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Abstract. Programming on modern computer architectures requires
logic to utilize both multi-threaded CPUs and accelerators such as GPUs.
This can be fraught with errors relating to transmitting and accessing
memory not available to all compute resources. Moreover, once the pro-
grammer writes correct code for one system, it is often slow or incorrect
when run on a different architecture. A bottom-up approach to solv-
ing this problem is reified in the C++ library Kokkos. We approach the
problem top-down, distilling and generalizing concepts found therein. We
design a small language, called H-IMP—which builds on an earlier model
of Kokkos called MiniKokkos—with a type system that includes notions
of device memory, accelerators, and safe memory access. We show that
a well-typed program is safe, which in this context means that there are
no heterogeneous memory errors. Our type system enables us to define a
precise notion of a portable program as a program with free variables rep-
resenting where data is stored and kernels are executed. Finally, we prove
a portability theorem for heterogeneous programs: that the program can
run safely when instantiated on a specific set of architectures.

Keywords: programming languages; high-performance computing; het-
erogeneous computing; portability

1 Introduction

Modern compute nodes are structured with a host CPU together with other
kinds of accelerators, typically GPUs. While writing any programs that exploit
this hardware is already a difficult task, writing programs that are also meant
to be portable is compounded by the wide variety of GPU and on-CPU accel-
erator systems. To ease programming with such machines and to abstract over
the different hardware architectures, there exist many libraries and languages
which offer a programming model to handle multiple parallel architectures ab-
stractly [2,3,4,5,6,8,10,13,15,9]. In Kokkos [6,13]—a library designed specifically
for portability—accelerators are abstracted into a notion of execution spaces that
we can run kernels on; an obvious example would be a GPU, but another ex-
ample is an OpenMP kernel running on the CPU. To abstract different kinds of
memory accessible to different execution spaces, Kokkos has memory spaces; for
example, a GPU will have its on-chip memory. Importantly, these have different
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performance and accessibility properties depending on which execution space is
being used. The host code, and only the host code, can allocate objects which
exist in these memory spaces; Kokkos calls these objects views.

While Kokkos provides an abstraction that enables portability, using the
C++ library alone does not give us the extra reasoning to know whether our
code is indeed portable. Consider the following program:

Kokkos::View<int *, Kokkos::HostSpace> view ("V", 32);
Kokkos::parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

view(index) = index;
});

Implicit in this code is where the parallel for-loop is executed. Behind the scenes,
this location is chosen by a configured default; this is how Kokkos code can
be instantiated for different systems. If this execution space is configured to be
some on-CPU space like OpenMP, then this code will run without issue. However,
there exist instantiations of this default that will produce problems; for instance,
using a CUDA execution space will result in a memory error when the code
attempts to write to view. Thus, the code is only portable to a specific subset of
systems. Kokkos allows us to avoid declaring the memory space explicitly and it
will choose the memory space so that it matches the execution space, but then
a portable program must include copying between host and this memory space.

To describe a portable, heterogeneous program as a formal property, we de-
velop a small, formal language including these features alone. Our language
includes a type system that takes from two lines of work: region-based memory
management and security type systems. First, our system can be seen as a mod-
ification of the region calculus [12,1] wherein locations are added to variables
to automatically handle allocation and deallocation of objects. Our type sys-
tem also adds locations, i.e. memory spaces, to where Kokkos views are stored.
Second, we take inspiration from languages with features for information-flow
security [11] wherein code is tagged with either low or high security to restrict
permissions. In Kokkos, we think of code being tagged with an execution space
that restricts its permission to access certain memory spaces and operations.
Portability can then be defined by polymorphism over spaces in a manner which
respects these permissions.

Previous work [7] on modeling Kokkos as a small programming language,
called MiniKokkos addressed the problem of deadlocks. Our language H-IMP,
simplifies their execution model to focus on heterogeneous memory and device
permissions. Our contributions include the following:

– A core language (H-IMP) for heterogeneous hardware (Section 2).
– An operational semantics that captures notions of different kernel-executing

machines within a global execution of a program (Section 3).
– A type system that provides static checks on the spaces for both compu-

tations and memory (Section 4). Our appendix contains the detailed proof
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χ ∈ Execution Space ::= Host | Serial | Threads | OpenMP | Cuda | . . .
µ ∈ Memory Space ::= Host | CudaUVM | Cuda | . . .
E ∈ Expression ::= x | x(E) | c | E0 opi E1

S ∈ Statement ::= C;S | ret | decl x := E;S | decl x in µ;S
C ∈ Command ::= set x := E | set x(E0) := E1

| fence(χ) | deep_copy(E0, E1) | kernel(χ, λx0, . . . , xn. S)

Fig. 1: H-IMP Syntax

that well-typed programs are free of heterogeneous memory errors by means
of a realizability model of the type system over its operational semantics.

