer or mobile 
software. 

Just as the physical and biological sciences need different scientific equipment to measure and 
characterize atoms, molecules, proteins, and metabolic pathways, so software understanding needs 
different algorithms and analysis techniques to characterize the various layers in software. In the 
physical sciences, the simple microscope alone was not enough to meet all measurement needs, but 
scientists over the decade invented spectroscopy, chromatography, magnetic resonance (used in an 
MRI), electrochemical measurement techniques, electron microscopes, and much more. In software 
analysis, there are analysis techniques today at various levels in the software stack, but these 
collectively fall far short of what’s needed to meet the national scale needs in understanding with 
high rigor the software that underpins national security and critical infrastructure missions. 

The nation needs to invent the software equivalent of the electron microscope, spectroscopy, 
chromatography, as well as the decision-making frameworks for understanding the entire system. 

This means that in any roadmap, there will be themes that show up at multiple layers of analysis. 
For example, the need to measure, the need to model, the need to analyze behavior, the need for 
the human to introspect the system, the need to pose questions and seek evidence, the need for 
scalability, the need for modular composition, all apply at many layers, from low-level to high-level. 

 
13 Stanford Medicine, “Pathways of Human Metabolism Map”, https://metabolicpathways.stanford.edu/ (accessed June 19, 
2024). 

https://metabolicpathways.stanford.edu/
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3 Foundational Assumptions 
Practically speaking, the scale of the national need depicted in Figure 2 requires widespread reuse of 
components to have a reasonable return on investment (ROI). To accomplish this, the authors have 
developed this roadmap around two foundational assumptions to enable scalable and reusable 
capabilities. As mentioned in Section 6, validating these foundational assumptions should be a 
priority, with the lessons learned used to produce a new version of this roadmap. 

3.1 Foundational Assumption, FA1: Mathematical Modeling 

Modern software systems have an exponential number of states with respect to the size of the 
program—vastly more states than the number of atoms in the universe, for any moderately sized 
modern program14. In principle, mission-threatening behaviors could lurk anywhere in this complete 
state space of the software. Exploring and understanding every state in this set in detail is not 
feasible, but fortunately, to answer a given mission question, it’s typically necessary to only examine 
a subset of the states. For this to be practical, the analysis must aggressively abstract away detail not 
relevant to the question, while retaining precision on the aspects of the software’s behavior 
necessary to answer the question. The most promising approach to answering questions about 
software through abstraction and reasoning is through mathematical modeling.  

Mathematical modeling in the context of software understanding involves creating abstract 
representations of a program's behavior using mathematical constructs such as equations, graphs, 
and logical formulas. This technique allows software analysts to reason about the program's 
properties without executing it, making it particularly powerful for analyzing large software systems. 
By translating code into a mathematical model, software analysts can apply various theoretical tools 
to gather the information they need to answer any given mission question about the software. For 
instance, control flow graphs can help analysts understand the possible execution paths, while data 
flow equations can track how data moves and transforms throughout the program. The abstraction 
provided by mathematical modeling not only simplifies the complexity inherent in large programs 
but also enables the use of automated tools to perform rigorous and scalable analysis, ensuring that 
even subtle and hard-to-detect issues can be identified and addressed efficiently. 

There are other approaches to solving this software understanding conundrum besides 
mathematical modeling—for example, dynamic testing, using proxies for software understanding, or 
manual human analysis—but those other approaches are not capable of providing the technically-
based, rigorous, reliable, rapid, and repeatable software understanding capabilities the nation needs 
(for more discussion on this, see Section 3.3, “The Current State of Software Understanding 
Alternatives” in “The National Need for Software Understanding”1). As a result, the core approach to 
software understanding advocated in this roadmap is based on mathematical modeling strategies. If 
composable (see FA2 below) modeling approaches cannot be identified that suit the purpose this 
roadmap, the research thrusts within this roadmap should be revisited to reflect a new set of 
fundamental assumptions. 

An important key observation about mathematical modeling, and software analysis in general, is 
that no one software analysis tool is adequate for all software analysis tasks. Given a class of 

 
14 Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P. (2012). Model Checking and the State Explosion Problem. In: Meyer, B., 
Nordio, M. (eds) Tools for Practical Software Verification. LASER 2011. Lecture Notes in Computer Science, vol 7682. Springer, 
Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35746-6_1 
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software programs or systems under test (P), specific information to gather about those programs 
(related to Q), and a particular set of analysis resources to use (R), to be effective, an analysis tool (A) 
must be generated for this specific combination of P, Q, and R. That is, the analyzer is a function of P, 
Q, R. 

 𝐴 = 𝑓(𝑃, 𝑄, 𝑅) 

To illustrate this with an example, consider two related scenarios: (1) an individual user context in 
which an analysis tool that analyzes a program on a laptop when the user double-clicks to run it, and 
(2) a national security mission context in which mission owners desire a high-level of confidence that 
critical software is free from advanced persistent threat (APT) malicious additions. In the former 
scenario, the analysis is expected to produce an answer about standard malware threats within 
seconds on modest hardware. In the latter scenario, the mission owner may choose to analyze key 
software for weeks in a thousand-core cloud system prior to placing it into operational use. 

In this example, one can see that the types of questions that a typical consumer has may be very 
different than a national-security mission owner—thus the Q may be different. Even if the question 
is the same, the resources (R) dictate radically different algorithms, approaches, confidence 
thresholds, and more. And even if both Q and R are the same, the analysis tools needed to analyze 
specific classes of programs (P) can be wildly different—tools to analyze a typical desktop application 
are unlikely to work well (or at all) for industrial control systems or flight control software. 

Software understanding is not one problem, but a vast space of problem instances. Successful 
analyses (A) incorporate carefully considered tradeoffs tuned to the specific P, Q, and R. 
Consequently, analysis tools do not generalize well to other classes of programs, mission questions, 
or resource constraints; not because of implementation quality issues but because of fundamental 
characteristics of software and theoretical limits on analyzability. 

This observation has at least three key implications: 

1) Need for Reuse: The analysis tool, A, when sufficiently customized to be effective at 
answering a particular mission question on a certain family of software binaries, has very 
limited reuse potential as a unit. However, the cost to the USG of fabricating a custom 
analysis tool from scratch for every combination of P, Q, and R is untenable. The USG needs 
a practical path forward for creating the set of tools capable of meeting the broad national 
need depicted in Figure 2. One promising approach is to create an ecosystem of reusable, 
configurable tools and components out of which any given specific analysis tool can be 
constructed, aggressively minimizing over time the amount of custom, manual work that 
must be done15. 

2) Need for Iteration: For a given P, Q, and R, it is unlikely that the analysis tool can be 
constructed correctly a priori. Even deciding in advance what models with what precision are 
needed for the analysis is difficult and error-prone, requiring information about the program 
which requires analysis to determine, creating a classic “chicken-and-egg” conundrum. Thus, 
it seems likely that the analysis tool, A, will need to be constructed through an iterative 
process. This further suggests there is a space of options which is to be searched to find a 
tool, A, that is adequate to gather the necessary evidence to answer Q. In such cases, 
different search strategies will have different characteristics. 

 
15 There are a few tools today with some element of reusability that may provide starting points for such an ecosystem, but 
the available options collectively fall far short of what is needed. 
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3) Need for Human Integration: The process described in #2 will not be mature for some 
time. Today, analysis tools are typically built entirely through manual effort with no 
automation in the tool construction process. Immediate, full automation is unreasonable to 
expect. Consequently, the research roadmap should chart a path of hybrid human/machine 
partnership in constructing analysis tools, identifying strategies to empower the analysis tool 
writers to be orders of magnitude more efficient and empowering them to rapidly identify 
root causes of problems in tools under development. 

3.2 Foundational Assumption, FA2: Composability 

The scale of the software analysis challenge depicted in Figure 2 has implications for the approaches 
that should be explored to solve it. The incredibly diverse set of mission questions, families of 
software of interest, and resource tradeoffs result in a monumental challenge. Isolated or 
uncoordinated efforts to create analysis solutions for individual combinations of P, Q, and R (to use 
the terminology of FA1) have already result in duplicated efforts whose components and results are 
incompatible with other efforts. In the limit, fully addressing the national need depicted in Figure 2 
would require developing a tool for each combination of P, Q, and R—an approach that is 
economically infeasible. 

Consequently, it is an assumption of this Roadmap that an essential element to practical solutions 
must involve approaches that maximize reuse through composability16—at each step, individual 
components must be designed so that they can be reused and assembled into solutions appropriate 
to the specific problem at hand. It is likely not possible to achieve this aim perfectly, for example, 
necessitating some amount of custom development or configuration to tie a set of reusable 
components together. However, perfection is not necessary to reap enormous return on investment 
if significant reuse can be accomplished. The amount of customization should be aggressively 
minimized in execution of this roadmap. 

Composability has been studied in a variety of domains, from modeling and simulation17,18 to Web 
services19 to satisfiability theories20. There are at least three facets of composability that this 
roadmap has in view. 

1. The composability of foundational logic systems. Tolk and Maguira, speaking in the 
context of compositionality within modeling and simulation systems, address this point this 
way: “In order to achieve meaningful interoperability of simulation systems on the technical 
level, composability of the underlying conceptual models is a necessary requirement.”21 
Thus, before any actual tool can be designed to be compositional, one must first ensure that 
the mathematical foundations used to model software semantics and support reasoning 

 
16 Although the terms “composability”, “compositionality”, or “combination” may have technical nuances in different domains 
of software understanding, in this roadmap they are used interchangeably in their informal senses. 
17 Paul K. Davis, Robert H. Anderson, “Improving the Composability of Department of Defense Models and Simulations”. RAND 
National Defense Research Institute, 2003. 
18 C. Szabo and Y.M. Teo, “An Approach for Validation of Semantic Composability in Simulation Models”, 2009 ACM/IEEE/SCS 
23rd Workshop on Principles of Advanced and Distributed Simulation. 
19 Brahim Medjahed and Athman Bouguettaya, “A Multilevel Composability Model for Semantic Web Services”, IEEE 
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 7, JULY 2005. 
20 Leonardo de Moura, Bruno Dutertre, and Natarajan Shankar, “A Tutorial on Satisfiability Modulo Theories (Invited Tutorial)”. 
CAV 2007, Lecture Notes in Computer Science 4590, pp. 20–36, 2007. 
21 Andreas Tolk and James Maguira, “The Levels of Conceptual Interoperability Model”, 2003 Fall Simulation Interoperability 
Workshop Orlando, Florida, September 2003. 

https://www.rand.org/content/dam/rand/pubs/monographs/2004/RAND_MG101.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5158313
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1432704&tag=1
https://brunodutertre.github.io/publis/cav2007.pdf
https://www.mscoe.org/content/uploads/2017/12/Tolk-Muguira-The-Levels-of-Conceptual-Interoperability-Models.pdf
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about software behavior must be composable at the conceptual level. R1 addresses this 
foundational level of composability.  

2. The composability of analysis components and tools. In addition to the conceptual, 
mathematical foundations discussed in #1, the analysis components and tools must be 
designed as ensembles of reusable parts. These concepts go beyond mere modularity. 
There are two parts to this: the technical composability problem, and the semantic 
composability problem22. The technical composability problem centers on interfaces, 
protocols, data structures and such to ensure that composability is possible. The semantic 
composability problem focuses on ensuring that the aggregate composition of components 
has the intended behavior, achieves the desired goal, and exhibits the desired emergent 
properties. Leveraging the conceptual foundations of R1, R2 addresses composability 
internal to a given analysis tool’s architecture whose design must facilitate the composition 
of reusable components, R3 deals with the models of software execution that will be 
leveraged by the tools and that themselves must be designed for both technical and 
semantic composability, while R5 addresses the composability across an ecosystem of 
analysis tools, each interacting in an iterative analysis campaign to address the mission 
owner’s high level question about the software.. 

3. The composability of the software analysis approach or algorithm. Rather than 
referring to the structure of the analyzer, this type of composability refers to how the 
algorithm approaches the problem of analyzing the program—does it attempt to reason 
about the entire program or does it reason about the program in smaller units, combining 
those small units of analysis into larger ones in a rigorous way. The latter is known as 
“Algebraic Program Analysis”. Kincaid, Reps, and Cyphert put it this way: “A program analysis 
is compositional when the result of analyzing a composite program is a function of the 
results of analyzing its components.”23 Some of the analysis approaches contemplated in R1, 
R2, and R3 may leverage composable analyses and others may not. 

The semantic composability challenge described in #2 above presents itself in many areas of this 
Roadmap. R1.4 will need to provide the mathematical foundations to address it, R2.2 will need to 
provide architectures leveraging these foundations, R2.3 will need to address it in the tool synthesis 
process, R3 and R4 will need to ensure that individual model components are consistent with these 
needs, and R5 will need to address these issues at the higher-level analysis campaign and 
orchestration level. R6 directly addresses the need to infer higher-level semantics from lower-level 
evidence. 

Only the aggressive reuse of components at all levels can be scaled to the needs of Figure 2, and 
composability is a key to maximizing reuse of components. 

4 Cross-Cutting Approaches 
This roadmap organizes the software understanding needs of the nation into various research 
challenges. However, some important elements of the roadmap do not fit neatly into a single 

 
22 Robert Bartholet, et al, “In Search of the Philosopher’s Stone: Simulation Composability Versus Component-Based Software 
Design,” Proceedings of the 2004 Fall Simulation Interoperability Workshop, Orlando, FL, September 2004. 
23 Kincaid, Z., Reps, T., Cyphert, J. (2021). Algebraic Program Analysis. In: Silva, A., Leino, K.R.M. (eds) Computer Aided 
Verification. CAV 2021. Lecture Notes in Computer Science, vol 12759. Springer, Cham. https://doi.org/10.1007/978-3-030-
81685-8_3. 

https://link.springer.com/chapter/10.1007/978-3-030-81685-8_3
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research challenge, but instead are present in multiple places throughout the roadmap. Some of 
these elements are important enough to warrant special explanation as key, cross-cutting topics of 
the roadmap.  

4.1 Cross-Cutting Approach, CC1: Dynamic and Static Analysis 

Dynamic analysis is the process of running software under observation to learn something about it. 
Dynamic analysis exercises one (possibly lengthy) sequence of states of the software. Learning 
about additional states not exercised in the first run requires additional runs. In contrast, static 
analysis is the process of analyzing software without running it, drawing conclusions analytically by 
considering a set of states derived from the software artifact. 

Each of these types has different strengths and weaknesses.  Dynamic analysis can produce very 
detailed information (subject to dependencies on the experimental environment) for each run 
executed and is routinely used to find some unintended behavior; however, because most mission-
relevant software contains more potential states than there are atoms in the universe, dynamic 
analysis is only capable of observing an infinitesimal subset of these. Dynamic analysis cannot 
explore states that the experimental setup does not exercise, and today’s tools are unable to 
exercise all states of potential interest. Consequently, dynamic analysis alone cannot provide 
sufficient evidence for high assurance needs. 

Static analysis, on the other hand, is capable of reasoning about many possible states 
simultaneously (in some cases, a very large number of states), but must make a tradeoff between 
precision and scalability—reasoning about more states requires eliding detail about those states, 
which can introduce both false positives and false negatives. Furthermore, static analysis of software 
removed from the context of the surrounding system typically requires modeling the missing 
elements of the system, which current tools typically cannot do adequately. Although static analysis 
can bring strong evidence to bear in high assurance cases, current technical limitations prevent it 
from being adequate today for reasoning about modern software systems. 

Both R1 and R2 are needed to advance the state of the art in static, dynamic, and hybrid approaches 
to reasoning about software. R1.2 in particular is focused on strategies for making the 
precision/scalability tradeoff as well as identifying the information sources useful to guide it. The 
models of R3 and the approaches to automating the generation of those models of R4 will likely 
need different solutions for static and dynamic analysis.  

4.2 Cross-Cutting Approach, CC2: Machine Learning, Artificial Intelligence, and 
Large Language Models 

Machine Learning, Artificial Intelligence, and Large Language Models are technologies that show 
great promise for software and are likely to grow in importance in the coming decades. These 
technologies should be well understood both as a target of software understanding (because NS&CI 
software increasingly relies on these technologies) and as a method of software understanding 
(because these technologies can be leveraged for software analysis). 

• Machine Learning (ML) refers to the use of any technique that allows an automated 
computer system to “learn” a function of interest based on experience (typically a large 
dataset of samples, with or without labels.) Machine Learning has been successfully used in 
a wide variety of applications to achieve near-human or even better-than-human level 
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performance, including chess, image recognition, driving, language processing, and some 
aspects of software understanding24. 

• Artificial Intelligence (AI) is a broader term than ML, encompassing any automated 
technique used to simulate, augment, or replace an intelligent actor making decisions. ML 
techniques are one example of AI25. 

• Large Language Models (LLMs) are a specific emerging technique within ML, which use a 
large computationally intensive model (typically a neural network) trained on a very large 
collection of data to understand and represent a target language (often human-generated 
text.) LLMs have been shown to perform phenomenally well at predicting and generating 
coherent text, for wide applications such as answering arbitrary user questions. The key 
advance behind LLMs is in the size and amount of computation utilized by the models and 
the enormous volume of data used to train the models. The same idea could serve as useful 
for understanding a large enough corpus of software as well26. 

For simplicity, in this document, we will loosely refer to any of the above as “ML and related 
techniques” or just “ML”. 

There are multiple reasons why ML and related techniques are relevant to the subject of this 
roadmap. First, ML technologies are useful for analyzing software and gaining understanding. These 
techniques have proven to be valuable for a variety of software understanding problems and are 
likely underutilized as techniques today. For some software understanding tasks, these techniques 
may be the best or only ones available. This is the primary context in which this roadmap will discuss 
ML techniques. 

Second, there are some emerging safety and security concerns that are specific to the use of ML 
technologies, such as model privacy and adversarial ML. While those issues are important, they are 
out of scope for this roadmap.  

Lastly, sometimes ML tools or algorithms are used with NS&CI missions (e.g. ML technologies have 
been used in critical infrastructure control software). For these systems, it is worth noting that ML 
software is still just software for which mission owners still need to answer mission questions, just 
like other software. For example, one of the concerns of the field of AI Security is with the privacy of 
ML models; but if the underlying software has a traditional remote code execution vulnerability or 
an authentication backdoor, an adversary may be able to illicitly access the system and extract the 
raw information of the model directly from the system without having to use ML model attacks to 
infer it.  

Because ML technologies can be used both to understand software as well as directly in NS&CI 
missions, ML technologies have an unusual dual role as both a target of software understanding and 
as an analysis technique for software understanding of other software systems.  

 
24 Mitchell, T. M. (1997). Machine Learning. McGraw-Hill. 
25 Based on definitions from both Congress and the White House, nearly all automated software understanding tools 
referenced in this document could also be considered a form of AI. In both 15 U.S.C. 9401(3) and EO 14110, “Safe, Secure, and 
Trustworthy Development and Use of Artificial Intelligence” the definition of “AI” is: “a machine-based system that can, for a 
given set of human-defined objectives, make predictions, recommendations, or decisions influencing real or virtual 
environments. Artificial intelligence systems use machine- and human-based inputs to perceive real and virtual 
environments; abstract such perceptions into models through analysis in an automated manner; and use model inference to 
formulate options for information or action.” 
26 Jared Kaplan, et al, “Scaling Laws for Neural Language Models”, arXiv:2001.08361v1, 23 Jan 2020. 

https://arxiv.org/pdf/2001.08361
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There are opportunities to apply ML technologies to novel problems in the software understanding 
space. This research roadmap does not include a specific top-level research thrust on ML because 
the authors believe that ML approaches will prove useful across many of the different research 
activities presented in this roadmap. It is important to note that, although the authors have done 
their best to call out where ML approaches may be applicable to specific software understanding 
problems, there are likely to be many situations where the authors have not foreseen where these 
techniques can be applied fruitfully. The reader is encouraged to think creatively about additional 
opportunities to apply ML techniques more broadly than just the ones listed in this roadmap.   

There are some characteristics of software understanding problems that are well-suited to ML 
approaches, and some characteristics of software understanding problems that are not well-suited 
to ML approaches. Here is a brief a list of problem characteristics for which ML techniques should be 
considered particularly applicable, though this list is not meant by any means to be restrictive27: 

• When a solution is expensive to find, but inexpensive to mathematically validate, ML can be 
used to make educated guesses for later validation. The external validation step is important 
for many use cases because answers provided by many ML tools can look plausible but be 
nonetheless incorrect depending on the particular training data and query.  

• When precise mathematical answers are infeasible to compute, ML could provide 
probabilistically informed estimates which may be useful.  

• When analysts want to aggregate multiple sources of imperfect, unaligned results (either 
through heuristics, or unsound analysis techniques, or human annotation) and they want to 
figure out which signals are the most important to synthesize an improved, final answer (see 
R6.3). 

• When analysts lack complete context for the software under analysis and must infer models 
for the missing elements (see R4.3). 

• When analysts have large quantities of data with labels relating to the function they want to 
learn. 

• When analysts need to mediate machine-human interactions, such as responding to 
analyst’s natural language questions or placing results into forms natural for humans to 
consume (see R2.4, R6.2, and R7). 

• When analysts need to configure analysis parameters, ML can be helpful in searching for 
optimal settings to answer particular questions (see R2). 

• When analysts want to recognize or leverage a set of fuzzy patterns, such as in semantic 
inferencing (see R6). 

 

Additionally, there are several ways in which traditional software analysis tools and ML tools could 
be of mutual benefit: 

• The software understanding components discussed in this roadmap could provide a novel 
and much richer features vector for ML training than is available today. 

• Software understanding often involves too many options to explore; ML techniques could be 
used to prioritize options to improve efficiency (see R2.5). 

 
27 For more insight into how to effectively apply ML techniques to software problems, see Pedro Domingos, “A few useful 
things to know about machine learning,” October 1, 2012, Communications of the ACM, Volume 55, Issue 10, pages 78–87. 
https://doi.org/10.1145/2347736.2347755. 

https://doi.org/10.1145/2347736.2347755
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• Formal approaches to software understanding often become non-performant when 
complete data is not available. By training on situations in which complete information is 
available, ML techniques may be able to make mission-actionable estimates in cases in 
which full information is not available and the formal tools would provide no actionable 
results. 

• The roadmap below discusses creating numerous small components that can be reused 
through configuration and composition to make a given analysis tool. Selecting and 
configuring a large number of small, configurable components to achieve an end is a 
tremendous optimization challenge, which ML approaches may be well suited to tackling 
(see R5.4). 

• The roadmap below further considers that a successful analysis may involve decomposing 
high-level mission questions into smaller, more focused questions about the details of 
software state, executing an iterative sequence of analyses to tune precision to an optimal 
balance of scalability and precision, and then composing the resulting data into an 
actionable answer (see Figure 3 and R5 for more discussion). ML techniques may be suited 
to orchestrating such an analysis campaign. 

4.3 Cross-Cutting Approach, CC3: Human Factors and Human Studies 

The goal of this roadmap is to guide the research needed to create a vastly improved, automated 
national software understanding capability. However, the current reality is that software 
understanding questions for mission problems are answered largely through the manual effort of 
human reverse engineers and analysts. An automated software understanding capability requires a 
thorough understanding of what human reverse engineers and analysts do today to arrive at 
answers to mission questions.  

Automation of the software understanding processes is not an all-or-nothing endeavor. There is a 
graduated spectrum from fully manual to fully automated. When anyone takes a process that is 
largely manual and create or improve tools that help with tasks within that process, they are moving 
incrementally towards the automated end of the spectrum. In general, one should not expect to 
move from the manual end of the spectrum (which is the state of the practice now with most 
software understanding questions) all the way to the fully automated end of the spectrum with a 
single tool, approach, or research advance.  

Automating the work that is done manually today is a difficult task that is easy to underestimate. 
Although some preliminary work has been done28,29,30, this area has not yet been sufficiently 
studied. An effective automated software understanding capability requires a sufficiently deep 
understanding of the manual process to prioritize which activities are most appropriate for early 
automation, guide initial efforts in automation, and to inform smooth integration of that automation 
with human analysts’ workflows. And finally, an automated software understanding capability 
requires a deep understanding of the manual process to improve efficiency of tasks that are not 
currently automatable. The authors expect that there will be a set of incremental advances that 

 
28 Nyre-Yu, M., Butler, K. M., & Bolstad, C. (2022). A Task Analysis of Static Binary Reverse Engineering for Security. Hawai'i 
International Conference for System Sciences, Honolulu, HI. 
29 Matzen, Laura E., Leger, Michelle A., & Reedy, Geoffrey (2021). Effects of Precise and Imprecise Value-Set Analysis (VSA) 
Information on Manual Code Analysis. Workshop on Binary Analysis Research (BAR) 2021, Virtual. 
30 Butler, K., Leger, M., Bueno, D., Cuellar, C., Haass, M. J., Loffredo, T., Reedy, G., & Tuminaro, J. (2019). Creating a User-Centric 
Data Flow Visualization. Human-Computer Interaction International 2019, Orlando, FL. 



SUNS | Software Understanding for National Security 

 

             23 

move the national software understanding capability closer and closer towards automation until the 
capability reaches a point that is satisfactory for mission needs. To this end, engaging in Human 
Factors analysis and Human Studies to understand how to interface between human analysts and 
semi-automated tools is vital. 

Regarding the development and use of automated software understanding capabilities for NS&CI 
missions, there are at least four different groups of individuals with different activities that human 
factors investigations will need to consider: 

1. Manual reverse engineers who today perform limited software understanding tasks 
manually (as mentioned above and addressed in R6.2), examining software artifacts in detail 
to gather technical evidence related to the mission question. 

2. Mission owners, posing questions, and interacting with the evidence package roll-up (see 
R7). 

3. Users of analysis tools in operational settings, such as malware analysts at security 
operation centers who today use existing automated tools to gather information about 
software for mission questions. Since moving from manual to fully automated workflows 
cannot happen instantly, these human analysts will continue to be vital elements in 
increasingly automated workflows for many years. 

4. Analysis tool developers, who need to inspect and debug analysis tools and orchestrate 
analysis campaign algorithms, which involves analyzing the huge volumes of data being 
processed by the tools as well as understanding the information needs of analysts. 

 

A national software understanding effort needs to perform human studies on each of these groups 
to understand the types of questions they need to pose to the analysis system, and natural methods 
of expression of this information. That software understanding effort must translate from these 
human-centric representations to precise, well-defined machine-readable representations that can 
be used to reason hierarchically about questions and evidence, synthesize appropriate analysis 
tools, and orchestrate those into an analysis campaign (see R7, R2, and R5.4). LLM approaches from 
CC2 may apply to many of the human interface needs described below. 

For reverse engineers, human factors studies are needed to identify the parts of the manual analysis 
process that are good candidates for automation, and to translate between the input/output of 
specialized tools and the analysts to facilitate their analysis activities. 

For mission owners, human studies are needed to guide the output of automated software 
understanding tools and systems, including what information is most useful in an evidence package 
to enable high-level decision makers to make risk-mitigation and -acceptance decisions. The data 
must succinctly summarize results while reflecting the completeness, confidence, uncertainty, etc. of 
the analysis process. 

For analysts using software understanding tools in operational settings, human factors are needed 
as well. As mentioned above, for the foreseeable future, analysis campaigns will typically require the 
integration of human analysts interacting with tools for key steps. Thus, tools and human analysts 
will need to work seamlessly in concert. Software understanding tools operate over nigh-infinite 
state spaces with huge volumes of data, which analysts cannot possibly hope to sift through 
manually. This data is often replete with false positive and false negatives depending on the 
algorithms used and the configuration parameters. Analysts must be able to request a variety of 
types of summarizations of the large state spaces of data, search in natural ways for detailed 
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information, trace provenance of select data and review sources for assessing confidence (see CC4). 
Results of these queries should be presented in modalities most interpretable and useful to the 
human analysts, enabling zero-friction, interactive inquiry. 

For analysis tool developers, many of the needs of the analysis users described in the previous 
paragraph apply. Developers need to sift through analysis data to diagnose problems and validate 
answers, requesting summarizations of large state spaces, searching in natural ways for detailed 
information, tracing data provenance, and more. Developers have the additional need of performing 
those same functions on internal, intermediate data of any given analysis tool during the 
development process. To the extent that various tools in an ecosystem (see FA1) all need to 
accommodate similar debugging needs, standard debugging strategies and approaches informed by 
human studies may be valuable. 

At a minimum, the following areas of study are needed across many of the research thrusts in this 
roadmap: 

• Studies of human analysts and tool developers to gain insight into the current manual 
processes and reasoning that inform their work, including what and how information is used 
to assess software. 

• Studies of mission question owners and decision makers to understand what and how 
information is needed to make decisions.  

• Tool interface studies to select appropriate evidence and improve how it is presented to 
human decision makers with a particular emphasis on reverse engineers doing software 
understanding. Human studies are needed to identify strategies to accelerate (1) the 
identification of relevant data and (2) the interpretation of that data. 

4.4 Cross-Cutting Approach, CC4: Design for Introspection and Debugging 

In other fields, the concepts of design for manufacturability and design for test are well-understood 
and embraced. Similarly, in the field of software understanding tools, maintaining healthy progress 
on the roadmap explored here will require design for introspection or design for debugging. The 
volume of data involved in software understanding is staggering. Once an answer to a given mission 
question is generated, a natural corollary question is one of explainability and introspection: why did 
the system generate this answer? What data from the binary led to this conclusion? 

During research and development phases before a tool is complete an answer can be generated, 
when something goes wrong (and it will), it is a monumental challenge to sift through the data to 
understand and address the problem. Developers must have rich, useful, natural ways to rapidly 
determine what is wrong in the enormous state spaces involved, to understand why it is wrong, to 
identify root causes, to manually engage in “what if” experiments by overriding key intermediate 
information, and to design improved algorithms to correct the shortcomings. 

Given the challenges, calls for research proposals aligned with this roadmap should be willing to 
entertain explicit research activities to improve introspection, explainability, and debuggability. 
Developers will need special tools designed to aid them in debugging. This should involve human 
factors studies to understand the debugging needs of the developers and to identify human-centric 
ways of displaying and searching the vast amounts of data. This should involve ML techniques to aid 
the developer in sifting through the data as well as large language models for interacting with the 
human developer. 
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The details will vary depending on the specifics of the research thrust being supported, but here are 
some general strategies for pursuing introspection, explainability, and debugging: 

• Perform human studies on the information needs of the developer/analyst. 
• Develop algorithms (whether formal or ML based) to enable rapid and expressive querying 

of the system data by the developer/analyst. 
• Innovate summarization approaches (whether formal or ML based) to reduce the volume of 

data in concise yet semantically meaningful ways. 
• Develop approaches for translating, meaningfully summarizing, and presenting complex 

analysis state of programs for the human analyst, driven by the cognitive processes and 
knowledge requirements of the human analysis. 

• Investigate approaches for fusing data from disparate sources to enable cross-domain 
introspection, explainability, and debugging. 

• Develop approaches to facilitate developer hypothesis exploration by speculatively changing 
system state, running the system for a time, and inspecting the resulting changes to the 
analysis progression. 

5 Research, Development, and Engineering Roadmap 
This section presents a first version of a technical roadmap to address national needs for software 
understanding in national security and critical infrastructure mission spaces. Ideally, any owner over 
a national security or critical infrastructure mission would be able to routinely pose and receive 
answers to any mission question regarding any software upon which their mission depends. Such 
answers could be received in mission-relevant timeframes at practical expense. This roadmap 
focuses on the long-term research and development needed to inform the creation of such 
aspirational software understanding capabilities. The scope and size of the overall national need 
requires an enduring, national-scale research program, perhaps similar to the national efforts in 
combatting cancer31. This roadmap is meant to inform the first 5-10 years of that program.  

The authors fully expect that this roadmap will need to change in the future—perhaps radically—as 
more is learned. The authors consider this Roadmap to be merely the first version of what will 
certainly be many versions. At a high level, this first version of the roadmap adopts a particular 
structure and emphasis for approaching the research which future revisions may improve upon or 
abandon altogether in favor of something better. 

This roadmap is expansive, including things that may need to be done, not just those things which 
must be done. No one knows enough yet to confidently produce a roadmap to the capabilities 
needed, without some amount of speculation. Consequently, an essential aspect of early research 
on this roadmap will involve experimenting with ideas that may not succeed. This approach is 
required to enable researchers to acquire the necessary knowledge to guide the subsequent 
iterations of this roadmap. To support this, early work on the roadmap should take the form of 
experiments, not to produce a mission-impactful outcome directly, but to learn more about the 
essence and nature of the problem and to more deeply characterize the presently available 
techniques and approaches. 

 
31 Otis Brawley and Paul Goldberg, “The 50 Year’s War: The History and Outcomes of the National Cancer Act of 1971,” Cancer, 
Volume 127, Issue 24, 15 December 2021. https://doi.org/10.1002/cncr.34040  

https://doi.org/10.1002/cncr.34040
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The research and development (R&D) and engineering needs outlined in this document could be 
addressed using a wide range of approaches. Some of these approaches are well-documented in 
academic literature and are nearly ready for implementation, while others involve problem areas 
where no viable approach is currently known. In certain cases, this roadmap could be pursued by 
adopting or adapting existing methods, while in others, progress will require improving or refining 
work that has been pioneered in academic contexts but requires further research. There will also be 
instances where the focus is on studying problems or innovating new ideas where reasonable 
approaches have not yet been identified. All of these degrees of research are crucial for establishing 
a robust Software Understanding capability. Furthermore, in many emerging fields of study 
mentioned in this roadmap, trial and error is a key method of progress—it is important to anticipate 
that the difficulty of the challenges faced means that research progress depends upon learning from 
both failures and successes. It is a mistake to prematurely strive for a comprehensive solution. 

Due to the fundamental characteristics of software discussed in “The National Need for Software 
Understanding”1, Section 4, even in an ideal world, not all mission questions or software under test 
can be analyzed in a fully automated fashion, with perfect precision, guaranteed to always work. In 
important cases, software reverse engineers would still be needed to configure tools, monitor and 
direct analytics, or complete challenging analyses. Research conducted pursuant to this roadmap 
should be about learning and progress, not production or perfection.  

Though this roadmap primarily emphasizes R&D activities, it is important to note that there is also 
an analogous need for engineering work to put R&D advances into practice. Research work and 
engineering work should generally be done as separate activities, because they have sometimes 
conflicting goals; the goal of research work is to explore, learn, understand, document, and/or 
demonstrate something for the future to build upon, while the goal of engineering work is to create 
something useful and impactful to mission based on what is understood at the time. Research 
efforts and engineering efforts in software understanding complement each other, and both are 
important to create the necessary capability. At the same time, research must be informed by 
mission needs to avoid pursuing avenues of discovery with no plausible path toward impacting the 
national needs. 

The technical thrusts of this roadmap can be visualized (in a somewhat oversimplified fashion) in 
Figure 3. This figure represents a software understanding campaign, in which a high-level mission 
question is decomposed into specific, low-level questions about the software’s state that prescribe 
the execution of a series of analysis tools, producing output which is rolled up into an evidence 
package to present to the mission owner originally posing the mission question. Among other 
things, the analysis tools themselves are assessed using a suite of benchmarks. The yellow “R” 
numbers below each blue box represent the research thrust(s) of this roadmap which address the 
needs of that stage in this process. The hierarchical breakdown of the mission question and roll-up 
of evidence are discussed in R7, the benchmarks in R8, while the research thrusts involved in 
creating the analysis tools themselves are overviewed in the next paragraph. For a detailed 
illustration of Figure 3, R5 presents an extended, hypothetical example. 
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Figure 3: Notional overview of a software understanding campaign. 

This diagram illustrates how the various research thrusts of this roadmap fit into an analysis campaign. 
 

Figure 4 depicts the relationship of the research thrusts of this roadmap related to constructing a 
single analysis tool. This roadmap starts with the foundations of reasoning about software (R1), 
proceeds to the architectures for individual analysis tools (R2) and the software models they 
leverage (R3) and how to generate them (R4), and then considers the ways that the ecosystems of 
software analysis tools will need to work in concert (R5). A vital function of the elements that 
comprise the analysis tool is to infer higher level semantics from lower-level information (R6), similar 
to making high-level conclusions about the picture of a puzzle by examining the individual puzzle 
pieces, or inferring conclusions about a crime by looking at a set of low-level forensic evidence. 

The presentation structure of this roadmap is a series of research thrusts and challenges, each 
containing multiple sub-areas, each of which in turn lists specific research needs, like so: 

R&D Thrust, R[N]: Research Thrust Name 

R[N.M]: Sub-Area Within Thrust 

• Bulleted list of the specific research project/program needed. 

These research thrusts are not independent, with overlap, dependencies, and synergies among 
many of these research needs. The authors will endeavor to call these out as they arise.  

For a large area of research like software understanding, it can be difficult to know whether 
sufficient progress is being made over time, or how much apparent progress there is. The authors 
aim to capture these vital needs under R8, Datasets, Benchmarks, and Ground Truth. Improving the 
metrics for successful software understanding by developing datasets and benchmarks can provide 
the nation with objective ways to measure progress over time. By including a range of problem 
difficulties, including both real and synthetic samples, these datasets and benchmarks can help 
software understanding research first learn to crawl, then learn to walk, then learn to run, before it 
becomes a robust capability.  
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Figure 4: Conceptual relationship of R1-R5 in this roadmap. 

R6 calls out additional challenges that span more than one of the R1-5 thrusts.  

5.1 R&D Challenge, R1: Formal Foundations for Software Reasoning 

To trust software in national security and critical infrastructure mission spaces, mission owners 
must know with confidence in advance what behaviors that software could exhibit. The highest 
confidence approaches to understanding what behaviors software could exhibit require modeling 
the execution of the software in its execution environment, enabling analytical methods to explore 
the software’s possible behavior prior to putting it into use. Such analyses could be used to assess 
the inherent risk to mission of using the software, guiding mitigations, and enabling risk acceptance 
decisions to be based on technical evidence derived from root causes. 

The vast majority of software being produced today is not designed to facilitate such modeling and 
analysis. While some aspects of software are simple to model, many are challenging. What modeling 
options are needed, how they should be selected to model a given software artifact, and how to 
compose those models together to make an analysis tool, are all underexplored areas. 