– An extension to H-IMP to include variables, like default , for execution and
memory spaces. Thereby, we can give a concise, formal definition of what it
means for a program to be portable to other architectures (Section 5). More-
over, our space variables allow us to write programs for portable, multiple-
accelerator nodes that are currently not expressible in the Kokkos library.

2 A Syntax for Computing with Accelerators

Figure 1 presents the syntax of H-IMP. The language is a heterogeneous mod-
ification of the language IMP, a common model for imperative languages [16];
similarly, we construct programs from statements which consist of commands
and expressions. Whereas commands are used to modify program state imper-
atively, expressions compute pure values from the program state. To model the
heterogeneity in a similar manner to Kokkos, H-IMP has execution and memory
spaces. Execution spaces, denoted χ, are more general than mere devices; e.g.
OpenMP is an execution space but may run on CPUs or accelerators. Similarly,
several different kinds of memory spaces, denoted µ, can exist on the same de-
vice; each with different characteristics. For instance, some memory spaces, like
CudaUVM, are accessible from multiple execution spaces.

Though we specify a number of execution and memory spaces in Figure 1,
these are not intended to be fixed sets, which is why they are written with
ellipses. In later sections, we will see how one can expand and contract these
sets as well as describe their accessibility properties to influence the strength
our portability theorem for a specific program.

The imperative features of H-IMP are for mutating variables and views as
well as launching kernels. There are two kinds of commands for declaring local
variables: the first declares a local variable for an expression and the second
declares a view in memory space µ while binding a pointer to it locally. Here,
we require that a view declaration include an explicit memory space where its
data is allocated; this is a necessary intermediate step to describing portable
programs with default spaces in Section 5. Similar to the two kinds of variable
access, we have two different notions of mutating variables: those for views and
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GState ∈ Global State ::= ⟨⟨M ∥ S ||= L ∥ S⟩⟩
LState ∈ Local State ::= ⟨⟨M ||= L ∥ S⟩⟩
Conf ∈ Expr . Conf. ::= ⟨⟨M ||= L ∥ E⟩⟩

M ∈Mach. Mem. Spaces =Mem. Space⇀Pointer ⇀N→Bi

L ∈ Local Mem. =Variable ⇀ Mach. Value
V,W ∈ Mach. Value ::= (µ, π) | c

S ∈ Ex . Space Queues =FIFOEx . Space (Local Mem.×Statement)

Fig. 2: Operational Semantics Syntax

non-views. Other commands available are those for synchronizing the host with
a particular execution space, copying between memory spaces, and launching
new kernels on a particular execution space. The notion of a kernel in H-IMP is
the more general than those found in Kokkos; that is, our kernels consist only
of a particular execution space in which they execute and a set of variables they
copy from the host into the runtime environment (which may itself be the host).

Excluded from this study are loops and conditionals because we focus on the
features related to portability of heterogeneous systems, i.e. those which launch
and control kernels of different accelerators while communicating through shared
variables. We include two key features that enable communication and synchro-
nization: deep copy and fence, respectively. Deep copy enables the movement of
data between views, while a fence blocks until completion of all asynchronous
operations. We do include constants c from a set of base types Bi and operations
over them E0 opi E1 for use in our examples. Indexing into views is done with
natural numbers, which are an example of these constants for the base type N.

3 Operational Semantics

The goal of operational semantics is to model the concurrent execution of ker-
nels from different accelerators alongside a collection of memory spaces within
an abstract machine. The syntax for it is found in Figure 2. It contains three
different kinds of program state for which we define three different notions of
evaluation. All states contain a local environment L that contain local variables.
The largest state, i.e. global state, has access to all of the memory spaces avail-
able, written M, as well as the queues of work for the execution spaces available,
written S. Local states are for kernel execution and consist of local memory, one
statement for execution, and a restricted set of available memory spaces. Local
states cannot access any work queues for execution spaces. Expression evaluation
configurations contain the same information.

The available memory spaces (M) are a partial map from memory spaces to
pointers to indices to values of base types (such as integers). To access a specific
index n of a view π in a memory space µ, we write M(µ)(π)(n); if we just wanted
the particular view, then we would write M(µ)(π); and so on. For simplicity, we
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⟨⟨M ||= L ∥ E⟩⟩ ⇓ V

x ∈ Dom(L)

⟨⟨M ||= L ∥ x⟩⟩ ⇓ L(x)
EVar ⟨⟨M ||= L ∥ c⟩⟩ ⇓ c

EConst

⟨⟨M ||= L ∥ E⟩⟩ ⇓ n L(x) = (µ, π) π ∈ Dom(M(µ))