The use of math to model systems to predict behavior is the foundation of modern engineering and 
many branches of physical science. Software is different from physical systems such as a ship or a 
bridge and requires novel approaches adapted to its peculiar characteristics, but the foundational 
approach of mathematical modeling applies similarly to software as it does to those other 
disciplines. In its essence, software is a mathematically inspired construct, with CPU instructions 
manipulating numbers in precise ways to accomplish the software’s overall functionality. There are 
many positive results from academia, industry, and open-source code in which software has been 
modeled to reason about its behavior in simple cases. Although perfection may not be possible in all 
cases,32 there is tremendous room for mission-impactful progress. Concerted effort is needed to 

 
32 For a discussion on the Halting Problem and Rice’s Theorem and how those relate to the technical challenges and 
limitations of software understanding, see Section 4.3.4 in D. Ghormley, T. Amon, C. Harrison, and T. Loffredo, “The National 
Need for Software Understanding”, Sandia National Laboratories, Jan 17, 2024. 
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mature these approaches, to scale them to mission-relevant problems, and to identify key gaps 
where innovation is required.  

This research thrust focuses on mathematical and scientific foundations necessary to reason about 
software—the set of logics and their characteristics needed to underpin any software analysis tool. 
Later research thrusts will focus on the specific applications of modeling various elements of 
software systems (R3), challenges in generating those models (R4) and how to stitch those models 
into analysis tools (R2). The models and tool architectures will need to be designed within some 
mathematical logic system, which is the focus of this section. 

5.1.1 R1.1 Reasoning logics 

The best techniques today for reasoning with rigor about software behavior require translating the 
software’s semantics into mathematically based, logical systems and then reasoning within those 
logical systems to answer particular questions about the software’s behavior. Different questions 
may require different logics or different translations. For example, questions about temporal 
characteristics may require temporal logics, whereas questions about privacy may involve 
separation logics. 

Over the course of many years, the academic community has developed and studied an extensive 
set of semantics, logics, and algorithms related to analyzing software, including denotational, 
operational, and axiomatic semantics; big and small step semantics; collecting and temporal 
semantics; separation logic; abstract interpretation; model checking; constraint logics; and many 
more. 

An open question is what fraction of the overall national software understanding need is addressed 
by these logic systems and what residual gap remains? Logical systems such as these need to be 
studied with respect to the high-level mission questions (discussed in BR1 and depicted in Figure 2), 
with respect to composing them, and with respect to generating evidence about the behavior of 
programs. 

To answer a high-level mission question, a software understanding analysis tool may need to 
leverage numerous semantic and logic systems, interoperating in concert. In many cases, existing 
semantic and logic systems will need to be extended in order to achieve the characteristics 
addressed in R1.2-R1.4. Novel semantic and logical systems will likely need to be innovated to fill 
critical gaps. Finally, since different MQs and PUTs may require different analyses, analysts need 
analyzer synthesis approaches which can map the various semantic and logic systems onto the 
needs of a given analysis task.  

To answer high-level mission questions about software, research, development, and engineering are 
needed in the following areas: 

• Study a broad, representative variety of high-level mission questions to determine what 
types and combinations of reasoning logics are needed for various aspects of different 
mission questions (this relates to mission questions decomposition discussed in R7). 

• Survey existing reasoning logics to assess the maturity and adequacy of existing systems 
relative to the needs identified in the preceding bullet. 

• Develop proof-of-concept prototype analyzers for mission questions requiring a variety of 
reasoning logics to study the challenges of combining those logics. 

• Develop approaches that can marshal/synthesize multiple semantic and logic systems 
together, interoperating in concert in an aggregate analysis. 
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• Assess currently available semantic and logic systems to identify key gaps relative to the 
national software understanding needs. 

• Extend existing semantic and logic systems as needed to exhibit the characteristics 
discussed in R1.2-R1.4. 

• Innovate novel semantic and logic systems needed to fill gaps in the current ability to reason 
about software. 

• Develop approaches to map software analysis needs to solution candidates, enabling 
analysis synthesis strategies to identify options when synthesizing a complex analysis. 

 
5.1.2 R1.2 Approaches for Guiding Precision vs. Abstraction Tradeoffs 

Modern real-world programs have more potential states than there are atoms in the universe—in 
such cases, it is impossible to fully explore all possible states. To achieve the rigor and scalability 
necessary for mission-relevant systems and analysis timeframes, software behavior details 
irrelevant to the analysis question at hand must be aggressively elided, while sufficient relevant 
detail is retained with enough precision to provide the technical basis for the needed answer. 
Knowing what information to elide and what information to retain, and with what precision, is a 
nontrivial challenge. Because of the exponential nature of software, improvements in this space may 
exponentially reduce the compute and memory requirements for a given analysis. That is, to the 
extent successful, this research thrust could transform analyses from impossible to practical. 

Research, development, and engineering are needed in the following areas: 

• Study a broad variety of examples of mission questions and software samples from the 
perspective of the precision and scalability needed for different stages in the mission 
question decomposition and evidence composition (see R6).  

• Extend existing or develop novel semantics and logics to adaptively retain or abstract detail 
based on an external analysis policy. 

• Develop methodologies (whether iterative or a priori, whether formal, heuristic, or AI/ML-
informed) for guiding analysis policy for the retention or abstraction of analysis detail based 
on the needs of the analysis question, the software under test, and available resources. (The 
authors note that the concept of abstraction refinement is one potentially valuable approach 
to leverage.) 

• Develop hierarchical reasoning strategies which can retain or elide precision as analysis 
results are “rolled up” to produce an evidence case, to ensure that explainability and data 
provenance can be maintained (this relates to R6). 

• Study human analysts and innovate strategies for integrating them with automation 
pipelines to guide or override analysis precision vs. abstraction tradeoffs based on analyst 
needs. 

• Explore ML approaches to heuristically guide precision vs. abstraction tradeoffs based on 
the mission question, the program under analysis, analysis resources, timeliness 
requirements, and mission owner confidence needs. 

 
5.1.3 R1.3 Harnessing Modern and Emerging Hardware Architectures 

Modern computing infrastructure innovations continue to offer higher performance through more 
parallel and specialized hardware architectures, including traditional high-performance 
architectures, multi-core systems, vector-based hardware, graphical processing units (GPUs), Tensor 
Processing Units (TPUs), and more. As an inspirational example, AI/ML algorithms have experienced 
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enormous improvements in capability and performance by developing algorithms which can 
leverage such architectures. In contrast, software analysis tools have yet to achieve similar benefits. 

Furthermore, hardware architectures have various operating regimes whose performance can differ 
by orders of magnitude (e.g. hitting a cache vs. reading from a remote memory in a NUMA system). 
Although programs are not required to be aware of such modes for correctness, tuning an algorithm 
to take maximal advantage of such performance benefits has the potential to improve analysis 
performance by orders of magnitude.33 

There are multiple aspects of scalability to be explored as part of this roadmap. This research thrust 
focuses on performance scalability related to harnessing novel and emerging computing 
architecture advances. Whereas the research thrust in R1.2 seeks to lower the computational and 
data burden of software analysis, this research thrust seeks to bring more and novel computational 
power to bear on the problem of analyzing software—the two thrusts are thus complementary. 

Research, development, and engineering are needed in the following areas: 

• Study the applicability of recent and emerging hardware architecture innovations to 
software analysis tasks. 

• Develop novel software analysis algorithms designed to take advantage of recent and 
emerging non-traditional single-machine architectures to dramatically improve 
performance. 

• Develop cluster-centric software analysis architectures, capable of taking advantage of the 
distributed computation and data stores of modern elastic cloud infrastructures. 

• Adapt existing analysis algorithms to be tunable to take maximal advantage of highly 
performant operating regimes of modern architectures. 

 
5.1.4 R1.4 Compositional Reasoning 

The scope of the NS&CI mission needs in analyzing software are vast. As discussed in FA1, analysis 
tools are a function of the mission question and program being evaluated, among other things. 
Creating a whole-cloth, bespoke analysis solution for the combination of each mission question and 
software system of national relevance, without extensive re-use of analysis elements, would be 
catastrophically expensive. Practical considerations demand aggressively pursuing opportunities to 
maximizing economies of scale through reuse. This requires identifying approaches that maximize 
reuse of components across different mission questions, across different software systems, across 
mission areas, and across government departments and agencies. Technically, this requires 
synthesizing software analysis tools from reusable, composable components to the maximum 
extent feasible. Based on the opinions expressed by technical SMEs participating in SUNS 2023, a 
positive return on investment (ROI) is expected.1 

This need for compositional reasoning is not isolated to research thrust R1, but also arises in the 
analysis architectures of R2, the models of R3 and R4, the tool ecosystem of R5, and the hierarchical 
reasoning of R7. Within R1, the semantics and logics from R1.1 must be extended to work 
compositionally, the approaches for guiding precision vs. abstraction tradeoffs in R1.2 must 

 
33 Oded Green, Robert McColl, and David A. Bader. 2012. GPU merge path: a GPU merging algorithm. In Proceedings of the 
26th ACM international conference on Supercomputing (ICS '12). Association for Computing Machinery, New York, NY, USA, 
331–340. https://doi.org/10.1145/2304576.2304621.  
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accommodate composition, and the solutions to harnessing modern architectures should be 
pursued to maximize composition to the maximum extent possible. 

There are several existing compositional techniques for software analysis which have already been 
explored in industry and academia, and even more software analysis constructs that may be 
leveraged in novel compositional ways. What is not yet sufficiently understood is the overall 
adequacy of these techniques collectively relative to the national needs in real mission systems in 
national security and critical infrastructure. It is to be expected that much more work needs to be 
done to assess existing options, identify gaps, and mature promising areas. 

Beyond the mechanics of composability, the semantic composability problem must be addressed 
for the logic systems employed in software understanding. The semantic composability problem 
focuses on ensuring that the aggregate composition of components has the intended behavior, 
achieves the desired goal, and exhibits the desired emergent properties. (See R2 for more 
discussion.) 

Research, development, and engineering are needed in the following areas: 

• Study existing academic and industrial approaches to compositional software analysis, 
creating metrics for assessment to identify gaps and promising areas for further investment. 

• Identify and explore options for composing the semantic and logic systems of R1.1, 
advancing the theory of these systems as necessary to enable composability. 

• Innovate solutions to the semantic composability problem of composing these logic systems 
(see R2). 

• Research novel approaches to compositional reasoning systems that can effectively separate 
the reasoning logic into distinct, reusable, interchangeable components. 

• Evaluate the effectiveness of these compositional analysis techniques on realistic problems, 
to find the most promising compositional reasoning systems. 

• Develop a library of options to be leveraged by promising approaches capable of 
compositional reasoning. For example, create a library of abstract domains for an 
abstraction interpretation system that can be composed using a reduced product approach. 

 
5.1.5 R1.5 Machine Learning (ML) Approaches to Reasoning Systems 

In mission-relevant systems, formal reasoning can meet with barriers or constraints that cause the 
formal reasoning to break down, making formal techniques alone insufficient to meet the full scope 
of the national needs. While some obstacles can be overcome through novel logics, abstractions, or 
modeling approaches, others cannot. ML has the potential to achieve adequate software 
understanding in these cases, even though those solutions may often lack the mathematical 
guarantees of sound and complete formal reasoning. Furthermore, using ML techniques in concert 
with formal reasoning could potentially provide better analysis results than either technique could 
alone. Additionally, novel formal techniques may take significant investment and time to develop, 
whereas ML may be able to provide probabilistic answers on a more aggressive timeline than more 
formal approaches. Finally, ML can provide results based on practical data analysis of real-world 
problems that are too complex to successfully reason about formally.  

Research, development, and engineering are needed in the following areas: 

• Study the gap of what technical obstacles are unsolvable today using current formal 
reasoning systems and evaluate which may be amenable to ML. 
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• Identify opportunities and establish enduring efforts to gather large datasets of mission-
informed software samples, mission questions, manual reverse engineering efforts, and 
more, ensuring that the resulting datasets are tiered by sensitivity and available as 
appropriate to researchers both within and outside the government, both domestic and 
international. 

• In cases in the above datasets in which mission sensitivities prevent sharing, develop 
techniques to sanitize data to enable broader sharing while preserving sufficiently useful 
information to provide value to researchers. 

• Study extensions of Uncertainty Quantification (UQ) and explainability targeted to these 
combined problems. 

• Study existing techniques for combining information from varying levels of confidence, 
including formal reasoning, ML approaches, and human-sourced results. 

• Investigate novel techniques to combine information from varying levels of confidence, 
including formal reasoning, ML approaches, and human-sourced results. 

5.2 R&D Challenge, R2: Analysis Architectures and Automated Tool Synthesis 

Mission success commensurate with the national need depicted in Figure 2 requires innovating 
analysis architectures that can scale up by numerous orders of magnitude. 

As discussed in FA1, an analysis tool is a function of the program under evaluation, the question to 
be answered, and the resources available. The analysis tool needed to analyze a x86-32 binary vs. 
Java bytecode are quite different. The analysis tools needed to analyze (1) malware for its command-
and-control protocol, (2) maritime ports crane software for hidden triggers, (3) security software for 
authentication bypasses, and (4) all software for exploitable vulnerabilities, are all very different. The 
analysis tool which must produce an answer fast enough to run between the time a user clicks on an 
application and when it runs is very different than the tool that will run on cloud infrastructure for a 
month to analyze NS&CI software with maximal rigor. 

Mission success requires analysis architectures that can scale across needs of national security and 
critical infrastructure systems, including the wide breadth of software, the wide range of mission 
questions, and the significant resources needed for the nation’s most highly consequential strategic 
systems. To maximize reuse of components, any given analysis tool will be a synthesis of numerous 
composable components (see FA2), whether the logic building blocks of R1 or the execution models 
of R3. Furthermore, this collection of components will need to perform the task of inferring higher-
level information from low-level details in a bottom-up analysis (see R6). 

In this process of selecting the building blocks to synthesize, there are numerous decisions to be 
made driven by the purpose of the analysis tool, including what technical evidence regarding the 
program needs to be tracked, how it will be need to be presented upon completion (which informs 
what details will need to be retained during analysis), what constructs in the target program will 
need to be modeled and with what precision, which search strategies to use to guide the analysis, 
and many more. Each decision to be made requires an array of available options, metrics for 
assessing those options, and approaches for assessing the options according to those metrics. 

Furthermore, in the process of tool synthesis from building blocks, considerable additional work is 
required beyond what the low-level building blocks provide. Today, this work is almost entirely 
manual. To produce timely answers at the pace of mission in a fast-paced cyber world, this process 
of tool synthesis will need to be heavily automated, involving the human analysis tool writer in 
limited, key points of the process. 



SUNS | Software Understanding for National Security 

 

             34 

No single analysis architecture can satisfy the variety of needs above. Innovation is needed to 
accommodate the wide variety of use cases needed across various missions, to scale existing 
approaches to the size and complexity of mission-relevant software, and to get answers in mission-
relevant timescales. 

Although the challenges are daunting, there are decades of academic foundational work in software 
analysis architectures that can be leveraged as starting points. As just one example, the seminal 
paper in Abstract Interpretation was published in 1971,34 with over 1000 academic paper published 
in the area in the years since.35 

5.2.1 R2.1 Analysis Structures and Techniques 

Academic efforts have explored a variety of analysis formulations over the years, including monadic 
abstract interpreters, work list approaches, fixed-point analyses, dataflow methods, formal inference 
rules, symbolic execution, and more.  Different analysis techniques and structures have different 
characteristics, with advantages and disadvantages that can be matched with the varying needs of 
different kinds of mission problems; no single approach is appropriate for all analysis tasks. But 
these advantages and disadvantages have not been studied in any rigorous way or synthesized into 
a standard practice for effective analysis creation. Furthermore, these largely academic efforts are 
not mature enough to be applied to mission-scale problems today.  

Academics have also innovated novel languages to support software understanding. While several 
interesting options are now available, it is as yet unclear which of these is optimal for which 
characteristics of the software application under analysis or the mission question. It is also unclear 
whether the software understanding community at large has yet discovered all the options that will 
be needed to be successful at meeting the national needs in software understanding. This line of 
research should be pursued to identify additional options, learn the conditions under which 
different options are optimal, and innovate approaches to blend different options together into a 
single analysis when appropriate. 

Research, development, and engineering are needed in the following areas: 

• Study existing software analysis structures relative to the needs of real-world mission 
systems in national security and critical infrastructure, characterizing available options to 
capture their relative advantages and disadvantages, identifying existing work that is 
relevant and adequate, existing work in need of maturation investments, and core gaps in 
need of initial investment and innovation. 

• Advance the theory of software analysis machines to broaden the set of analysis 
architecture options for scaling to real-world national needs. 

• Create processes for selecting optimal analysis architectures and components for a given 
analysis question and software under analysis. 

• Advance the state of automating the synthesis of a given analysis tool, to dramatically 
reduce the manual effort required to create and validate a new tool.  

 
34 Cousot, Patrick and Radhia Cousot. “Abstract interpretation: a unified lattice model for static analysis of programs by 
construction or approximation of fixpoints.” Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of 
programming languages (1977). 
35 According to a search on https://dblp.org of the term “abstract interpretation”, performed on June 28, 2024. 

https://dblp.org/
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• Advance research in promising abstract interpretation methods: Abstracting Definitional 
Machines36, Abstracting Abstract Machines37, and Staged Abstract Interpreters38. These 
efforts represent research on the way that abstract interpretation machines are structured 
in order to achieve different characteristics/benefits of the machine. This line of research 
should be continued, researching interpreter structures that can leverage the innovations of 
R1 and achieve many of the other characteristics in R2 and R3. 

• Develop a standard of practice for deciding how to structure an analysis based on the needs 
of the mission. This includes what analysis approach to adopt, what analysis architecture is 
most appropriate, what analysis domains are necessary, and what precision strategies are 
necessary for the novel analysis. 

• Formulate analysis architecture designs able to maximally harness the of hardware 
architectures from R1.3, into a single analysis tool. 

 
5.2.2 R2.2 Composable Analysis Architectures 

Although several existing analysis tools today reflect some elements of composability (in the sense 
of FA2, facet #2), or at least modularity, none have been designed with the full scale of the national 
problem in view. In many cases, existing analysis tools have hard-coded either the mission question, 
details of the software under evaluation, assumptions about available resources, or are just written 
in a one-off, monolithic, not-reusable fashion. Researching effective ways to develop reusable, 
reconfigurable, composable analyses is key to reversing this trend. 

 

 
Figure 5: Notional depiction of a monolithic tool. 

 
36 Darais, David, et al. “Abstracting Definitional Interpreters”. In Proceedings of the ACM on Programming Languages 1.ICFP 
(2017): 1-25. https://arxiv.org/abs/1707.04755. 
37 Van Horn, David, and Might, Matthew. “Abstracting abstract machines.” In Proceedings of the 15th ACM SIGPLAN international 
conference on Functional programming, 2010. https://arxiv.org/abs/1007.4446. 
38 Wei, Guannan, et al. “Staged abstract interpreters.” In Proceedings of the ACM on Programming Languages, Vol 3: 1-32 (2019). 
https://dl.acm.org/doi/10.1145/3360552.  



SUNS | Software Understanding for National Security 

 

             36 

The grey gear represents a monolithic tool developed with elements of varying sensitivity. The lack of 
componentization means the overall tool is as restricted as the most sensitive element. 

 

In addition to the traditional benefits that sharing reusable components across the USG would 
provide, in NS&CI mission spaces there is another benefit—addressing sensitivity and sharing 
concerns. Today, tools that are built monolithically have sensitive elements mixed with commonly 
sharable elements (Figure 5), resulting in an overall inability to share the tool. If, instead, analysis 
tools were constructed largely from reusable components, then components could have individual 
sharing sensitivities. Consider a hypothetical sequence of stages of sensitive information in these 
analysis tools: 

• Stage 0: Fundamental Research – Public 
• Stage 1: Protected Advancements – CUI/OUO 
• Stage 2: Mission-Specific Elements – distribution limited by classification, need-to-know, 

suitability, etc. as needed 
 

Operating under such a system, components categorized as Stage 0 could be shared very broadly, 
receiving full benefit from collaboration with academic, commercial, and other public researchers, 
including foreign researchers; components categorized as Stage 1 could be shared somewhat 
broadly to government-affiliated researchers; only components categorized as Stage 2 (a very small 
set, hopefully) would require highly restrictive controls. Most of the work currently done for software 
understanding in the USG is in Stages 0 or 1, but must be handled as with Stage 2 restrictions, 
because of the lack of componentization. This results in duplicated effort, waste, and enormous 
missed opportunities. 

The composability contemplated here is that of analysis tool components (FA2, #2), as opposed to 
the composability contemplated in R1.4, which is that of foundational logic systems (FA2, #1). 

Research, development, and engineering are needed in the following areas: 

• Survey other domains (for example, the computer simulation literature39) for approaches or 
solutions to the semantic composability problem which may be leveraged, adapted, or used 
as inspiration for solutions in the software understanding domain. 

• Study the semantic composability problem with respect to the execution model components 
discussed in R3, identifying specific research questions and challenges in the software 
understanding domain. 

• Explore verification approaches to the semantic composability problem, enabling emergent 
properties of software analysis tools to be validated. 

• Advance the theory of composing software analysis tools from reusable components. How 
should those components be organized to promote reusability? What analysis building 
blocks are most common? What are the needed algorithmic characteristics for addressing 
the semantic composability problem and which approaches exhibit which characteristics? 
Are there different categories of analysis where reusability should not be attempted, 
because core assumptions would be incompatible? 

 
39 Claudia Szabo and Yong Meng Teo. “An Approach for Validation of Semantic Composability in Simulation Models.” In 
Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation (PADS '09). IEEE 
Computer Society, USA, 3–10. https://doi.org/10.1109/PADS.2009.14. 

https://doi.org/10.1109/PADS.2009.14
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• Study analysis architectures in academic literature and commercial tools to identify 
approaches which could be leveraged for synthesizing analysis tools from reusable 
components to a maximal extent. 

• Experiment with novel analysis architectures that allow for reusability and composition as a 
fundamental goal. Develop analysis architectures and components that are highly reusable 
across different analysis domains and different mission problems. 

• Develop approaches to generating analysis architectures from a toolbox of reusable, 
sharable components. The approach of composing abstract domains, from abstract 
interpretation, is a promising candidate. 

• Develop standards for components to enable rapid assembly of conforming components. 
• Research analysis architectural strategies for rapid and effective debugging (see CC4). 

 
5.2.3 R2.3 Automated Analysis Tool Synthesis 

The full scope of analyses needed across the USG’s NS&CI missions is a tremendous challenge. 
Today, creating new analyses and tools is a time-consuming process, often with years of delay 
before a new analysis or tool prototype is complete enough to be put into use. This is true even 
when there is nothing fundamentally novel about the analysis technique—simply applying a known 
technique to a new problem domain or target software incurs a large cost and delay. 

In addition to the compositional architectures of R2.2, another research challenging in accelerating 
software understanding capability development is to automate the process of creating tools and 
analyses to the maximum extent feasible, extending the boundaries of what is feasible today. By 
automating the process of creating custom analyses, the nation can produce software analyses 
necessary for more mission problems than the nation could with the limited human labor pool the 
nation has available to do analysis development work. Automation would complement the 
compositionality approach of R2.2 and accelerate the value gained from compositional analysis 
building blocks. Although it may not be possible to completely eliminate the human tool developer, 
the nation should aggressively seek to automate as much of the process as possible to meet analysis 
demand. 

An automated process of synthesizing an analysis tool will instantiate an architecture from R2.2 with 
selected models from R3 (which were themselves generated using approaches in R4) to gather 
specific data about the software identify by the mission question decomposition in R7, interfacing 
with other tools in the ecosystem addressed in R5 to produce the evidence needed by R7. 

Research, development, and engineering are needed in the following areas: 

• Study the semantic composability problem with respect to analysis tool synthesis algorithms, 
identifying promising approaches from related fields, defining research gaps, and 
recommending priorities for exploration. 

• Advance the theory of software analysis tool synthesis, innovating algorithms for addressing 
the semantic composability problem. 

• Develop tools that assist in analysis development, making common and repeatable tasks 
easier. This is a similar approach to what is used in IDE systems like Visual Studio that make 
some tasks in forward engineering of software much easier but would be applied to analysis 
creation instead.  

• Develop recommender systems (whether rigorous, heuristic, and/or AI/ML based) to suggest 
collections of components to accomplish specific analytical tasks. 
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• Create a database of existing analysis components, frameworks, tools, and their analysis 
characteristics, for use in automated analysis tool synthesis.  

• Incrementally advance the art of developing analyses, to automate pieces over time. This 
includes developing useful helpers in analysis writing that parallel useful code-generation 
and code-completion systems that are widely used for application development today. 

• Engage in human studies of tool developers to inform human-machine interfaces for parsing 
developer input, presenting information to developers, and enabling developers to rapidly 
assess and debug faulty tools (see CC4). 

• Investigate AI/ML approaches to automated tool generation (building, for example, on 
research such as Toolformer40). 

• Research analysis tool synthesis strategies for rapid and effective debugging (see CC4). 
 
5.2.4 R2.4 Designing for Human-in-the-Loop Analysis 

The most difficult and time-consuming software analyses today take years to complete. Sometimes, 
the US Government will spend more than a decade continuously studying a single family of 
software, to understand it adequately for mission purposes. The bottleneck of the analysis in these 
cases is not computation, it is the human experts who must work over years to develop expertise in 
extremely complicated software systems. By specifically targeting tool improvements at helping the 
human work together with the analysis, research and development effort can make these difficult 
software analyses more tractable. 

Even if R2.1, R2.2, and R2.3 succeed at creating better and more automated analyses, many of the 
most complicated software systems will defy fully automated, rigorous analysis for many years. The 
effort of human reverse engineers will be filling that gap in the meantime, but that does not mean 
nothing can be done on these difficult cases: even when full automation is impossible, tighter 
integration between human and analysis tool can achieve better results. More research is needed 
on how human reverse engineers and increasingly automated components can interface in a 
symbiotic relationship to analyze mission-relevant programs more efficiently. 

This research thrust is about automation while doing the analysis, as opposed to R2.3, which is 
concerned with automation in constructing the analyzer tool. This research thrust is also related to, 
but different from, R7. This thrust focuses on analysis architectures to integrate both automation 
and the human, while R7 focuses on how to present analysis data to the human in a meaningful 
way. 

Research, development, and engineering are needed in the following areas: 

• Develop analysis techniques that integrate human reverse engineer feedback into the 
analysis. Such as: correcting elements the analysis has gotten wrong, updating models of 
environment/functions by hand, asking the user to solve questions the analysis cannot 
answer, extrapolating from corrections the user makes to other areas, etc.  

• Develop analysis techniques that present useful intermediate analysis answers to the 
reverse engineer. Such as: which control flow branches can go where, possible values of 
variables, partial results that are not fully complete yet, etc. 

 
40 Timo Shick, et al, “Toolformer: Language Models Can Teach Themselves to Use Tools,” Feb 2023, 
https://arxiv.org/abs/2302.04761.  
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• Develop scalable ways for the models of R3 to track data provenance within a single analysis 
tool, enabling concise statements to be made about what evidence formed the basis of the 
result. 

• Develop approaches for translating, meaningfully summarizing, and presenting complex 
analysis state of programs for the human analyst, driven by the cognitive processes and 
knowledge requirements of the human analysis. 

• Develop novel analysis designs that integrate human reverse engineer feedback and analysis 
results in a tight loop, to get the benefits of both. When the analysis is stuck, allow the 
human to step in and move it forward. When the human is performing rote tasks, allow the 
analysis to step it and take over automatically. 

 
5.2.5 R2.5 Analysis Search Strategies 

One way to conceive of software analysis is as a search through a space—there are an 
overwhelming number of states of a program that could be considered, but not all have to be 
evaluated relative to a specific analysis question, and of those that do, the order in which they are 
evaluated can have a dramatic impact on performance41. Some analysis architectures avoid any 
explicit decision about evaluation order, leaving the order to vagaries of the underlying 
programming language or run-time system; others have an explicit representation of the order of 
evaluation (such as work queue approach to abstract interpretation used in JSAI42). 

The exact methods of engaging in a search can have a dramatic impact on the time taken for the 
search. Choosing a method of search that is ill-suited to a particular problem can elicit worst-case 
performance, which is often exponential and infeasible for modern programs. Choosing a method 
of search that takes advantage of heuristics, hints, symmetries, or other elements of the 
problem/solution space can turn intractable problems into a feasible or even a near-instant one. 
Thus, the strategies that analysis tools employ in conducting searches in the analysis space are an 
important element of making analysis feasible. 

This research thrust is about the search strategies for how a tool will decide to explore the search 
space of a specific analysis problem. R5.4 involves a similar problem of conducting a search for which 
tools and configurations to use to solve a higher-level problem. These issues are related. 

Research, development, and engineering are needed in the following areas: 

• Study the state of the art in search optimization as well as how it can be applied to various 
program analysis problems. 

• Identify heuristics that can be used to guide searches through state space search for 
program analysis problems.  

• Develop search strategies that leverage the unique characteristics of program state spaces 
to make searches more efficient.  

• Explore approaches for identifying improved or optimizing search strategies. 
 

 
41 For example, as seen in the SAT literature: Guo, Mengyu. “A Review of Research on Algorithms for Solving SAT Problems.” 
2024. http://dx.doi.org/10.54097/1mn6v127 
42 Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons, John Sarracino, Ben Wiedermann, and Ben 
Hardekopf. 2014. JSAI: a static analysis platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT International 
Symposium on Foundations of Software Engineering (FSE 2014). Association for Computing Machinery, New York, NY, USA, 
121–132. https://doi.org/10.1145/2635868.2635904 
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5.2.6 R2.6 Adequate Foundational Tooling for All Target Binaries 

Currently, creating an analysis to answer a mission question about target software is a long and 
laborious process. All too often, it is almost an exercise in writing the entire analysis from scratch. In 
the cases where you have a foundational tooling framework (such as BAP43, Ghidra’s P-code44, or 
angr45) available for your intended analysis target, you can leverage that framework as a starting 
point for building the analysis tool. But often that framework was not designed for the situation you 
want to use it in or requires significant modification to accommodate a new software target. In other 
cases, the target analysis doesn’t have any appropriate foundational tooling, because the mission 
question being asked or the software you are analyzing are unusual, in which case it may be truly 
necessary to start from scratch in building the foundations on which the analysis will rest. 

Having a richer set of robust, adequate, foundational analysis infrastructure would greatly simplify 
the process of writing new analysis tools. Instead of building an entire analysis system from the 
ground up, one could focus on the mission-specific piece and leverage the already-existing analysis 
foundation for the target software. This would in turn make developing new analyses much faster. 

Research, development, and engineering are needed in the following areas: 

• Develop adequate foundational platforms for all mission-relevant target languages & 
software families, one at a time. Here, “adequate foundational platforms” means correctly 
parsing software artifacts of the chosen language and presenting a basic, flexible, 
programmatic analysis interface to the analysis developer.  

• Study the best existing foundational analysis tools to learn what common features are 
generalizable and what other unique, target-specific features are necessary.  

• Research techniques to build foundational tooling more quickly as new software targets and 
families come out. 

5.3 R&D Challenge, R3: Software Execution Modeling 

Once suitable, flexible, and composable logics and analysis frameworks are available (see R1 and 
R2), the next challenge in analyzing software to answering a question about it is to explore the set of 
possible behaviors for that software, looking for technical evidence of behaviors related to the 
question. The possible behaviors of software are determined by analyzing the states that it can 
achieve over the course of its execution. 

As briefly explained in FA1, mission-relevant software generally has more possible states than there 
are atoms in the universe. Dynamic analysis, such as testing or fuzzing, typically explores a miniscule 
portion of this possible state space; in only very limited cases can the full state space be explored 
using such techniques. However, the rigor needed for NS&CI missions in the face of concerted 
adversaries requires analysis options capable of considering this entire state space in some fashion. 
Transforming the overwhelming search space of software states into a tractable one requires 

 
43 David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011. BAP: a binary analysis platform. In 
Proceedings of the 23rd international conference on Computer aided verification (CAV'11). Springer-Verlag, Berlin, Heidelberg, 
463–469. 
44 Alexi Bulazel, “Working with Ghidra’s P-code to Identify Vulnerable Function Calls,” May 11, 2019. 
https://riverloopsecurity.com/blog/2019/05/pcode/ 
45 Shoshitaishvili, Y., Wang, R., Dutcher, A., Kruegel, C., & Vigna, G. (2023). angr: A Powerful and User-friendly Binary Analysis 
Platform. 

https://riverloopsecurity.com/blog/2019/05/pcode/
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aggressively eliding unnecessary detail, while retaining sufficient information to gather the evidence 
necessary to answer the question at hand. 

Currently, the best approaches to this problem appear to be the related concepts of abstraction and 
modeling. In this context, abstraction means eliding in a controlled fashion the detail in the data 
tracked for an analysis, enabling many states of the program to be collapsed together and 
representing as a single unit for analysis. Modeling means simulating various kinds of program 
execution (e.g., instruction execution or calls to external functions) in a simpler way than the 
original. When combined, the models will operate over the abstractions. 

All such approaches necessarily involve a reduction in precision, but the concomitant reduction in 
states is the main benefit. The challenge is in identifying clever abstractions and models which will 
make the search space tractable while retaining sufficient information to answer a specific mission 
question on a specific class of programs. 

One of the things called for in this challenge is the systematization of the technical details of the 
various aspects of program execution. 

There has been significant academic work in the field of software abstraction and modeling in the 
past several decades, and several commercial tools built to leverage that work for useful software 
analysis results. Although progress has been made and these advances are promising, the state-of-
the-art tools in industry and academia for software abstraction and modeling have failure modes 
involving incomplete models or inadequate scaling relative to the full scope of the mission questions 
and software binaries contemplated in Figure 2. They are, however, a useful starting point from 
which to build, with many lessons learned that can benefit the efforts included in this roadmap. 

5.3.1 R3.1 CPU Instruction Modeling 

Modeling CPU instructions is the most basic element of modeling software execution. Formal and 
mathematical precision in how CPU instructions execute is necessary for accurate software analysis 
but is also surprisingly complicated: modern CPU instruction set architectures can be messy, 
verbose, and unwieldy. Even when these instruction set architectures are simplified down into a 
general intermediate representation (such as P-code), the particular peculiarities of the underlying 
CPU instructions often still shine through as unmodeled instructions or strange instruction patterns 
that require specific understanding to analyze. 

There have been many efforts at modeling CPU instructions for software analysis over the years, 
many of which are successful and in use today. However, to cover the full national need for software 
understanding, the NS&CI missions require CPU instruction models that can support combinations 
of the following: the target CPU modeled, the language that the models are written in (e.g., OCaml 
for BAP, Python for Angr, Sleigh specs for Ghidra), and the analysis framework into which the 
models will integrate. Only a very small set of the needed options are currently available. 

Research, development, and engineering are needed in the following areas: 

• Investigate and develop standardized representations for CPU instruction semantics models 
to maximize the extent to which they may be reused with an analysis ecosystem (see R5). 

• Discover methods to mine CPU architecture manuals to generate or inform the instruction 
semantics representation automatically. 

• Some form of instruction modeling is already done by many existing tools, including 
compilers, disassemblers, and existing analysis tools; create methods to leverage these 
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sources for semantic information, translating it into forms reusable by a broader set of tools 
in the ecosystem. 

• Leverage dynamic test environments, including instruction set fuzzers, to inform the 
generation or validation of instruction semantics models. 

• Innovate methods to maximally automate the generation of the transfer function, f, based 
on a given set of state information that must be tracked and a semantics model of the 
processor. 

• Develop methods to vary the precision/abstraction level of instruction semantics modeling 
(see R1.2). 

 

5.3.2 R3.2 Hardware Peripheral Modeling 

Hardware peripherals allow software to interact with the physical world through various actuators, 
sensors, and physical devices, as well as communicate with remote software systems. Although 
some software has minimal dependency on hardware beyond the universal elements of CPU 
instructions and memory, there are many important contexts in which tight interaction between the 
software and mission-specific hardware peripherals is core to the system’s intended function; for 
example, control software of a vehicle that actuates steering or brakes, an industrial control system 
which senses pressures, temperatures, velocities, etc., and which then manipulates actuators, or a 
missile flight firmware which interfaces with a radar unit to make decisions on how to manipulate 
control surfaces to modify flight paths. In these latter cases, modeling hardware peripherals is 
necessary to answer many mission questions about the system. 

Unlike R3.1: CPU instruction modeling, this kind of modeling is about accurately simulating messy 
and fuzzy physical processes rather than formalized mathematical precision. Simulating those 
processes often involves statistical models, sampling, and reasonable expectations for sensor 
distributions.  

Research, development, and engineering are needed in the following areas: 

• Investigate and develop standardized representations for representing hardware peripheral 
semantics models to maximize the extent to which they may be reused. 

• Study different categories of hardware peripherals relevant to USG missions, including ICS, 
OT, IOT, and military systems. Sample the expected ranges and distributions of peripheral 
interactions in normal operation.  

• Develop tools with different analysis modalities for “typical” hardware peripheral operation, 
“unusual” hardware peripheral operation, and “unconstrained” hardware peripheral 
operation. Where assumptions are made about hardware peripheral operation, make the 
assumptions explicit and documented.  

• Develop automated tools that make modeling new hardware peripherals routine. 
 
5.3.3 R3.3 Initial State Modeling 

Prior to a program beginning execution, its environment is placed into a particular state, with 
registers, memory, stack, and other elements initialized in specific ways. When the system has an 
operating system, the program is also given an extensive initial operating system state, including file 
handles, external libraries, and process/thread information. In embedded firmware contexts, the 
various hardware peripherals will also be placed in a particular initial state. This initial state 
configuration is vital to determining how a program’s execution proceeds. 
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In most current analysis tools, much of this initial state is ignored for simplicity, contributing to both 
false positives and false negatives. Although not everything in the initial state must necessarily be 
modeled for any given program and question, the relevant aspects must be modeled with sufficient 
precision to gather the necessary evidence to answer the question at hand. 

Research, development, and engineering are needed in the following areas: 

• Develop machine-readable languages and file formats for defining initial state information 
suitable for reuse by multiple tools in an analysis ecosystem (see R8). 