⟨⟨M ||= L ∥ x(E)⟩⟩ ⇓ M(µ)(π)(n)
EViewDeref

⟨⟨M ||= L ∥ E0⟩⟩ ⇓ c0 ⟨⟨M ||= L ∥ E1⟩⟩ ⇓ c1

⟨⟨M ||= L ∥ E0 op E1⟩⟩ ⇓ c0 op c1
EOp

Fig. 3: Expression Evaluations

assume that if a view is defined then any index into it is defined. This syntax
follows similarly for local memory, but there fewer levels of indirection; that is, we
need only write L(x). Additionally, whereas views can only contain values of base
types c, local memory can contain both values of base types and pointers to views
in memory (µ, π). We use the syntax L[x 7→ V ] to denote either replacing the
current mapping of x in L or to insert a new mapping for x when it does not yet
exist in L. Likewise, we can update our available memory spaces; M[µ, π, n 7→ c]
updates (or inserts) c at the nth index of the view at location π in memory space
µ. We use Dom (short for domain) to ensure variables exist in their respective
environments (local or memory spaces). Finally, we use M|P (µ) to denote the
restriction of the memory spaces to those in the set of memory spaces µ that
satisfy the proposition P .

The execution space queues, denoted S, contained within the global state is
an execution-space-indexed first-in-first-out queue. All of the operations on this
object include a specific memory space. S.empty(χ) is a proposition that is true
if the work queue for execution space χ is empty. S.pusht(χ, (L, S)) publishes a
new task to the end of χ’s work queue. S.head(χ) merely looks at the front of
the queue; whereas S.poph(χ) removes the front of the queue. Finally, we have
S.replaceh(χ, (L, S)) which updates the head of the queue to a new work state.

We first present big-step reduction of expression configurations to machine
values in Figure 3. For variables, we merely look it up in the local memory.
For accessing views, we first evaluate the index with the current state to get a
pointer to a particular view in a memory space, and then we index into M with
it. If the view that we are trying to dereference is not in the local M then we
would not be able to construct an evaluation derivation. In a real program, this
would occur if the current execution space does not have access to that memory
space, since it would not be included in local instance of M. Such a restriction
is upheld when instantiating a kernel by the GXStep rule in Figure 5.

Taking steps locally, which includes execution spaces transitioning, is defined
by the deterministic relation in Figure 4. Declaring and mutating variables both
happen by evaluating the expression and using the result to manipulate the
local environment L. Of course, failing to declare a local variable before setting
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⟨⟨M ||= L ∥ S⟩⟩ 7−→ ⟨⟨M′ ||= L′ ∥ S′⟩⟩

⟨⟨M ||= L ∥ E⟩⟩ ⇓ V

⟨⟨M ||= L ∥ decl x := E;S⟩⟩ 7−→ ⟨⟨M ||= L[x 7→ V ] ∥ S⟩⟩ LDeclVar

x ∈ Dom(L) ⟨⟨M ||= L ∥ E⟩⟩ ⇓ V

⟨⟨M ||= L ∥ set x := E;S⟩⟩ 7−→ ⟨⟨M ||= L[x 7→ V ] ∥ S⟩⟩ LSetVar

L(x) = (µ, π) π ∈ Dom(M(µ))
⟨⟨M ||= L ∥ E0⟩⟩ ⇓ n ⟨⟨M ||= L ∥ E1⟩⟩ ⇓ c

⟨⟨M ||= L ∥ set x(E0) := E1;S⟩⟩ 7−→ ⟨⟨M[µ, π, n 7→ c] ||= L ∥ S⟩⟩ LSetView

Fig. 4: Local Transitions

it will result in a local memory error, so no transition is possible. We may
also mutate views from execution spaces, which has a similar restriction that
the location must be already defined before changing it. Like with the big-step
rule for expressions, M may or may not contain the particular memory spaces
and views to complete a transition depending on the instantiation of the kernel.
Finally, local transitions operate over statements, but do not have the permission
to allocate new views, deep copy, or fence; thus, such statements would be stuck.

Global transitions are described in Figure 5. Intuitively, these transitions
represent the host program, which orchestrates all of the memory and execution
spaces. The first rule GHStep is for when the host takes a step locally in the
same manner as an execution space. Unlike other execution spaces, the host can
also declare a view, with GDeclView , given an unused view location π. We take
M[µ, π 7→ init] to mean that for any n that M(µ)(π)(n) is defined. In GKernel ,
the host program publishes a new unit of work to an execution space’s work
stack; note that it also copies the local variables captured by the λ-expression
in the kernel definition, which can get stuck if the variables are undefined. In
GFence, we see that the program is stuck until the execution space, for which
we are waiting, completes its stack of work. Finishing a unit of work in the
stack is achieved by the two concurrent steps of GXPop and GXStep. The first
removes the work when ret is the waiting statement. The latter selects one of
the execution space queues and takes a single step on it. It is in this rule that we
restrict the valid memory spaces for each execution space when it takes a step;
we use µ ▷ χ for the restricted set of memory spaces µ that are accessible from
χ. Note that because global transitions are non-deterministic, these steps model
the concurrency implicit in the Kokkos machine model.

The following definitions describe how to run programs in our abstract ma-
chine; we will later define safe executions of the machine and our static analysis
will show well-typed H-IMP programs imply safe execution (Theorem 1).

Definition 1 (Initial State). Initial(⟨⟨M ∥ S ||= L ∥ S⟩⟩) where M contains a
set of empty memory spaces and S contains all empty work stacks.
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⟨⟨M ∥ S ||= L ∥ S⟩⟩ −→ ⟨⟨M′ ∥ S′ ||= L′ ∥ S′⟩⟩

C ∈ {decl x := E, set x := E, set x(E0) := E1}
⟨⟨M ||= L ∥ C;S⟩⟩ 7−→ ⟨⟨M′ ||= L′ ∥ S⟩⟩

⟨⟨M ∥ S ||= L ∥ C;S⟩⟩ −→ ⟨⟨M′ ∥ S ||= L′ ∥ S⟩⟩
GHStep

π ̸∈ Dom(M(µ))

⟨⟨M ∥ S ||= L ∥ decl x in µ;S⟩⟩ −→ ⟨⟨M[µ, π 7→ init] ∥ S ||= L[x 7→ (µ, π)] ∥ S⟩⟩
GDeclView

∀i ∈ 0, . . . , n. xi ∈ Dom(L) L′ = x0 7→ L(x0), . . . , xn 7→ L(xn)

⟨⟨M ∥ S ||= L ∥ kernel(χ, λx0, . . . , xn. S0);S1⟩⟩ −→ ⟨⟨M ∥ S.pusht(χ, (L′, S0)) ||= L ∥ S1⟩⟩
GKernel

S.empty(χ)

⟨⟨M ∥ S ||= L ∥ fence(χ);S⟩⟩ −→ ⟨⟨M ∥ S ||= L ∥ S⟩⟩
GFence

⟨⟨M ||= L ∥ E0⟩⟩ ⇓ (µ0, π0) ⟨⟨M ||= L ∥ E1⟩⟩ ⇓ (µ1, π1)

⟨⟨M ∥ S ||= L ∥ deep_copy(E0, E1);S⟩⟩ −→ ⟨⟨M[µ1, π1 7→ M(µ0)(π0)] ∥ S ||= L ∥ S⟩⟩
GDeepCopy

S.head(χ) = (L′, ret)

⟨⟨M ∥ S ||= L ∥ S⟩⟩ −→ ⟨⟨M ∥ S.poph(χ) ||= L ∥ S⟩⟩
GXPop

S.head(χ) = (L′, S′) ⟨⟨M|µ▷χ ||= L′ ∥ S′⟩⟩ 7−→ ⟨⟨M′ ||= L′′ ∥ S′′⟩⟩

⟨⟨M ∥ S ||= L ∥ S⟩⟩ −→ ⟨⟨M|µ▷χ ∪ M′ ∥ S.replaceh(χ, (L′′, S′′)) ||= L ∥ S⟩⟩
GXStep

Fig. 5: Global Transitions

τ ∈ Type ::= Bi | view(µ,Bi)
Γ ∈ Type Environment ::= ε | Γ, x:τ

Fig. 6: H-IMP Type Syntax

Definition 2 (Final States).
For local states, Final(⟨⟨M ||= L ∥ ret⟩⟩).
For global states, Final(⟨⟨M ∥ S ||= L ∥ ret⟩⟩) where S contains all empty work

stacks.

4 Type System

We present the syntax of the H-IMP type system in Figure 6. Memory spaces
are referenced by view(µ,Bi) types, which are pointers to data structures over
the base type Bi and housed within a memory space µ. As a simplification from
Kokkos, we consider views to be arrays of type Bi.

To reason statically about memory spaces and execution spaces of H-IMP
programs, the judgements of our type system require information about where
their computations occur and the information about the memory spaces acces-
sible from each execution space must be supplied. The type system’s rules are
presented in Figure 7. There are three main judgements that all end in @ χ
signifying the execution space wherein the expression, statement, or command
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Γ ⊢ E : τ @ χ