• Develop reusable methodologies for studying and documenting initial state more rapidly 
and accurately. 

• Study and document the initial state for common program execution environments relevant 
to USG national security and critical infrastructure missions, including Windows, Linux, and 
MacOS desktop applications, Windows, Linux and MacOS device drivers and system 
extensions, mobile apps, embedded firmware environments for common devices, RTOS 
systems, etc. 

• Leverage ML and related data science approaches to mine dynamic execution, header files, 
and documentation to determine, augment, or validate initial state definitions. 

• Investigate approaches for describing initial state elements that are not fixed by a system 
but are determined by configuration. 

• Leverage human factors approaches to create methods for concisely communicating initial 
state information to human analysts and enabling those analysts to override information in 
cases where auto-generated models are inaccurate or insufficient. 

• Investigate methods for abstraction refinement or lazy instantiation of initial state, keeping 
initial state information indeterminate until needed by the analysis. 

 
5.3.4 R3.4 Memory Use Modeling 

A tremendous amount of a program’s state space is encoded in the program’s memory image. 
Modeling this state space efficiently and adequately for the analysis is paramount, as enumerating 
all possible memory configurations naively, even for a single modern program, would take more 
resources than every computer on Earth put together and more time than the universe has existed 
thus far. 

Although in theory there is an unbounded number of ways of using memory in software, there are 
numerous design patterns that dominate the vast majority of programs – arrays, structures, linked 
lists, balanced trees, and more. Entire books are published about well-known data structures with 
standardized operations and studied properties. Analysis tools can leverage these patterns to 
simplify the memory models of software. Alternatively, when analysis tools treat all software 
memory interactions the same and fail to model common data structure patterns, they lose 
precision and cannot accurately answer mission questions.  

Research, development, and engineering are needed in the following areas: 

• Research novel approaches to modeling software memory as efficiently and accurately as 
possible. Separation logic is a promising academic formalism to consider. 

• Develop a suite of models for common data structure patterns (e.g. arrays, structs, linked 
lists, trees, objects.)  
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• Develop novel approaches for detecting which data structure model to use for a given piece 
of data. This could include AI/ML based techniques to infer the most likely data structure 
based on usage patterns. 

• Develop novel approaches to compose different memory models together, where a program 
uses multiple memory usage patterns that are amenable to different models.  

 
5.3.5 R3.5 Indirect, Interrupt, and Exceptional Control Flow Modeling 

To analyze a program, one foundational question nearly all software analyses must answer is: after 
the program executes instruction X, what is the next instruction the program’s control will flow to? 
By answering this question, the analysis can follow the flow of the program and represent 
cumulative effects of execution over time. This answer to this question, put broadly, is known as a 
“control flow” of the program. 

Often the answer to this question is simple. Most instructions do not have multiple control flow 
possibilities and will always flow to the next instruction. Some instructions (like conditional 
branches) can have multiple possible flow targets, but those targets are directly specified and known 
ahead of time. A few instructions (like indirect branches) do not specify flow targets in advance, 
instead they rely on the runtime value of program data to determine where to flow next. 
Determining the possible control flow targets of such an instruction is not trivial and can require an 
analysis of the program just as complicated as the mission question analysis, just to determine a 
complete understanding of a program’s potential control flow.  

Exceptional and interrupt control flows are similarly difficult to reason about. Exceptional control 
flow occurs when the program performs some operation that raises an exception, like dividing by 
zero or by accessing inaccessible memory, and normal control flow is suspended while execution 
shifts to various handlers for exceptional circumstances. Interrupt control flow is similar: sometimes 
program execution is interrupted by something, perhaps a hardware peripheral, and normal 
execution is suspended to handle the interrupt.  

Accurately modeling all of these different modalities of control flow is simultaneously a very difficult 
technical challenge and also absolutely foundational to most software analyses. In pathological 
cases, analyzing control flow is guaranteed to be as difficult as the most difficult questions you can 
ask about program behaviors. Today, progress is made on recovering control flow despite the 
difficulty by relying on heuristics, over-approximation, and under-approximation in those difficult 
cases.  

Research, development, and engineering are needed in the following areas: 

• Develop models for exceptional control flows: on what instructions are exceptions possible, 
and where would execution go during and after the exception. The exact mechanics of 
exceptions vary depending on the Operating System, so multiple models for different OSes 
will be necessary. 

• Develop models for interrupt control flows, based on what kinds of interrupts are possible 
for a given program environment. 

• Research and evaluate methods for resolving indirect control flow. Many different 
approaches have been prototyped in academic contexts (heuristic methods, over 
approximations, under approximations, object-oriented virtual method call resolution 
methods, etc.). Identify limitations of each, opportunities to scale existing techniques, and 
areas requiring innovation of novel techniques. 
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• Synthesize the above methods of resolving indirect control flow into a tool that combines 
the best of each approach and applies it in the situations where it is most relevant. 

 
5.3.6 R3.6 Operating System Interaction Modeling 

Operating Systems are a common (but not universal) element of the environment software runs in. 
For most common applications, the OS is the first layer of the program’s environment and the only 
layer that the program directly interacts with. Interactions with hardware, memory allocation, other 
programs, the network, etc. are usually mediated through the Operating System. 

Because the Operating System is such a common and important part of a program’s environment, it 
is deserving of special scrutiny and understanding. Most applications interact with the OS heavily 
and make strong assumptions about what the OS will do in response. In order to understand and 
analyze a program, analysis tools must understand and interpret it’s intended interactions with the 
OS environment and how these interactions may lead to unintended behavior. 

Research, development, and engineering are needed in the following areas: 

• Study individual Operating System environments (such as versions of Windows, Linux, Mac, 
Mobile OS, RTOS) one at a time, prototyping tools to model those environment interactions 
and answer specific questions about a program’s interactions. The process of developing 
these tools will reveal both (1) nuances about particular Operating Systems that are vital to 
model accurately for getting meaningful results and (2) generalizable elements that reappear 
across multiple software environments. 

• Identify intermediate representations for common abstractions applicable across many 
operating systems, such as files, inter-process communication, network communications, 
user input/output, passwords, authentication abstractions, web browsing, email, text 
messages, printing, USB peripherals, wireless communication, etc. 

• Develop models for system calls and asynchronous interactions from the operating system 
to the program, such as signals and exceptions. 

 
5.3.7 R3.7 External Library Call Modeling 

Very few programs are completely stand-alone. Most modern programs make use of some external 
code to accomplish parts of their computation. The way in which external code is accessed can vary, 
but the most common way is through external library calls: calls inside a program that lead into an 
external library, allowing that library code to perform some function on behalf of the program.  

As software becomes more and more complex and feature-rich, modern programs tend to rely on 
more and more external libraries to get critical computation and interactions done. When analyzing 
an individual program, the exact code for the external library that will be used during execution is 
usually not known. In those cases, the analysis must model the external libraries’ operations so that 
analysis of the PUT is accurate.  

Most modern operating systems employ some form of shared object so that a program is 
comprised of its main program and numerous reusable dynamic libraries that are loaded into the 
program’s address space. In some instances, the dynamic libraries may be available to the analysis 
tool, and in others they will not be. 

Research, development, and engineering are needed in the following areas: 

• Develop a complete suite of models for commonly used external libraries. 
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• Develop new categorizations and properties for defining the effects of external library calls.  
• Develop new approaches to automatically harvest properties of external libraries by 

analyzing documentation or online information. 
• Develop tools that allow users to inspect and modify library function models as they see fit, 

to fix any problems that might occur from inaccurate modeling. 
 
5.3.8 R3.8 Execution Concurrency Modeling 

Concurrency in software refers to the idea that multiple threads or multiple processes may be 
running simultaneously in the same space and using the same memory. Mistakes or unintended 
behavior can occur when there are multiple threads interacting, but the code as written makes 
assumptions about there being only a single thread of execution. Concurrency has been a long-
running source of software bugs, despite continuous efforts to develop formalisms and tools that 
make software concurrency-safe.  

Concurrency is particularly difficult to model because it takes the already enormous state space of a 
single-threaded program and expands it exponentially by considering multiple possible program 
states at once. Thus far, there has been no clear, guaranteed, practical way to reduce this expanded 
state space: every interleaving of program executions from different threads must be considered to 
understand every possible concurrent interaction. This is an active area of research in academia. 

Research, development, and engineering are needed in the following areas: 

• Mature existing academic techniques for discovering race conditions in software. Extend 
them to be applicable to modern concurrent software.  

• Develop approaches for reasoning about interrupts in low-level software such a firmware. 
• Develop approaches for reasoning about multi-threading, including models for thread 

creation, locking, semaphores, monitors, and other concurrency programming tools.  
• Develop models for common paradigms of concurrency and locking, including verification 

that the intended paradigm has been employed correctly. 
 
5.3.9 R3.9 Sandbox Environment Modeling 

Modern software, especially untrusted software, is often executed inside of a closed environment 
with limited capabilities known as a sandbox. A sandbox is a special software environment which 
enforces strong restrictions and imposes reduced capabilities on the software executing inside it, 
thus preventing untrusted software from doing much damage to the system itself. When 
implemented properly, the limitations of the sandbox prevent the software running inside it from 
behavior that could be damaging or catastrophic, like invoking system services or interacting with 
hardware which are outside of the sandbox.  

Sandboxes are fundamentally a software security tool and are used to make potentially unsafe 
software more “safe.” But sandboxes still have several applications relating to the broader software 
understanding purpose in this roadmap. If a particular application will be run inside a sandbox, that 
can greatly simplify analysis of it – by adding simplifying assumptions and cutting off analysis paths 
that will be terminated by the sandbox. Similarly, the software enforcing the sandbox itself warrants 
special scrutiny – analyzing that software and understanding exactly what limitations it enforces and 
under what conditions those enforcements are effective, can give mission owners confidence that 
risks from executing untrusted software have been effectively mitigated.  

Research, development, and engineering are needed in the following areas: 
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• Develop tools and metrics to determine when to use sandboxes – what kinds of programs 
should be sandboxed. 

• Augment existing analysis tools to optionally analyze a sandboxed program – simplifying 
analysis. 

• Research methods to analyze sandboxing software for technical evidence related to 
validating the sandbox, assessing the limitations the sandbox enforces and the operations 
may escape the sandbox. 

5.4 R&D Challenge, R4: Model Generation Techniques 

As discussed in R3, accurately modeling various parts of execution is necessary to reason 
mathematically about large the large state spaces of most software systems. R3 focuses on the 
different aspects of execution that must be modeled in order to reason about software behavior 
accurately and efficiently and R2 focuses on how to select and assemble the right models to bear on 
a system under test. In contrast, this trust, R4, discusses how to rapidly and scalably generate those 
models with useful precision in the first place. 

Whenever a software understanding question needs to be answered for some USG mission, as 
discussed in FA1, the exact models needed for the software and the models needed for the 
software’s environment are not known in advance. Even if you have a powerful suite of execution 
models from R3, discovering the correct set of models to apply is a key step in getting an adequate 
analysis started, and manual mistakes are often made during this step. Without using a set of 
models that are precise enough to make the mission question answerable, while being abstract 
enough to make the analysis feasible with limited resources and tailored to the specific system and 
problem at hand—the resulting analysis will not produce the results the mission requires.  

Today, generating the correct set of models for a particular analysis task is a manual process where 
analysts scour existing analysis methods & software analysis models to find the best fit that already 
exists, if any; most commonly, however, existing software analysis models are insufficient, so the 
analyst must adapt existing models or create their own in order to build a sufficient basis for 
analysis. Even if the research in R3 is wildly successful, there will still be some cases where unique or 
unusual execution environments (which are relatively common in USG missions) demand bespoke 
model creation. Making this process as automated and efficient as possible is the subject of this 
research challenge. 

5.4.1 R4.1 Rapid Model Generation and Validation 

Even with wildly successful research in R3, researchers cannot manually create every single model 
they will ever need in advance. There are dozens of hardware processors, hundreds of system calls, 
and hundreds of thousands of distinct library calls in systems relevant to USG missions. Analysis 
tools need strategies to automatically create and validate models.  

To clearly distinguish the challenges here from other thrusts, the analysis tools synthesized by 
research done in R2 may be comprised of dozens or hundreds of R3 models, which in turn were 
generated by the techniques described here in R4.  

Similar to the issues in FA1, how you construct a given model depends on the question you’re trying 
to answer and the relevance of the model. In some cases, no information relative to the question is 
handled by the model and the model can be a nop. In other cases, the model must be adapted to 
the specific information being tracked. For example, a timing-based mission question may use a 
model to report the minimum or maximum execution time; for tracking tainted data, a model may 
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only need to report the single bit of whether a given output is affected by tainted inputs; for tracking 
maximum memory pressure, the model may need to report the maximum dynamic memory 
allocation that may occur. 

Research, development, and engineering are needed in the following areas: 

• Develop ML-based techniques to rapidly generate models needed in R3, leveraging a wide 
range of training data (e.g., source code, header files, dynamic test telemetry, social media 
posts, etc.). 

• Research ML-based approaches for leveraging real data to evaluate and improve existing, 
manually-generated models. 

• Develop techniques to generate models of a function from its source code, at varying levels 
of abstraction/precision (see R1.2). 

• Develop techniques that leverage existing documentation to generate coarse models, 
whether manual pages, header files, etc. 

• Identify techniques to generate models that track the particular type of data required by the 
analysis. 

• Develop techniques to leverage fuzzing, instrumentation, and other dynamic techniques to 
develop a minimum set of behaviors for information model generation and validation. All 
behaviors observed dynamically should be captured by the model, though in most cases the 
dynamic behaviors observed will be incomplete. 

 
5.4.2 R4.2 Modeling Refinement Strategies 

One promising approach to discovering an effective set of models for an analysis is to start with a 
basic set and refine it over time. An iterative analysis may start with very abstract models, then 
identify the models that matter most to the control/data flow of the specific analysis question, 
refining those models to retain more necessary precision. This iterative approach can make initial 
progress easier and allow the needs of the analysis itself to drive any additional work that may be 
necessary. The models described in R3 will need to vary depending on the specific information that 
needs to be tracked, informed by the particular needs for precision vs. abstraction (see R1.2); this 
research thrust seeks strategies for generating a series of particular R3 models with varying 
precision needs, and varying data gathering needs informed by the mission question decomposition 
of R7. 

There are multiple existing approaches to refining models that have been used in academic 
literature, ranging from human-driven experimentation/selection to completely automated Counter-
Example Guided Abstraction/Refinement (CEGAR)46. Both sides of the spectrum are worth research 
exploration.  

Research, development, and engineering are needed in the following areas: 

• Develop techniques to distinguish between what elements of a program must be modeled 
precisely for the given mission question and what elements of a program can be modeled 
coarsely, because they do not impact the analysis result. 

• Develop tools that allow users to see which models are impacting the analysis heavily and to 
manually experiment with / refine those models as necessary.  

 
46 Clarke, Edmund, et al. "Counterexample-guided abstraction refinement." Computer Aided Verification: 12th International 
Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000. Proceedings 12. Springer Berlin Heidelberg, 2000. 
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• Develop techniques to automatically scale the precision and abstraction level of a model, 
based on automatic analysis feedback or feedback from the user.  

 
5.4.3 R4.3 Model Inference for Missing Components 

The USG often needs to understand and analyze software where the full environment that software 
will run in is not available. Sometimes this occurs when the software under analysis is one piece of a 
networked system where the other pieces are not available (like when analyzing malware); 
sometimes this occurs when the software can be used in a wide variety of environments or 
configurations, and the analysts don’t know which it will be used in; sometimes this occurs when 
analysts simply have an executable binary but not all its libraries and dependencies. 

Whatever the reason, analysts often need to be able to analyze a system where pieces of the system 
that the software interacts with are missing. Obtaining analysis results in incomplete scenarios will 
be essential to many national security and critical infrastructure scenarios. In these scenarios, 
methods of inferring or filling in the gaps of knowledge are necessary. 

Research, development, and engineering are needed in the following areas: 

• Innovate techniques to carefully assess available information in the software under 
evaluation related to the missing components, deriving, inferring or speculating 
characteristics of the missing components. 

• Develop information formats and data exchange standards to document analytic 
information about missing components, capturing the graduated level of confidence from 
derived, inference, speculation, or human-assisted approaches. 

• Develop methods to infer the content of interactions / network protocol messages that a 
binary is sending and/or expecting to receive. [cite Caballero paper]  

• Research ML approaches to infer characteristics of missing components from the 
interactions present in the software under analysis. 

• Investigate methods to automatically generate speculative models of missing libraries or 
software components from the inferred characteristics above. 

• Develop methods to enable the human analyst to analyst to manually inform or guide 
inferred models. 

• Assemble data sets and develop software understanding-informed features for training ML 
systems to infer models of missing components. 

5.5 R&D Challenge, R5: Analysis Tool Ecosystem 

R2 discusses research challenges in synthesizing a single analysis tool from a collection of models 
(discussed in R3 and R4). This section addresses challenges one level above those of the individual 
analysis tools. This roadmap presumes that, in most cases, running a single tool one time will not 
produce the evidence needed to answer a high-level mission question (see the discussion for Figure 
3). Not only does the high-level mission question decompose into numerous smaller questions (see 
R7), but for each analysis of those smaller questions constructing the analysis tool correctly to 
achieve the proper balance of precision and scalability for the particular software artifact under test 
may require an iterative process (see the “Need for Iteration” discussion in FA1, Mathematical 
Modeling). 

We will illustrate the research challenges with a hypothetical example: a firmware image (P) for a 
custom controller device must be analyzed to determine whether two particular actuators could 
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ever be open at the same time (Q), which would lead to mission failure. The specific hardware lines 
leading to the actuators are known from the system design. The CPU instruction set of the firmware 
is also known. 

1) First, it must be determined how the software would command the actuators, and what 
values constitute open. This requires modeling the system hardware that drives the 
actuators (R3.2), perhaps mining technical spec sheets or other documentation for 
information (R6), or, as a last resort, calling on the human to identifying the specific technical 
method for driving the actuators. 

2) Once this is determined, an initial analysis tool can be synthesized which will attempt to 
analyze the target software to determine whether the actuator control methods from step 
#1 above could ever cause both actuators to be open. Call this tool T1. Note, however, that of 
the many options of execution models discussed in R3, there is no solid basis yet for 
deciding which models to use, so a high-level, generic set of models is chosen to synthesize 
T1. 

3) But upon running T1, the answer merely comes back with a very imprecise “maybe”. To 
determine where precision was lost in T1, some agent needs to measure it. That agent 
generates a second tool, T2, which performs the same analysis as T1, but gathers telemetry 
information about the precision of the values for the actuators and the paths leading to 
them to determine where precision was lost. 

4) The output from T2 illustrates that T1 lost precision almost immediately because the 
firmware registers various function call-back tasks to be executed based on timers, and the 
model used to construct T1 abstracted the function pointers of all these tasks to ⊤47. T1 was 
unable to track the specific addresses of any of the main tasks in the firmware, and 
therefore could not analyze any of them—it had extremely low coverage in its analysis. 

5) To proceed, some agent must assess this circumstance and realize that a relatively simple 
function call-back execution model which tracks all function addresses with full precision, 
applied to the right addresses in P, will be able to overcome this analysis hurdle. The agent 
needs to select just such a model from the proverbial toolbox of R3, parameterizing it for the 
specific addresses in P, and synthesize a new tool, T3. 