x:τ ∈ Γ
Γ ⊢ x : τ @ χ

TVar
c ∈ Bi

Γ ⊢ c : Bi @ χ
TConst

x:view(µ,Bi) ∈ Γ µ ▷ χ Γ ⊢ E : N @ χ

Γ ⊢ x(E) : Bi @ χ
TViewDeref

Γ ⊢ E0 : τ0 @ χ Γ ⊢ E1 : τ1 @ χ opi : τ0 → τ1 → τ

Γ ⊢ E0 opi E1 : τ @ χ
TOp

Γ ⊢ S @ χ

Γ ⊢ C @ χ Γ ⊢ S @ χ

Γ ⊢ C;S @ χ
TCom

Γ ⊢ ret @ χ
TRet

Γ ⊢ E : τ @ χ Γ, x:τ ⊢ S @ χ

Γ ⊢ decl x := E;S @ χ
TDeclVar

Γ, x:view(µ,Bi) ⊢ S @ Host

Γ ⊢ decl x in µ;S @ Host
TDeclView

Γ ⊢ C @ χ

x:τ ∈ Γ Γ ⊢ E : τ @ χ

Γ ⊢ set x := E @ χ
TSetVar

Γ ⊢ fence(χ) @ Host
TFence

x:view(µ,Bi) ∈ Γ µ ▷ χ Γ ⊢ E0 : N @ χ Γ ⊢ E1 : Bi @ χ

Γ ⊢ set x(E0) := E1 @ χ
TSetView

Γ ⊢ E0 : view(µ0, Bi) @ Host Γ ⊢ E1 : view(µ1, Bi) @ Host

Γ ⊢ deep_copy(E0, E1) @ Host
TDeepCopy

∀i ∈ 0, . . . , n. xi:τi ∈ Γ χ ̸= Host x0:τ0, . . . , xn:τn ⊢ S @ χ

Γ ⊢ kernel(χ, λx0, . . . , xn. S) @ Host
TKernel

Fig. 7: H-IMP Typing Rules

is to take place. For instance, Γ ⊢ E : τ @ χ states that with the local type envi-
ronment Γ the expression E computes a value of type τ in the execution space
χ. Certain commands are only available to the host execution space, the orches-
trater of H-IMP programs. Specifically, the host is the only execution space that
may declare views, fence execution spaces, deep copy views, and launch kernels.
However, we cannot launch kernels for the host; one would instead need to use
the Serial execution space.

Note that the typing environment Γ will only contain variables local to that
execution space. During computation this is thread-local memory; see that the
TKernel rule specifies explicitly the variables that will be copied to its local
memory.

Indexed by some sets of memory and execution spaces, our typing system
depends on a relation µ ▷ χ on Mem. Space ×Ex . Space, which occurred in the
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operational semantics. For the set of execution and memory spaces we gave in
Figure 1, this relation is defined as the following:

(▷) = {(Host, Host), (Host, Serial), (Host, Threads), (Host, OpenMP), (Cuda, Cuda)}
∪ {(CudaUVM, χ) | χ ∈ Ex. Space}

In this relation, CudaUVM can safely be accessed by any execution space χ; of
course, this may not be true if we wanted to consider GPUs from another ven-
dor. The rules TViewDeref and TSetView check that every view referenced is
accessible to the current execution space.

4.1 Safety

We must define a notion safety for each class of computable syntax. Expression
configurations are the simplest: they are safe if they evaluate to a machine value.
Both global and local machine states are safe if they take any number of steps
to either a final state or they can continue to step; i.e. they cannot reach a stuck
state.

Definition 3 (Safe Configurations and States).
For an expression configuration, Safe(Conf ) if and only if Conf ⇓ V .
For an execution-space state, Safe(XState) if and only if XState 7−→∗ XState ′

implies Final(XState ′) or XState ′ 7−→ XState ′′.
For a host state, Safe(GState) if and only if GState −→∗ GState ′ implies

Final(GState ′) or GState ′ −→ GState ′′.

Though this looks like an overly simple notion of safety, it implies that we
are always accessing an accessible view from the current execution space, that
the global state is only manipulated directly by host execution space, and that
variables are initialized before they are mutated. Moreover, it even captures
safety in the notion of concurrency employed by the global transitions; because
for every way that we take a step—there are multiple—we must step to a good
final state or keep stepping.

Theorem 1 (Type Safety). If ⊢ S @ Host, then Safe(Init(S)).

5 Portable Programs

Kokkos programs, and templated C++ programs more generally, require ab-
stracted template variables to be instantiated with concrete types and functions
before a complete binary can be run. The programming language that we just
presented can be seen as a program where all of the decisions about a node’s ar-
chitecture have been decided. However, this is not how the Kokkos C++ library
is intended to be used. We would like H-IMP instead to specify one program that
works for many different architectures. To accomplish this, Kokkos programs do
not need to specify explicitly the memory spaces wherein views are located, or
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the execution spaces whereat kernels are executed. Thus, we may see a source
program (in H-IMP) like the following:

decl x in defaultMem;
kernel(defaultEx , λx. x(0) := 2; ret);
. . .

Before running this program with our machine machine, we must decide how
these default spaces are instantiated. If a program is portable, then it should be
the case that any instantiation of the default spaces produces a safe program.

Definition 4 (Portable Program). A program S is portable if and only if
Safe(Init(S[σ])) for a given set of execution and memory spaces, their accessibil-
ity relation, and any instantiation σ of its free execution and memory variables.

To describe this “templated” H-IMP, we must add memory and execution
space variables to programs, denoted with underlines:

χ ∈ Ex . Space ::= x | χ
χ ∈ Inst . Ex . Space ::= Host | Threads | OpenMP | Cuda | . . .
µ ∈ Mem. Space ::= x | µ
µ ∈ Inst . Mem. Space ::= Host | CudaUVM | Cuda | . . .
∆ ∈ Space Env . ::= ε | ∆, ex x | ∆, mem x

In real Kokkos programs, the default memory and execution space variables
exist implicitly, but only as special space variables. Here, we have the option of
multiple default spaces; consider for instance, a program with defaultEx1 and
defaultEx2 , which could be instantiated on several kinds of two GPU systems.

To statically reason about space variables, we extend our typing judgments
with ∆ containing the free memory and execution space variables. For example,
our expression judgments would have the form Γ ⊢∆ E : τ @ χ. The accessibility
relation now only refers to fully instantiated memory spaces µ ⊵ χ, and we have
a new generalized relation with the judgement ∆ ⊢ µ ▷ χ that we use in the
updated rules from Figure 7.1

∆ ⊢ µ :: MS ∆ ⊢ χ :: ES ∀σ ∈ Inst(∆), µ[σ] ⊵ χ[σ]

∆ ⊢ µ ▷ χ

The judgements ∆ ⊢ µ :: MS and ∆ ⊢ χ :: ES are added to check that a space
is either a variable in ∆ or an instance. This extended type system is strong
enough to give us portability.

Theorem 2 (Typing Ensures Portability). If Γ ⊢∆ S @ Host, then S is
portable.

1 The full type system with the new and rewritten rules is found in the appendix.
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Note well that constructing portable programs is very limited. We cannot
prove the generalized accessibility rule unless we show that for any combination
memory and execution space that they are accessible. For example, we cannot
prove mem default ⊢ default ▷ Cuda, because there exists a memory space inac-
cessible to Cuda execution spaces: Host. Indeed, given the set of execution and
memory spaces of Figure 1 and the relation specified in Section 4 there exist
no portable programs that make use of views with default memory and execu-
tion spaces. Thus, specifying a portable program necessarily includes giving a
restricted set of execution and memory spaces for which it is portable.

6 Conclusion

We have developed a language H-IMP as a distillation of the features for portable
heterogeneity present in Kokkos wherein we can launch kernels for different ac-
celerators. An important notion is that of the permissions for each execution
space, which controls the different types of memory it can access and the oper-
ations that it may perform. Over this language, we defined a type system that
allows us to guarantee that well-typed programs do not misuse heterogeneous
memory. Finally, we defined a notion of portable programs for this language and
noted that there are no meaningful portable programs without specifying the
restricted set of architectures to which a program is portable.

As future work, we plan to enhance the language with the typeclass mecha-
nism [14] found in Haskell. This will allow us to describe portable programs as
those that can be run on any architecture that satisfy some constraint, thereby
avoiding the proviso that we specify a specific set of spaces. For instance, kernel
code could have the type Γ ⊢∆ S @ ∀χ. Host ▷ χ ⇒ χ meaning that it can run
in any execution space that can access host memory. In addition, we imagine an
extension of the types to include more detailed information about the architec-
ture including types representing the parallelism hierarchy of certain execution
spaces and the interaction of kernels with different memory models. Currently,
we are developing a tool for real Kokkos programs that uses this reasoning to
identify the sets of architectures for which a program is portable.
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A Soundess of H-IMP Types

As part of the simplification of Kokkos for this paper, we have the following
assumptions.

Assumption 1 (Memory Space Assumptions)

1. For any µ, M(µ) is defined.
2. For any µ,π,n, if M(µ)(π) is defined, then M(µ)(π)(n) is defined.
3. For any µ, there exists π ̸∈ Dom(M(µ)).

The first assumption is justified because the set of memory spaces is fixed at
the start of runtime and there is no observation a program can make that peeks
at which memory spaces are defined. The second assumption is related to our
simplification of the data within a view; so if a view indeed is accessible, then
for this paper we do not care about the index that is accessed.

Proposition 1. (7−→) is deterministic.

Proposition 2. If Final(LState), then there exists no transition LState −→
LState ′. Similarly for final GState’s.

A.1 A Model over the Operational Semantics

We prove that our well-typed programs will capture our notion of safety with a
realizability model constructed over the operational semantics; the logical pred-
icates or realizers for which presented in Figure 8. There are predicates that
define a well-behaved object for machine values, type environments, machine
memory spaces, expressions, kernels, stacks, and global evaluations; essentially
one for each part of the operational semantics. We do not need step-indexing
because we do not end up in any circular dependency since our semantic memory
spaces do not contain anything other than base types.

Within these relations, the environments, both global and local, L and M are
instantiated at different times. The local can be instantiated right away because
it is modified directly by code, whereas the global store of views may change (in a
type safe-manner) while an execution space is still working. Because a particular
M may change without the code S in a kernel or global state, we instead deal
with it indirectly through Ψ , which forms a Kripke world that the predicates are
part of. Ψ is a map from memory spaces to pointers to base sets. This Kripke
world allows are predicates to be closed over the extension and mutation of views
that will happen during concurrent execution.