6) T3 now runs, but still produces the imprecise answer “maybe”. T4, a telemetry-focused 
version of T3, reveals that there are numerous other function pointers in P used for control 
transfers. At this point, a machine-learning based algorithm, run over the telemetry 
produced by T4, suggests that this binary code may have been produced by C++ using 
vtables. 

7) T5 is then generated using C++ data models from R3, and does a type recovery analysis to 
determine the object-oriented types, type hierarchy, data structures, and more. T5 still 
produces the imprecise answer “maybe”. 

8) T6, a telemetry-gather version of T5, provides the insight that precision about the actuator 
state is stored in a particular memory array of one of the object types in the hierarchy, but 
the memory model used for T5 lacked precision to track the individual values separately. 

9) T7 is now generated, using all the knowledge gained earlier, but also imposing a fully precise 
memory array model on the specific field of the specific object type which is used to track 

 
47 ⊤	is a mathematical symbol, often pronounced “top”; in this context, it represents	any	possible	value,	and	therefore	a	complete	
lack	of	precision. 
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actuator state. T7 is run and produces the output “no”, it is not possible for the actuators to 
both be open at the same time48. 

10) The mission owner requires high-confidence and wants a strong evidence package 
generated containing the detailed technical argument supporting the answer. T8 is 
generated which emits records of all the data manipulations leading to the actuator states 
and all the execution patterns controlling those data manipulations. 

 
There are times today when the analysis process is similar to the example above, but with humans 
replacing many of the Tx tools with manual analysis, the humans replacing the ML tools mentioned 
in step #6 above, and the humans orchestrating the overall process spanning the steps. There are 
also times today when a generic tool, TG, written to answer a particular mission question, but not 
particularly tuned for any give P, is run, and its poor answers are not improved upon due to the cost 
of doing so. 

For clarity, we’ll use the term “step” or “tool” to refer to the individual elements listed above, and the 
term “campaign” to refer to the collection of steps along the journey of answering the mission 
question, and “orchestration” to the process of determining what the sequence of steps in the 
campaign should be. 

The example above describes one possible potential future. As researchers learn more about the 
nature of software analysis challenges, this example will need to change. From this current vantage 
point, the authors can draw some tentative, preliminary observations from this example: 

1) Many types of tools. There are many different types of tools needed in this software 
ecosystem. There are tools to reason about software behavior (e.g., T1, T3, T5, T7). There are 
tools not designed to produce answers to Q but rather to help decide how the next Ti+1 
should be constructed (e.g., T2, T4, T6, T8)—had the CPU architecture not been known, a 
variety of tools could have provided an initial guess. There are formal tools based on 
mathematical reasoning, and informal tools, such as the ML tools mentioned in step #6 (and 
that could have played a far more predominant role than was presented).  

2) Many types of data. The nation needs tools that analyze very different types of data. Many 
of the tools mentioned here analyze P. But step #1 could benefit from tools that analyze 
technical data sheet and other document. Many of the steps involve tools that analyze the 
telemetry data of other tools. The mission question, Q, considered here is relatively simple 
to break down and map to specific program behavior; others are not—tools are needed to 
break down the mission question into the detailed, focused questions needed to guide the 
analysis of P, as well as to summarize and roll up the evidence data for presentation back to 
the mission owner (see R7). 

3) Human in the loop. The human may need to step in at any time, either because a tool is 
missing, or because the tool is inadequate to the task. For example, today it is nearly always 
the human who would take the role of manually and incrementally adding telemetry to T1 to 
determine why it lost precision, the human who would have to recognize the function call-
back pattern in step #5, the human who would have to determine that P is a binary built 
from C++ in step #7, the human who would have to manually construct the evidence 
package in step #10, and the human who would manually construct all the tools mentioned 
above. In many cases today, the tools would provide information up to a certain point, 

 
48 It is important to note that all analysis answers are subject to assumptions and to the accuracy of the modeling. This is not 
particular to software analysis. 
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leaving the human to complete the rest of the analysis manually (for example, Ghidra and 
IDA Pro could be considered tools early in a process which provide the human analyst with 
some analysis results of the binary and depend on that human to complete the analysis). 
This research roadmap seeks to reduce costs, improve accuracy, and improve speed by 
automating as many of these tasks as feasible over time. This will not happen overnight, and 
so for the foreseeable future the human will be intermingled with the automation. This 
warrants specific research to minimize the friction of the human interacting with the 
automation. 

4) An iterative process. The example above is limited to 10 steps, but the activities 
represented in steps #3-#5 above could be iterated many, many times: run a tool which can 
get part of way to the answer, measure where it went wrong, determine what needs to 
change for the next tool to get further. Perhaps in the future researchers will be able to a 
priori calculate a closed form version of these iterative approaches, but significant research 
needs to be done on the individual steps of the iterative process first. 

5) The need for a knowledge store. There are at least three reasons for this. First, some 
analysis steps in this example may be very expensive to compute. An efficient analysis 
campaign will cache answers which were costly to acquire, avoiding having to pay the cost 
again at each step in the campaign. It is not obvious how to do this in many cases, as the 
context and conditions under which the discovered knowledge hold also may need to be 
captured, stored, and communicated (e.g., the path condition under which a branch is 
taken). Second, analysis campaigns should be repeatable. To achieve the high confidence 
NS&CI missions require, analysis campaigns should be documented in the knowledge store 
sufficiently for independent researchers to reproduce and verify the results. And finally, a 
detailed knowledge store for the analysis of other programs in the past could be leveraged 
by ML systems (see CC2) to make informed predictions about the analyses of the present 
program under consideration. To facilitate this, the knowledge store could capture the 
overall steps of the campaign, the recipes and used to synthesize and the configurations 
used to run each tool, Ti, in the campaign, the telemetry gathered for each, the evidence 
used to determine the next tool in the campaign, Ti+1, etc. There is too much data to store it 
all, so research is needed to determine the most useful data to store (see R5.3 below). 

6) The need for debuggability. This is a complex system with many opportunities to go wrong. 
Developing such a system will require making debuggability a key goal (see CC4). 

 

The hypothetical example described above, of using a host of low-level tools to answer a high-level 
mission question is another form of the semantic composability problem described in FA2 and 
addressed also in R1, R2, and R3. It is necessary to confidently determine that the aggregate, 
emergent behavior of an analysis campaign will achieve the semantic goals related to answering the 
original mission question. 

The sub-sections below call out several areas of research which are needed to develop a software 
analysis tool ecosystem and orchestrate an analysis campaign. 

5.5.1 R5.1 Analysis Tool Characterization 

Given a proverbial analysis toolbox, containing many different software analysis tools, selecting the 
right tool for a given task requires a suitable characterization of the capabilities, requirements, and 
limitations of each tool. This is true regardless of whether the campaign is orchestrated manually by 
human analysts, or by an automated system. When the analysis tools in the toolbox do not exist a 
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priori but instead of synthesized in response to the needs of the campaign (see R2), the situation is 
even more complex. 

In modern practice today, analysts often have a limited awareness of which tools are best for what 
analysis job. When understanding every new tool requires significant time and effort, it makes more 
sense to use tools that are known and familiar, rather than gamble on learning new tools that might 
end up being less useful. If an immediately useful, digestible, accurate, and trustworthy 
understanding of the tool space and their characteristics were available, however, then analysts 
would have a much easier time expanding their horizons to new tools that might suit their current 
task better. 

Research, development, and engineering are needed in the following areas: 

• Study the current state of the practice in software analysis by developing taxonomies and 
surveys of existing software analysis techniques and tools. 

• Study orchestration and planning approaches from other domains to identify design 
patterns, requirements, and other information to inform the development of algorithms for 
software analysis orchestration. 

• Identify characteristics of relevance to software campaign orchestration, including 
requirements, precision, scalability, and resource usage (execution time, memory, etc.). 

• Develop metrics, metrology approaches and algorithms for characterizing software analysis 
approaches, techniques, tools, or components for cases in which characteristics vary across 
implementations. 

 
5.5.2 R5.2 Tool Configurability, Interfaces, and Interoperability 

For analysis tools to be effectively integrated into an orchestrated analysis campaign, separate tools 
may need to operate in cooperation under the direction of an analysis campaign orchestrator as 
illustrated in the introduction to R5. The orchestration may need to gather particular, focused 
information from a given analysis step, requiring the ability to configure that step’s analysis tools to 
achieve a very specific information gathering tasks. Ideally, families of similar tools would have 
standardized interfaces for their configuration options, facilitating the orchestration process and 
enabling seamless integration of new tools. Finally, the illustration in the introduction to R5 was 
described with various tools running serially, but the ability to exploit the parallelism of cloud 
infrastructure would be highly desirable. This may involve a single tool being multi-threaded, but it 
may also involve multiple tools dynamically exchanging data in real-time to collectively accomplish 
more than either could independently.  

This research thrust focuses on how the tools themselves need to be designed and architected to 
integrate into an ecosystem. The next thrust (R5.3) addresses the storage of information produced 
by the tools. 

Research, development, and engineering are needed in the following areas: 

• Study the extent to which current tools are developed with hard-coded values and objectives 
that could instead be made parameters in support of an analysis campaign, producing 
recommendations for developing tools ready for integration into an analysis ecosystem. 

• Research the types of analysis information, context, and telemetry information which could 
be useful to an analysis campaign orchestration algorithm. 

• Investigate data standards and interfaces to capture the information useful to an analysis 
campaign orchestration algorithm. 
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• Develop algorithms for analysis campaign orchestration, identifying intermediate 
information gathering objectives. 

• Adapt existing software analysis approaches and techniques to meeting the necessary 
intermediate information gathering objectives. 

• Develop proof-of-concept analysis orchestration testbeds to support extensive 
experimentation, including focused studies and end-to-end evaluations, leveraging the 
datasets, metric, and benchmarks of R8. 

 
5.5.3 R5.3 Program Knowledge Store 

Different tools are effective at answering different kinds of questions about software. Ideally, 
analysts would use the best tool in the toolbox for different sub-questions, each for the purpose it is 
most suited to, synthesizing their answers to answer the original high-level question. For example, if 
the specific task is to determine whether function Y is always eventually called after function X, that 
might involve a tool that implements a Linear Temporal Logic analysis; if you want to know all the 
possible values that this JMP RAX instruction might resolve to, that might require a value set analysis 
over RAX at that address. The answers to these numerous, low-level questions must be gathered 
together to produce answers to the high-level question about this software (see the discussion of 
semantic composability in R2 and the hierarchical reasoning in R7). 

Unfortunately, this is difficult to do with modern software analysis tools because they are typically 
unable to export their results to a common format or to accept or integrate data from other tools. 
Usually, the results of tools have bespoke formats with no easy way to compare or combine them. 
Enabling two tools to share low-level results for building higher-level results requires significant tool-
specific engineering. Consequently, most analysis tools contain their own versions of common, low-
level software analysis tasks. This wastes analysis time by duplicating analysis activity. Furthermore, 
incremental advances in an algorithm in one tool are not readily available to all tools—each would 
have to reimplement the advance independently. 

To enable smaller, reusable components which can leverage incremental advances throughout the 
ecosystem, researchers must identify ways to share data among components with focused tasks 
and eliminate duplication. Inspired from the fact databases in Souffle49, a promising approach is to 
architect a software analysis ecosystem around a program knowledge store. The program knowledge 
store would be a persistent service for capturing and providing low-level information about the 
program under evaluation across the lifecycle of a campaign, eliminating the need to recalculate 
many types of information. For example, if in one stage of a campaign, the orchestration system 
(R5.4) runs OOAnalyzer50 to infer the object types and class hierarchies in a binary produced from 
C++, that information should be cached in order to avoid reperforming that analysis (perhaps 
multiple times) in later iterations of the campaign. Of course, strategies are needed to handle 
multiple representations with varying precision of the same data (R1.2). This data store, if designed 
and implemented with ML requirements in mind, could also provide a novel source of training data 
for ML techniques (CC2). 

Research, development, and engineering are needed in the following areas: 

 
49 https://souffle-lang.github.io/  
50 Gennari, Jeff. “Using OOAnalyzer to Reverse Engineer Object Oriented Code with Ghidra.” SEI Blog, July 15, 2019, 
https://insights.sei.cmu.edu/blog/using-ooanalyzer-to-reverse-engineer-object-oriented-code-with-ghidra/. 

https://souffle-lang.github.io/
https://insights.sei.cmu.edu/blog/using-ooanalyzer-to-reverse-engineer-object-oriented-code-with-ghidra/
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• Study knowledge store strategies from related fields, identifying characteristics and 
approaches applicable to software understanding. 

• Survey existing software analysis tools and the types of data they produce to derive an 
ontology of the knowledge web that a program knowledge store would need to support. 

• Research strategies and configurable policies for storing varying levels of precision of the 
same data within the program knowledge ontology. 

• In many cases, information derived from a program via analysis is only true in a given 
context, or subject to certain constraints. Investigate and develop standardized 
representations for describing various contexts, constraints, etc. of the data represented. 

• Develop efficient data interchange interfaces and formats for tools in the ecosystem to 
exchange not only program facts and conditions/contexts under which those facts hold, but 
also data provenance (where did this data come from), data confidence (how certain the 
analysis is of the data). 

• Develop standards for representing analysis knowledge about a program in a common 
format (inspired for example, by software analysis tools using Souffle and existing standards 
such as SARIF). 

• Investigate architectural designs for a program knowledge store that can serve as an 
intermediate data repository between different analyses consuming and producing 
knowledge about a program. 

• Research opportunities for ML algorithms to inform program knowledge store designs to 
enable exploitation of that data to inform other thrusts in this roadmap. 

• Explore approaches to leverage the program data store for software analysis introspection, 
explainability, and debugging (CC4). 

• Develop efficient, scalable architectures to support anticipated use cases of a program 
knowledge store by a campaign orchestration system. 

• Innovate strategies for tracking data provenance, uncertainty, and other metadata, 
identifying useful policies for deriving such information when data is combined. 

 
5.5.4 R5.4 Automated Analysis Campaign Orchestration 

Currently, analysis campaigns are orchestrated solely by human reverse engineers and analysts. 
This approach does not scale to mission needs today. Automation of analysis campaigns is needed 
to achieve the scale of analysis required for the NS&CI mission needs in software understanding. 
Automation of analysis campaigns may include hybrid solutions in which partial automation assists 
the human orchestrator (see R2.4) as well as fully automated orchestration. 

Research, development, and engineering are needed in the following areas: 

• Study options from related fields for addressing the semantic composability problem in 
software analysis campaigns. 

• Evaluate approaches of planning and optimization from related computer science fields (for 
example, database queries) that may be useful to automated analysis campaign 
orchestration. 

• Study the needs and options for software analysis campaign orchestration by performing 
initial experiments, retrofitting existing tools with select interfaces and data input/output 
routines, assessing the utility of the data and prioritizing gaps. 

• Develop data conflict resolution approaches to enable an analysis campaign orchestrator to 
discover and investigate data conflicts and select resolution policies. 
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• Research approaches to leverage ML and related approaches to orchestrate an analysis 
campaign. 

• Research methods for leveraging human studies and large language models to concisely 
summarize analysis campaign progress and state at various stages, enabling the human 
analyst to introspect the data, view summary information, trace decisions back to supporting 
data, assess orchestration plans, and otherwise superintend an analysis campaign. 

• Research methods for leveraging human studies and large language models to actively 
direct an analysis campaign, by supplying missing information, changing priorities, or 
overriding decisions. 

5.6 R&D Challenge, R6: Semantic Knowledge Inference 

In the same way that objects in the physical world are all fundamentally composed of atoms, 
software is fundamentally composed of binary numbers. The composition and relational structure 
of atoms is what distinguishes radically different physical objects, and in the software world, the 
composition and relational structure of binary numbers is what distinguishes radically different 
software artifacts. As discussed in more detail in BR3, to deeply understand and use different 
physical objects, engineers need more than just an understanding of fundamental atoms: they also 
need chemistry, biology, material science, and various other higher-level abstractions, to give them 
the tools they need to ask questions like “will this bridge hold under this weight?”. The same is true 
of software: software analysts need more than just an understanding at the binary level, they also 
need a series of higher-level semantic abstractions to address mission questions like “does this 
server contain a backdoor?”.  

This challenge involves the semantic composability problem discussed in FA2. 

Assigning higher-level, semantic meaning to the structures in an executable is technically 
challenging. The process of constructing binaries involves taking a higher-level representation, often 
source code, and compiling it down, removing information along the way that is useful for analysis, 
including type information, data structure boundaries, syntax trees, and much more. There is no 
guaranteed mathematical way to recover this higher-level information that has been lost—indeed, 
one individual binary may correspond to an effectively infinite number of different possible original 
source code programs. 

There are imprecise techniques that help in practice, however. Heuristics and inference can provide 
a reasonable approximation of the source code or other high-level semantic abstractions. The 
discipline of reverse engineering, practiced by skilled experts, can also produce highly accurate 
higher-level semantic knowledge about code.  

5.6.1 R6.1: Computational Heuristics for Semantic Inference 

Disassemblers and decompilers bring external knowledge to bear to identify opportunities to apply 
more semantically meaningful interpretations to these numbers. For example, translating 
0x48656c6c6f20576f726c6421 to “Hello World!” involves an inference of an ASCII string and yields a 
far more semantically useful representation to a human analyst. Currently available disassemblers 
and decompilers automate some semantic inferences, such as function identification and type 
identification, but these tools do not provide the full set of information necessary to quickly and 
easily answer any given mission question.  

There are several reverse engineering tools that partially solve the semantic inference problem by 
deriving a higher-level representation of a binary. For example, Ghidra and Hex-Rays can (with many 
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limitations) present an approximated source code view of assembly code. Extending these tools 
would be a valuable way to make semantic inference easier.  

Research, development, and engineering are needed in the following areas:  

• Defining layers of abstraction above C source code useful for software understanding and 
decision making (e.g. grouping functions into components of software, analyzing 
connections and purpose) 

• Researching better techniques for inferring types and object hierarchies 
• Researching better heuristics for resolving virtual function calls 
• Extending RE tool interfaces to support higher-level semantic abstractions 

 
5.6.2 R6.2: Human Factors Analysis of Manual Reverse Engineering 

The semantic gap left by current heuristic techniques is currently filled by human reverse engineers, 
manually performing semantic inference, among other tasks. Examples of semantic inference 
currently carried out by the human include identification of: 

• error conditions and paths, 
• standard library functions embedded in the system under evaluation, 
• common design patterns in data structure layouts (such as linked lists, dictionaries, object 

hierarchies, etc.), 
• common design patterns in code (such as allocators, destructors, iterators, work queues, 

state machines, etc.) 
• the purpose for a given buffer (such as username, password, DNS name, IP address, web 

URL, etc.), 
• enumerated constant recognition based on context (e.g., “6” → “enum ip_proto_tcp” in IP 

protocol numbering contexts or “enum SPI_FLASH_32KBLOCK_ERASE” in Flash part 
command contexts) 

 
At present, reverse engineering is more of an ‘art’ than a ‘science’, so it is difficult to say exactly what 
human reverse engineers do to arrive at their conclusions. However, further research using human 
factors analysis can elucidate the cognitive processes employed by reverse engineers and support 
their improvement or automation. 