Definition 5 (Memory Space Typing Poset). (Ψ,⊑, ε) is the the poset de-
fined by Ψ ⊆ Ψ ′ and ε is used to denote {}.

Definition 6 (Kripke Property). A predicate A has the Kripke property iff
(Ψ ′, . . .) ∈ A for all (Ψ, . . .) ∈ A when Ψ ⊑ Ψ ′.
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Ψ ∈ Semantic Mem. Spaces =Memory Space → Pointer ⇀ Bi

VJBiK = {(Ψ, c) | c ∈ Bi}
VJview(µ,Bi)K = {(Ψ, (µ, π)) | Ψ(µ)(π) = Bi}

LJΓ K = {(Ψ,L) | ∀x ∈ Dom(Γ ). (Ψ,L(x)) ∈ VJΓ (x)K}

M = {(Ψ,M, χ) | ∀µ, π, n. µ ▷ χ ∧ π ∈ Dom(Ψ(µ)) =⇒
M(µ)(π)(n) ∈ VJΨ(µ)(π)K}

EJτK = {(Ψ,L,E, χ) | ∀M. (Ψ,M, χ) ∈ M =⇒
⟨⟨M ||= L ∥ E⟩⟩ ⇓ V ∧ (Ψ, V ) ∈ VJτK}

X = {(Ψ,L, S, χ) | ∀M. (Ψ,M, χ) ∈ M =⇒
Final(⟨⟨M ||= L ∥ S⟩⟩)
∨
∃!XState. ⟨⟨M ||= L ∥ S⟩⟩ 7−→ XState ∧

∃M′, L′, S′.XState = ⟨⟨M′ ||= L′ ∥ S′⟩⟩ ∧
(Ψ,M′, χ) ∈ M∧ (Ψ,L′, S′, χ) ∈ X}

S = {(Ψ, S) | ∀L, S, χ. (L, S) ∈ S(χ) =⇒ (Ψ,L, S, χ) ∈ X}

G = {(Ψ,L, S) | ∀M, S. (Ψ,M, Host) ∈ M∧ (Ψ, S) ∈ S =⇒
Final(⟨⟨M ∥ S ||= L ∥ S⟩⟩)
∨

∀GState. ⟨⟨M ∥ S ||= L ∥ S⟩⟩ −→ GState =⇒
∃Ψ ′,M′, S′, L′, S′.GState = ⟨⟨M′ ∥ S′ ||= L′ ∥ S′⟩⟩ ∧

Ψ ⊒ Ψ ′ ∧ (Ψ ′,M′, Host) ∈ M∧ (Ψ ′, S′) ∈ S ∧
((L, S) ̸= (L′, S′) =⇒ (Ψ ′, L′, S′) ∈ G)

∧
∃HState. ⟨⟨M ∥ S ||= L ∥ S⟩⟩ −→ HState


}

Fig. 8: Logical Predicates for H-IMP.
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Proposition 3 (Predicates have Kripke Property). V, E, L, X , S, and G
have the Kripke property.

View realizers are only defined with respect to the global environment of
views. The notion of a well-behavied view type realizer only checks that the
pointer is indeed in that global environment. This means that an execution space
can pass around and alias an unaccessible view. It is the notions of expression
and statement realizers that guarantee that we use the views in such a way that
we do not get stuck.

Realizers for expressions which compute a type EJτK, kernels X , and global
computations G, all contain some world Ψ and local environment. In every case,
the world needs to be instantiated with a well-behaved machine memory space
M before we can make a statement about the operational semantics state. Ex-
pression realizers are well-behavied when they compute a well-behaved value.
Statements are well-behaved when they are final or take a unique step into a
well-behaved state while preserving the behavior of the machine memory spaces.
The global realizer is the most complex because it has to deal with concurrency.
Like a kernel, a state can be well-behavied if it is final. We must also make sure
that all of the possible states that it can step to are well-behavied; that is, there
exist no bad paths. Finally, we must show that the set of possible future states
is non-empty: that we can keep stepping.

Assumption 2 (Value Safe Operations) For any operation op : τ0 → τ1 →
τ , we know (Ψ, V0) ∈ VJτ0K and (Ψ, V1) ∈ VJτ1K implies (Ψ, V0 opi V1) ∈ VJτK.

Assumption 3 (Safe View Initialization) From M[µ, π 7→ init], we know
that (Ψ,M[µ, π, n 7→ c]) ∈ VJτK for some c : τ .

Definition 7 (Semantic Typing Judgement).
For all χ:

– Γ ⊨ E : τ @ χ iff ∀Ψ,L. (Ψ,L) ∈ LJΓ K =⇒ (Ψ,L,E, χ) ∈ EJτK.

For χ ̸= Host:

– Γ ⊨ S @ χ iff ∀Ψ,L. (Ψ,L) ∈ LJΓ K =⇒ (Ψ,L, S, χ) ∈ X .
– Γ ⊨ C @ χ iff ∀S, Ψ, L. (Γ ⊨ S @ χ)∧ (Ψ,L) ∈ LJΓ K =⇒ (Ψ,L,C;S, χ) ∈ X .