Further research, development, and engineering are needed in the following areas: 

• Perform studies to understand and replicate how manual reverse engineers reason about 
incomplete systems 

• Perform studies to understand and replicate how manual reverse engineers climb the 
semantic ladder 

• Develop technical tools/add-ons that can reduce cognitive load on manual reverse engineers 
and improve their speed 

• Develop representations of semantic knowledge that reverse engineers can use to 
document, track, and share their knowledge (e.g. block diagrams, state machines, decomp, 
types) 

• Design analyses that produce or consume these knowledge representations 
• Develop methods to align human generated models with formally verifiable/correct models. 
• Identify human interpretable abstractions from a top-down perspective of understanding 

how humans currently reason about these systems. 
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5.6.3 R6.3: Semantic Inference Through Machine Learning Techniques 

Because semantic inferencing often involves identifying the best conclusion from incomplete data 
and common patterns seen in other systems, ML techniques are likely to excel. ML trained on 
labelled software can potentially provide a reasonable estimate of what higher-level semantics are 
present in an unlabeled sample.  

ML has shown the ability to translate between wildly different abstractions levels and structural 
domains (e.g. summarizing a picture with a few words.) In the field of software analysis, ML 
techniques may be well-suited to translating low-level information about programs and binaries to a 
higher-level semantic space in ways that is easily interpretable by the analyst. Existing LLM 
techniques have already shown impressive results in summarizing code in text for human 
understanding and even generating code from a textual description. Rigorous application of these 
techniques to semantic inference problems is likely to yield powerful results. 

Research, development, and engineering are needed in the following areas: 

• Perform human studies of reverse engineers to identify meaningful high level semantic 
abstractions as well as the binary features that the human reverse engineers use as clues for 
making the inference. 

• Perform human studies of reverse engineers to identify extra-binary sources of information 
used by analysts for software understanding and study how experts use those sources to 
gain insight. 

• Develop techniques to mine non-software sources for information about the semantics of 
structures, interfaces, modules, actions, and design elements of software, and leverage that 
knowledge for model creation (R3), analysis tool synthesis and configuration (R2), 
benchmark generation (R8), and analysis campaign orchestration (R5.4), as appropriate. 

• Explore the use of ML for automating the inference of high-level semantics from lower-level 
clues or for mining extra-binary sources of information to gain understanding of the binary 
under analysis. 

• Research ML-based techniques for discovering new Intermediate Representations (IRs) 
which may be more optimal for human- or machine- based software understanding tasks51.  

• Perform human studies of reverse engineers to evaluate ML-identified features for assisting 
human reverse engineers at semantic inference. 

• Develop software embeddings that preserve high-level semantic features and allow for 
accurate semantic inferencing  

5.7 R&D Challenge, R7: Hierarchical Question Decomposition and Evidence 
Composition 

Many NS&CI missions require answers to high-level mission questions about software. Securing port 
infrastructure, for example, may require an answer to the question “does my port crane software 
contain a kill switch?” Unfortunately, high-level mission questions like these are technically 
ambiguous, complex entities with several sub-questions embedded inside them and cannot be 
directly answered in a single analysis step. For instance, what exactly does the mission owner mean 
by “kill switch”? What are the many different semantic forms a kill switch might take, and how might 

 
51 Fawzi, A., Balog, M., Huang, A. et al. Discovering faster matrix multiplication algorithms with reinforcement 
learning. Nature 610, 47–53 (2022). https://doi.org/10.1038/s41586-022-05172-4. 
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analysts prove their existence/absence? Does it count if there is an intended feature for an 
authorized user to “kill switch” the crane? What if that intended kill switch feature has a vulnerability 
in it allowing unintended access from third parties? Answers to all these sub-questions (and many 
more lower-level ones) are needed to synthesize a full answer to the original mission question about 
port crane software.  

Drilling down on the high-level end-to-end process of Figure 3, Figure 6 depicts the notional steps in 
this end-to-end process, from start to finish. 

Research thrusts R1, R2, and R3 focus on providing accurate answers to questions about the low-
level behavior of software. These tools are used in Step #4 in Figure 6. However, answers to these 
low-level questions about the software’s operation, possible states, dataflow or control flow, etc., do 
not directly answer high-level mission questions no matter how rigorously and formally proven. A 
translation step (or a series of translation steps) from the scope of mission-relevant questions to the 
scope of focused technical questions about the program is necessary. This is Step #1 in Figure 6. 

 

 
Figure 6: A notional example of the full, end-to-end process of software understanding. 

This process starts with a mission question, performs an analysis of the software, and concludes by presenting 
evidence to answer the initial mission question. Step #4, “Iterative Analysis Execution” is addressed in R5. 

 

High-level questions must be iteratively decomposed into successively specific, lower-level questions 
that can be answered by a technical analysis; the authors call this process Hierarchical Question 
Decomposition (HQD) (see Figure 7 for an example). 

Similarly, the technical answers from lower layers in the decomposition must then be synthesized 
together to answer the next higher-level question, and so forth (Step #6 in Figure 6), until analysts 
have a final answer to original mission question (Step #7 in Figure 6); the authors call this process 
Evidence Package Composition (EPC). Thus, the reasoning is hierarchical, first from high-level to low 
as the question is decomposed, and then from low-level to high as the evidence is “rolled up” back 
to the top of the hierarchy. Furthermore, the initial and final stages of this overall process today are 
human-centric, as the Mission Question and final evidence presentation should be in terms most 
natural to mission owners, while the middle stages must interact with technical software analysis 
tools. Thus, translations from human-centric to machine-centric forms and vice versa must be 
performed. 

Today, HQD and EPC are performed manually and largely informally by reverse engineer analysts 
who leverage their personal, often idiosyncratic expertise to understand how low-level technical 
evidence can relate to high-level mission questions. This process is similar to semantic inferencing 
(see R6) but goes even further. While semantic inferencing is limited to lifting low-level facts to high-
level abstractions describing the program itself, HQD and EPC interface with the questions mission 
owners have about the program, an even higher level of abstraction that exceeds any properties of 
the program itself.  

There is no known technical work that has been able to replicate this general manual process 
automatically, and it is unclear to what extent automation may be achievable. Augmentation of 
skilled labor may be the best path forward for this research challenge.  
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Figure 7: Notional example of a partial Hierarchical Question Decomposition (HQD). 

This diagram presents an example of decomposing a high-level 
Mission Question into smaller, lower-level, more focused questions about the software. 

 

5.7.1 R7.1: Human Factors Studies and Cognitive Mapping 

The process and requirements by which HQD and EPC are performed by human reverse engineers 
and/or analysts is not yet sufficiently understood. The first step towards understanding and 
improving these processes is careful study, using established Human Factors methods, to identify 
the cognitive tasks and relationships between them that human reverse engineers employ to break 
mission questions down into actionable components and synthesize evidence back up to answer the 
original question. 

At the beginning and end of the HQD and EPC processes (steps #1, #2, #6, and #7 in Figure 6), the 
need for understanding will include both the human analyst and the mission owner. These 
interactions with the human will be the most high-level and concise, with intermediate steps 
handling large volumes of low-level information. Translations must be made between human-centric 
and machine-centric representations to define the mission question and present the evidence 
gathered. 

Research, development, and engineering are needed in the following areas: 

• Study human analyst HQD processes using Human Factors methods to understand how 
human reverse engineers and analysts map high-level mission questions to low-level 
questions about software behavior.  

• Study mission owners and human analysts to identify common goals and decisions 
associated with mission questions and the information needed to answer the questions, 
whether through analyst reasoning or automated methods. 
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• Identify natural and expressive languages for mission stakeholders to use in expressing their 
Mission Questions about possible software behavior, such that those questions can be 
readily mapped into machine-readable languages with sufficient precision to guide 
automated analysis. 

• Study EPC using Human Factors methods to understand how human reverse engineers and 
analysts evaluate different hypotheses, synthesize evidence, and ultimately produce high-
level answers out of low-level software properties.  

• Produce cognitive maps that describe the landscape of concepts and processes for manual 
HQD and EPC. 

• Identify natural and expressive languages for presenting evidence packages to mission 
stakeholders which are informative and actionable, identifying useful abstractions and 
summaries while accommodating detailed questions of providence and certainty. 

• Develop recommendations for tooling to augment the human reverse engineers and 
analysts, reduce their cognitive load, and improve their efficiency.  

• Develop approaches to increase automation of the HQD and MQB processes. 
• Develop approaches to increase automation of the EPC processes. 

 
5.7.2 R7.2: Applications from Formal Software Verification 

As stated in the introduction, the focus of this roadmap is on challenges of reverse engineering, not 
forward engineering. However, there is a thriving field of study centered around formal verification 
of software requirements and software implementations during software design and development 
in forward engineering contexts. This work on formal verification of software requirements can 
provide insight which can be leveraged in reverse engineering contexts. This roadmap can leverage 
this existing field of work and benefit from inspiration drawn from hierarchical reasoning 
approaches used in formal verification. 

Research, development, and engineering are needed in the following areas: 

• Study formal hierarchical reasoning approaches in other formal domains (such as software 
verification) and assess techniques for applicability to HQD and EPC. 

• Develop an ontology of different properties about software, including known categories 
used in formal methods such as safety properties and liveness properties, and relate these 
properties to different kinds of software analysis that might be suitable for obtaining 
answers. There is significant existing work on software properties, but the categories need 
more granularity. 

• Develop conceptual frameworks for categorize or characterizing mission questions, based 
on what kind of software properties are relevant to answering that high level mission 
question. 

• Develop a clear language and process for translating abstract, high-level questions about 
software into specific low-level questions about software properties.  

• Develop strategies for communicating with mission stakeholders about sensitive or critical 
information and decisions in software. For example, if a mission owner wants to ask whether 
an authentication bypass exists in the system, the analysis tools will need to know what 
“authentication” looks like in this system; knowing whether your critical information can be 
changed without authorization requires identifying what is “critical” as well as what 
comprises “authorization”. 
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5.7.3 R7.3: Analysis Evidence and Provenance Collection 

Current software analysis techniques are designed to present final answers only, and rarely show 
any reasoning behind each answer. For example, an analysis designed to find bugs will reveal 
candidate points that the analysis has concluded are “potentially bugs”, perhaps with some 
additional bug type information, but without any comprehensive chain of reasoning that led to the 
analysis’ conclusion. This stands in stark contrast to how most reverse engineers operate today, 
where notetaking and evidence collection are paramount for (1) documenting why a conclusion was 
reached and (2) allowing others to quickly verify and reach the same conclusion.  

As discussed in CC4, just as system designers understand how to design for test and design for 
manufacturability, so do analysis tool designers need to design for introspection or design for 
debugging. That is, researchers must build analysis tools that can be introspected to understand why 
they go wrong (when they do), why they gave the answer they did, what evidence was used to 
inform a decision, and how faulty information may influence the output. 

In principle, automated analysis systems can also collect this kind of evidence and make it available 
for users to see. Further research, development, and engineering are needed in the following areas: 

• Study the evidence needs of reverse engineers to be able to investigate and keep track of 
the basis for software understanding conclusions. 

• Study the debugging needs of tool developers to be able to identify problems, track 
provenance of those problems through the tool’s computations, correlate intermediate tool 
information back to the software being analyzed, and identify root causes of failures. 

• Develop novel techniques for recording evidence and reasoning during automated analysis, 
for later presentation to the user. 

• Research effective methods to share the provenance of automated analysis conclusions with 
users. This can be a difficult task because the set of all related evidence for a given 
conclusion is often too large to represent all at once—it must be filtered or summarized. 

• When composing evidence at the conclusion of a campaign (Step #6 in Figure 6 most of the 
intermediate analysis details used in earlier steps is not needed and can be elided. But 
mission owners may pose follow-up questions about the provenance or explainability of the 
answer. In such cases, the analysis campaign system will need to retain adequate 
information to provide the necessary evidence. For various mission questions, study 
evidence needs for mission owners to have confidence in analysis results, identifying 
techniques to guide efficient and effective data retention, at what stages to retain the data, 
and at what level of precision it should be retained. 

 
5.7.4 R7.4: Analysis Confidence Under Uncertainty 

There are some software understanding tasks for which complete certainty in the answer is a 
necessity: for example, “can my nuclear weapon be used without authorization?” must be a certain 
“no.” These cases, for which analysis answers must be provably perfect (or as close to perfect as 
anyone can possibly get) are called “assurance” cases. 

For other software understanding problems, complete assurance is unnecessary—we only need a 
useful answer, complete with the best available (but not necessarily ironclad) evidence. The authors 
call these problems “evidence” cases. For example: “this segment of code used in the power grid 
appears to have a backdoor present” is a powerful analysis result, even if the analysis was only 50% 
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confident in the answer. It is well worth the cost in such cases to invest in further scrutiny and 
manual checking. 

A critical shortfall arises when the mission warrants an assurance case, but the available capabilities 
can only provide an evidence case.  In such cases, analysis systems need to be capable of reasoning 
in the presence of uncertainty, and still producing results that have some level of confidence.  

Research, development, and engineering are needed in the following areas: 

• Study how mission owners make decisions from limited evidentiary bases. 
• Review applicable techniques from the field of uncertainty quantification for application to 

software understanding. 
• Developing novel techniques for measuring and tracking uncertainty in software analysis 

and performing analysis in the presence of uncertainty. This includes measuring and 
tracking the confidence of analysis results. 

• Developing techniques to perform analysis on partial systems, where parts of the software 
system (such as external libraries or configuration) are unknown. 

• Documenting the assumptions made by various analysis techniques and folding those 
assumptions into analysis uncertainty/confidence.  

• Combining the answers from multiple kinds of analysis together on a single question, and 
deciding which answer is most likely in the presence of conflicting analysis results with 
varying levels of confidence. 

 
5.7.5 R7.5: Artificial Intelligence Approaches to HQD and EPC 

HQD and EPC are complex processes which involve fuzzy, not-clearly-defined boundaries, and 
intelligent decision-making. Thus, these processes are prime candidates for automation via ML 
approaches.  

Existing LLM techniques are effective at reading questions and predicting coherent text responses to 
those questions. HQD could be framed as a similar text-based problem where high-level questions 
are phrased as text inputs and the decomposition is a text-based, somewhat formal description of 
lower-level software properties necessary for the high-level question.  

Research, development, and engineering are needed in the following areas: 

• Study LLM techniques in understanding human language in HQD and EPC. 
• Produce datasets that capture the results of analysts manually performing HQD or EPC, for 

use in training AI models. 
• Extract features from human language that represents high-level mission questions. 
• Experiment with training LLMs on software analysis questions and answers. 

5.8 R&D Challenge, R8: Datasets, Benchmarks and Ground Truth 

Research and development programs require some method for measuring progress. In software 
understanding, progress is measured on the macro scale by showing that capabilities to analyze 
software for a variety of software understanding mission problems is improving generally over time. 
Having a method of measuring progress is useful not only for the research program as a whole, but 
also for measuring progress on individual challenges, comparing different tools, and guiding 
research towards the most objectively successful approaches. Measuring progress of individual 
software understanding research problems involves at least three facets: having a question to 
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answer (whether a high-level mission question, or a very specific low-level question); having a 
software sample to analyze; and knowing what the correct answer is (i.e. ground truth).  

Unfortunately, in software understanding, the phrase “correct answer” can be misleading as there 
are not always universally-agreed-upon definitions. For example, there are multiple definitions of a 
basic block; consequently, different analysis tools may give different “correct” answers according to 
these different definitions. As another example, when measuring successful function identification 
in a binary, should any boilerplate or helper functions inserted by the compiler or linker be included 
or not? Should interrupt handlers be included? Must all dead code be included? Is a tool “wrong” if it 
does not include some of these, is it “right” to exclude some, or is there some compromise in the 
middle? To compare answers objectively, either the “ground truth” representations must reflect a 
reasonable set of “correct” answers, or the community must standardize their definitions. 

Once researchers have a sufficient collection of mission-relevant questions, representative samples, 
and true answers, they can use that collection to measure the progress of their automated tools. 
The more closely automated tools’ answers are to the correct answers, the more the capability is 
improving; the more samples automated tools can correctly analyze, the more robust the capability 
is. In addition, having labeled datasets of software understanding questions and software samples 
can enable the nation to leverage ML techniques on those questions, if these datasets are built with 
ML requirements and applications in mind.  

The idea of producing a large corpus of datasets to provide a global measure of progress is 
appealing. However, good datasets and benchmark problems also provide a potential interface 
between those who  discover a problem and those who may be capable of developing a solution. A 
team doing research in one area, e.g. semantic labeling, may find that they are frequently hindered 
by the inability of current tools to resolve common control flow questions. By producing a dataset 
that is representative of the problems they need solved, whether through a micro-benchmark or 
larger examples, they open a challenge to the rest of the community. Another team, perhaps 
working in symbolic execution, may not have realized that certain constructs were a common issue, 
but by downloading the dataset they have a way to know whether they are making meaningful 
progress on an important problem. 

Currently, large, labeled collections of this kind are hard to come by in the software understanding 
space. For representative samples, analysts rarely have complete and true answers to software 
understanding questions documented. Analysts have some answers, particularly for samples that 
government or other organizations have analyzed before, but even in those cases analysts do not 
have a guarantee that the answer produced previously is complete and true. For example, one 
might initially consider a CVE for a piece of software as “ground truth” for the question of “how is 
this software vulnerable?”, but the presence of one vulnerability does not indicate there are no other 
vulnerabilities present. How could researchers grade tools if they are producing additional results 
besides the expected one, and no one knows a priori whether those results are correct or not? 
There is a real sense in which the current solution space is more reflective of the state of tools than 
the state of the problem. The nation’s capability suffers from the streetlight effect— the capability 
only looks and finds things where it is currently easy to look. 

Alternatively, researchers could use non-representative samples (generated code or very simple 
samples) for which generating true answers is easy, but there is no guarantee that progress on such 
samples is indicative of progress on the real research challenge. Researchers must be cautious with 
such an approach because non-representative samples can easily hide the true depth of the 
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research challenge and trick decisionmakers into going down research avenues that prove 
ultimately infeasible when applied to real software understanding missions. 

Another factor to consider is that automated analysis tool successes may not generalize well to the 
broad scope depicted in Figure 2 when the tools are highly tailored to specific types of questions, 
and specific types of software, leveraging non-generalizable heuristics to make progress. This quote 
illustrates the issue: 

For better coverage, mainstream tools incorporate heuristics in nearly every phase of disassembly. 
These heuristics are heavily used in disassembling real-world binaries and, without them, the tools 
cannot provide practical utility in many tasks.52 

Some of these issues motivate the need for R8.2, R8.3, and R8.4 below. 

Nevertheless, for some fields of software analysis, limited collections of samples with known 
answers have been published and used to measure tools53. Sometimes these datasets have 
instigated an explosion of new research and led to tremendous advances in software analysis 
capabilities54. In this thrust, the authors seek to lay the research foundations for datasets that can 
spark more explosions of research in a variety of software understanding fields.  

5.8.1 R8.1 Ground Truth Representation Standards 

Representing a true answer to a software understanding question can be challenging. Some 
software questions are ambiguous and admit multiple different answers that are all equally “true.” 
Some software questions require a good deal of drilling down on exactly what the questioner wants 
in order to come up with a consistent meaning for what the answer should be. Even without these 
problems, defining a common format to cover a wide range of software questions and software 
types is not a trivial task.  

Even for extremely simple questions, defining a ground truth can be elusive. As an example, given a 
simple “Hello world!” program, compiled as an x86 ELF binary, eight different tools returned the 
following number of assembly instructions: 

• Radare – 77 
• BAP – 105 
• Emulated Angr – 28 
• Ddisasm – 111 
• Objdump – 116 
• Ghidra – 112 
• IDA Pro – 103 
• Binary Ninja - 107 

What is the ground truth for disassembly? This is a trivial program with 2 lines of C code, a printf call 
and a return. Upon manual inspection, all of the tools got it “right”. They all had all of the 
instructions that were part of the main function, but made different choices about how to handle 
things like linker inserted code, startup code, etc. This is just one example of the kind of ambiguity 
that can exist in trying to define truth for a given question. 

 
52 Pang, Chengbin et al. “SoK: All You Ever Wanted to Know About x86/x64 Binary Disassembly But Were Afraid to Ask.” 2021 
IEEE Symposium on Security and Privacy (SP) (2020): 833-851. 
53 Examples include https://sv-comp.sosy-lab.org, https://taintbench.github.io, and https://nvd.nist.gov. 
54 See https://sv-comp.sosy-lab.org 

https://sv-comp.sosy-lab.org/
https://taintbench.github.io/
https://sv-comp.sosy-lab.org/
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Research, development, and engineering are needed in the following areas: 

• Develop standard, cross-architectural representations for key software understanding 
program information (e.g., program locations and offsets, data values, control and data flow, 
symbols, etc.). 

• Develop standards of software understanding answers that reflect the underlying ambiguity 
in ground truth of analysis results, as discussed in the introduction to this section. 

• Create standard ground-truth file formats for the datasets in R8. 
• Create a library of translation components to read and write these formats, translating from 

other popular formats. 
 
5.8.2 R8.2 High-level Datasets and Benchmarks 

One vital element in measuring progress for a software understanding capability is testing that 
capability on real, high-level mission questions. Examples of high-level mission questions can be 
found in Appendix A of “The National Need for Software Understanding”. The key aspect of these 
kinds of questions is that they correlate to real mission needs, and if the software understanding 
capability advances on these questions, it provides strong evidence that the nation is advancing 
towards exactly the right capabilities. One major downside of using real, high-level mission 
questions is that they are often ambiguous, making it very difficult to establish ground truth. Given 
the importance of the many mission questions with national security impact, it is somewhat 
surprising that a large and broad set of examples is not available to help motivate research and 
demonstrate the breadth and scope of needed capabilities. 

Research, development, and engineering are needed in the following areas: 

• Studies of mission question owners and decision makers to understand what types of high-
level mission questions would be of interest across various domains. 

• Develop a series of high-level datasets, including mission questions, sample programs, and 
ground truth answers. Each dataset should focus on a single high-level mission question of 
general interest across government; optionally, each mission question could have a detailed 
breakdown (see R7), mapping the high-level question about the software into very specific 
low-level information to gather for each sample.  

• Samples should vary across size, complexity, architecture, and expected operating 
environment; samples should include source code, intermediate compilation artifacts, debug 
and production versions, and executables for a variety of architectures. 

• Curate a high-quality representation of the ground truth for the dataset samples described 
above. 

 
5.8.3 R8.3 Low-level Datasets and Synthetic Benchmarks 

There are many different things that need to be modeled to analyze general programs (see R3). A 
principled scientific exploration involves designing experiment that vary one parameter at a time, 
controlling for as many other variables as possible. To systematically study software analysis 
algorithms, researchers need datasets that explore many points along independent axes in 
isolation. Researchers also need samples that combine these axes in controlled ways. And for all of 
these, researchers need samples for which the ground truth is known with high confidence. 
Programs that meet these criteria will likely need to be synthesized. 
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Static analysis is difficult; analyzing final executables injects uncertainties which compound those 
difficulties. Consequently, researchers also need datasets that factor out the “binaries are hard” 
aspects of the challenge. This means the datasets above need to come with a range of artifacts, such 
as source code, intermediate compiler artifacts, object files, final executables with and without 
debug symbols, stripped executables, and raw executables such as would occur in a firmware 
image. 

The simplest example of a low-level dataset is a micro-benchmark. Micro-benchmarks attempt to 
isolate a specific challenge or difficult construct in the simplest possible environment to eliminate 
other confounding variables. 

Research, development, and engineering are needed in the following areas: 

• Develop and curate micro-benchmark sets that exemplify specific program analysis 
challenges with known ground truth. 

• Develop techniques to generate larger synthetic program samples which contain specified 
program analysis difficulties and have known answers to specific software understanding 
questions. These synthetic programs can form the basis of datasets that test specific low-
level software understanding capabilities. 

• Develop techniques for measuring select characteristics of existing, mission-relevant 
software to guide the development of synthetic benchmarks. Such guidance is vital to 
ensure that datasets are relevant to real-world systems. 

• Extend the above techniques to apply to a variety of source languages, like C, C++, Ruby, 
Python, Rust, Go, and intermediate languages, such as Java byte code, .NET byte code, 
Javascript, etc. 

• Develop a taxonomy for challenges in program analysis, and develop tools to modify 
individual different axes of software complexity such as: program size, degree of control flow 
indirection, maximum stack depth, dataflow complexity, degree of heap object usage, etc. 

 
5.8.4 R8.4 Dataset Repository 

A repository for software understanding is needed to store the outcomes of R8.1, R8.2, and R8.3 and 
to support other related goals. With some structure, a software understanding repository could 
demonstrate extreme breadth across both the space of mission questions asked and the space of 
software under analysis. Such a repository could support the evaluation of tools, serve to motivate 
research and development, facilitate learning, and build more integrated communities of 
practitioners. 

Datasets need curation, need to be easily discoverable, need structure appropriate to the objectives 
of the repository, and need to better serve the needs of researchers. One possible standard to 
consider for managing dataset information is Findable, Accessible, Interoperable, and Reusable 
(FAIR).55 Although file sharing and revision control systems (such as Bitbucket,56 Github,57, 
SourceForge,58 etc.) can be used to store and share files, and afford some ability to tag and organize 
files, the popularity of custom repositories from other communities demonstrate that simple file 

 
55 https://www.go-fair.org/fair-principles/ 
56 https://bitbucket.org/ 
57 https://github.com/ 
58 https://sourceforge.net/ 
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sharing tools are insufficient—for example, Kaggle,59 Hugging Face,60 the Grand Challenge in 
biomedical imaging,61 and Zenodo,62 a more general repository that seeks to support scientific 
research in general. Given the scope of the software understanding problem, a repository created 
specifically to support software understanding research will likely prove quite valuable. 

One conclusion from the SUNS 2023 workshop was that datasets and repositories is a top five 
obstacle in the way of progress, with many researchers expressing frustration at the current state. 
Different researchers ultimately have different needs, and it may not be possible to meet all needs 
with a single repository. However, it is likely that many needs can be met. 

Research, development, and engineering are needed in the following areas: 

• Evaluate popular repositories from other communities to identify principles of success that 
may transfer to a software understanding repository. 

• Engage in human factors studies of various software understanding developer and user 
communities to identify common use cases which can guide development of a software 
understanding dataset repository. Such studies would identify needs for ontologies, 
taxonomies, tags, and other organizational approaches.  

• Engage in human factors studies to identify educational gaps that a software understanding 
dataset repository may help address in developing an expanded workforce to engage in 
software understanding capability research and development. 

• Develop repository options that can not only passively house dataset files, but which can 
actively run a stock set of available tools on dataset samples to characterize those samples 
for later search and retrieval. 

• Develop repository options that can also actively run stock analysis tools to assess their 
performance and effectiveness at various software understanding tasks. Such a repository 
can help measure progress over time (leveraging datasets from both R8.3 and R8.2) and also 
help identify which tools and approaches are most suitable to different mission questions 
and problem sets. 

• Investigate the use of the repositories listed above as training opportunities for ML-informed 
recommender systems to help mission owners select the appropriate tool or sets of tools for 
specific tasks (see CC2). Additionally, investigate the applicability of these tools for informing 
the analysis campaign orchestration of R5.4. 

6 Discussion on Prioritization and Sequencing 
The roadmap articulated in this document cannot be tackled all at once. Even if financial and 
personnel resources were immediately available, the authors do not advocate tackling all research 
thrusts listed above simultaneously. Some research, development, and engineering outlined in this 
roadmap is more foundational and is critical to explore early, with other thrusts building atop those 
over time. This section will briefly lay out the authors’ considerations on prioritization, sequencing, 
and other scheduling concerns of the research thrusts. 

 
59 https://www.kaggle.com/ 
60 https://huggingface.co/ 
61 https://grand-challenge.org/  
62 https://zenodo.org/ 
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The roadmap can be approached with three different perspectives, each described in more detail 
below: 

1) Validate the composable modeling hypotheses, 
2) Start with the foundations, and 
3) Crawl, Walk, Run. 

These perspectives are not necessarily exclusive.  

6.1 Validate the Composable Modeling Hypothesis 

The financial practicality of solving the software understanding problem requires massive reuse of 
components designed to be composable. These two points comprise the foundational assumptions 
upon which this roadmap rests (see FA1 and FA2). Identifying a path forward to accomplish this is 
paramount to the feasibility of this roadmap. If this can be done, the rest of the roadmap is likely to 
fall into place, but if it cannot, then the U.S. government may face some incredibly challenging policy 
decisions about national risk from software. 

Therefore, initial investigations should focus on validating FA1 and FA2. The authors recommend 
validating these assumptions by selecting a small set of proof-of-concept scenarios aligned with 
Figure 2 to drive initial experiments, not attempting to support all systems or questions of interest 
but focused on validating the key hypothesis around composable modeling. Executing these 
experiments will touch on the Cross-Cutting Approaches (see Section 4), semantic knowledge 
inferencing (R6), and many of the other research, development, and engineering thrusts and sub-
thrusts of the roadmap, but far from all. Exploring an end-to-end proof-of-concept of the vision of 
this roadmap on a small number of more tractable questions and software artifacts will provide 
valuable early insight which can inform a revision of this roadmap. 

The authors recommend that the initial experiment be comprised of three research groups, three 
mission questions, and three modest software applications from different domains, running on 
three different systems. Selecting one or two is too few to explore the modular and composable 
assumptions of the roadmap but selecting four or more is perhaps unnecessary work for an initial 
evaluation. 

6.2 Start with the Foundations 

In exploring the foundations of software understanding, R1-R4 should generally come before R5-R7. 
Success in R1-R4 would provide robust and impactful software analyses tools and building blocks for 
later challenges to leverage. Success in R5-R7 would assemble those building blocks in increasingly 
powerful ways. More specifically, the following research areas are most useful to address early in a 
research and development program. Three factors were considered in selecting these items for 
prioritization: their results are foundational and informative to other thrusts, they have known 
starting points or approaches, and they are more likely to yield nearer-term results. The research, 
development, and engineering thrusts recommended as priorities are: 

• R8 (Datasets, Benchmarks, and Ground Truth): The creation of datasets and benchmarks 
benefits and motivates all the other research areas by enabling systematic and scientific 
measurements of progress and, consequently, the identification of gaps. In particular, the 
research thrusts R8.3 (Low-level Datasets and Synthetic Benchmarks) and R8.2 (Dataset 
Repository) would help to facilitate the progress of other thrusts by producing datasets to 
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focus later research and development. These already have viable approaches identified that 
could be pursued in a short-term time frame.  

• R1.4 (Compositional Reasoning) and R2.2 (Compositional Analysis Architectures): As 
discussed in FA2, compositionality is a key facet of developing a software understanding 
capability that can scale to meet all the needs of the U.S. government depicted in Figure 2. As 
a result, experimenting with techniques and architectures that promote compositionality is 
useful earlier rather than later. There are many lessons learned regarding composability in 
other fields which can accelerate progress. 

• CC4 (Design for Introspection and Debugging) for R2 (Analysis Architectures and 
Automated Tool Synthesis): There are a few open source tools available today which are 
aligned with early stages of this roadmap. In many cases, scaling those tools up to mission-
relevant questions and software involves digging deeply into the tool to understand where it 
goes wrong. Today, because of the large volume of state involved, this rapidly becomes 
overwhelming to the tool developer. Developing approaches to facilitate debuggability of 
software understanding tools during develop is an early investment that will pay dividends 
during the balance of the roadmap, as well as helping near-term activities improve their 
tools more quickly. 

• R3 (Software Execution Modeling): As explained in BR2 (Software Understanding as a 
Chain-Link Problem), some of the weakest links of software understanding capability relate 
to modeling software execution. For many tools, when software execution is not modeled 
adequately, analysis tools lose precision and fail to yield useful results. All of the areas within 
this challenge are important for some software understanding missions, but R3.4 (Memory 
Use Modeling) and R3.5 (Indirect, Interrupt, and Exceptional Control Flow Modeling) and R3.6 
(Operating System Interaction Modeling) are very common limiting factors in achieving 
useful analysis results. Shoring up these weak chains in a general, reusable fashion would 
significantly improve the effectiveness of many software understanding tools.  

• R1.2 (Approaches for Guiding Precision vs. Abstraction Tradeoffs): there are many tools 
that leverage various software analysis techniques to get answers when they can. The scale 
of the nation’s software understanding challenges (see Figure 2) requires scaling to much 
larger programs while contemplating a broader set of questions than existing tools can 
support today. Extending existing techniques and innovating new ones are not only essential 
for long-term success but could also be retrofitting into existing software analysis tools to 
extend their reach and utility. 

• R2.6 (Adequate Foundational Tooling for Target Binaries): Currently, the lack of 
adequate, reusable program analysis frameworks for all target binary formats and CPU 
architectures of interest presents a substantial barrier to research and the development of 
software understanding analysis tools. With a moderate degree of research and engineering 
effort, the research community can begin to address that barrier and accelerate the 
development of near-term software understanding tools even before the broader aims of 
the roadmap are addressed. Performing early experiments to inform the development of 
standard interfaces for such tooling would be an early focus that will make later efforts 
easier to adopt. 

Finally, many of the research challenges in this roadmap start with some form of “Studying” the 
problem to gain insight. In general, these should be prioritized earlier in the timeline of 
implementing any roadmap. These “study” activities represent the research needed to understand 
the particular challenge area well enough to identify key challenges and approaches most likely to 
succeed. 
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6.3 Crawl, Walk, Run 

Once the scope of the NS&CI software understanding problem is understood, the first question 
typically asked is, “How can the nation do this without having to boil the ocean?” That is, how can 
progress be made on such a large task as developing a radically improved national software 
understanding capability, especially given that it is a chain link problem (described in BR2)? 

An incremental strategy is needed, starting from the practical limitations of today, leading toward 
the aspirational future. Metaphorically speaking, this is often called crawl, walk, run. 

Several of the challenges in this roadmap could be sequenced to lay out a path of incremental 
improvements, (see the previous sub-section) while many others are interdependent and resist 
sequential consideration.  Even those that can be sequenced are still often quite large on their own. 
Below, the authors offer a selection of practical strategies for breaking up the larger challenges into 
smaller, manageable pieces: 

• Start by studying the problem itself, not seeking to immediately solve it, but instead to 
understand it in terms of goals and performing experiments to gather information that may 
provide insight into how to structure the solution. 

• Study related problems in neighboring fields to see how others have solved similar 
problems. 

• Perform controlled experiments, in which as many chain links as possible (see BR2) are 
“stubbed-out”, reducing the overall complexity of the research challenge. 

• Varying the complexity of the experiments incrementally, modifying one variable at a time in 
systematic ways. 

• Tackle simpler mission questions first, then move on to more complicated ones. Mission 
Questions focused on differences between programs may be easier in many ways (e.g., is 
this program different anywhere other than this one function I think I changed63). 

• Start with smaller, less complex software samples rather than large, complex ones. 
• Start with programs for which source is available, using that source and other intermediate 

compiler artifacts to accelerate learning about the challenges, the successes, and the 
characteristics of the approach. 

• Instead of attempting to solve a high-level mission question, manually produce a 
Hierarchical Question Decomposition (R7) and identify a small collection of low-level, 
focused questions to begin—for example, What are all the possible values function X might 
return? or What are the possible destinations of this indirect control transfer? 

• Instead of a fully-automated tool, present intermediate results into existing reverse 
engineering workflows (e.g., push results into Ghidra), enabling the human to interact with 
the results. 

• Rather than attempting to fully automate a challenge immediately, prefer strategies that 
blend human developers or analysts with the incrementally capable and automated tools. 

 
63 Draper Laboratory’s Comparative Binary Analysis Tool is designed for mission questions like this. 
https://apps.dtic.mil/sti/trecms/pdf/AD1163850.pdf  

https://apps.dtic.mil/sti/trecms/pdf/AD1163850.pdf
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7 Summary and Conclusions 
The challenge of understanding software has been growing for decades and will not be solved 
quickly and easily. The U.S. government and economy reap trillions of dollars in benefit each year 
from the use of software but are also increasingly incurring rising costs from behavior in that 
software which puts U.S. NS&CI missions at risk. 

The nation cannot effectively address risks it cannot understand. The roadmap described herein is a 
first step toward addressing these risks by developing the capabilities necessary to understand the 
risk to mission arising from its use of software. 

The research and development in R1 will strengthen and advance the theoretical, mathematical, and 
scientific foundations upon which software understanding techniques and tools depend. The 
architectures and tool synthesis algorithms in R2 will define the structure of analysis tools and the 
algorithms for generating them. R3 and R4 will produce the reusable software modeling 
components need by the tools of R2. Individual analysis tools will be developed to work together in 
an ecosystem of tools which together can execute an analysis campaign through the innovations of 
R5. The efforts of R6 will enable the models of R3, the tools of R2, and the ecosystem of R5 to work 
together to infer high-level, useful information from low-level details. This analysis ecosystem will be 
driven from a hierarchical decomposition of mission questions and produce output to be composed 
into answers through the advances of R7. And the models, tools, and overall ecosystem will be 
supported by the benchmarks, datasets, metrics, ground truth, and evaluation strategies of R8.  

In addition to the research and development involved in this vision, practical development of 
mission-impactful capabilities will also require substantial engineering, technical collaboration 
infrastructure, zero-friction sharing policies, competitive constructs to spur innovation, and top-level 
government support to embrace technology transitions. Workforces will need to shift as old 
approaches can be phased out and replaced with more advanced and automated ones. Human 
capital pipelines will need to be established to develop the talent necessary to discover the 
innovations needed. International partnerships will be needed to identify win-wins that can bring 
the best talent in the world together to bear on the shared aspects of these challenges. 

Just as the war against cancer could not have made the progress it has through independent, 
uncoordinated efforts, accomplishing this vision necessarily requires an enduring, coordinated 
investment, collaboration, and sharing strategy. The interconnectedness of the research thrusts 
listed in this roadmap is testament to both the barriers which have limited progress to date and the 
degree of coordination that will be required to fundamentally improve that rate of progress.  

Given the predominance of software systems across the globe, the nation that learns best to reason 
about software through a roadmap like this will dominate global geopolitics for the next century.  
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