For χ = Host:

– Γ ⊨ S @ Host iff ∀Ψ,L. (Ψ,L) ∈ LJΓ K =⇒ (Ψ,L, S) ∈ G.
– Γ ⊨ C @ Host iff ∀S, Ψ, L. (Γ ⊨ S @ Host)∧(Ψ,L) ∈ LJΓ K =⇒ (Ψ,L,C;S) ∈

G.

We prove that our typing system creates a semantics typing system by show-
ing each rule is sound; these we refer to as compatibility lemmas. Because we
have two different notions of semantic correctness for the host versus an execu-
tion space, we will need two compatibility lemmas for where their typing rules
overlap; that is, TRet , TCom, TDeclVar , TSetVar , and TSetView .
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Proposition 4 (Safe Restriction of Machine Memory Spaces). For any
χ, (Ψ,M, Host) ∈ M implies (Ψ,M|µ▷χ, χ) ∈ M.

Lemma 1 (Safe Kernel Step). For any Ψ , (Ψ,M, Host) ∈ M, (Ψ,S) ∈ S
where S is non-empty, we know the following:

– For any ⟨⟨M ∥ S ||= L ∥ S⟩⟩ −→ ⟨⟨M′ ∥ S′ ||= L ∥ S⟩⟩, there exists Ψ ′ such that
Ψ ⊑ Ψ ′, (Ψ ′,M′, Host) ∈ M, (Ψ ′,S′) ∈ S.

– There is at least one GState such that ⟨⟨M ∥ S ||= L ∥ S⟩⟩ −→ GState.

Proof.
First, consider an arbitrary step that we may take ⟨⟨M ∥ S ||= L ∥ S⟩⟩ 7−→

⟨⟨M′ ∥ S′ ||= L ∥ S⟩⟩. By inspection of the transition rules, there are two rules
that could apply:

Case GXPop:

⟨⟨M ∥ S ||= L ∥ S⟩⟩ 7−→ ⟨⟨M ∥ S.pop(χ) ||= L ∥ S⟩⟩

where S.head(χ) = (L′, ret) for some χ and L′. Here we use the world Ψ
for which Ψ ⊑ Ψ by reflexivity. (Ψ,M, Host) ∈ M follows by assumption.
(Ψ, S.pop(χ)) ∈ S follows by definition and the assumption (Ψ, S) ∈ S.

Case GXStep:

⟨⟨M ∥ S ||= L ∥ S⟩⟩−→⟨⟨M|µ▷χ ∪M′ ∥ S.replaceh(χ, (L′′, S′′)) ||= L ∥ S⟩⟩

By inversion on this transition, it follows that

⟨⟨M|µ▷χ ||= L′ ∥ S′⟩⟩ 7−→ ⟨⟨M′ ||= L′′ ∥ S′′⟩⟩

(Ψ,M|µ▷χ, χ) ∈ M follows by Proposition 4. From the property of (Ψ, S) ∈ S,
we know that (Ψ,L′, S′, χ) ∈ X . This property with (Ψ,M|µ▷χ, χ) ∈ M
yields that (Ψ,M′, χ) ∈ M and (Ψ,L′′, S′′, χ) ∈ X . These facts allow us to
conclude both (Ψ,M|µ▷χ∪M′, Host) ∈ M and (Ψ, S.replaceh(χ, (L′′, S′′))) ∈
S; Ψ ⊑ Ψ holds by reflexivity.

Second, we must show that a step exists. By (Ψ, S) ∈ S and that it is non-
empty, we know that there exists some χ and (Ψ,L, S, χ) ∈ X in its work queue
in S. From (Ψ,L, S, χ) ∈ X with (Ψ,M|µ▷χ, χ) ∈ M, we know that either
⟨⟨M|µ▷χ ||= L ∥ S⟩⟩ is either final or it takes a step. If it is final, then S = ret

by definition and we can step globally by GXPop. Otherwise, we can take a step
by GXStep.

A.2 Compatibility Lemmas

Lemma 2 (TVar). If x:τ ∈ Γ , then Γ ⊨ x : τ @ χ.

Proof. Considering an arbitrary Ψ and (Ψ,L) ∈ LJΓ K, we must show that
(Ψ,L, x, χ) ∈ EJτK. Thus, we further suppose some (Ψ,M, χ) ∈ M. By the
definition of LJΓ K, we know (Ψ,L(x)) ∈ VJτK since x:τ ∈ Γ . Immediately, this is
enough to conclude both ⟨⟨M ||= L ∥ x⟩⟩ ⇓ L(x) by EVar and (Ψ,L(x)) ∈ VJτK.
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Lemma 3 (TConst). If c ∈ Bi, then Γ ⊨ c : Bi @ χ.

Proof. Considering an arbitrary Ψ and (Ψ,L) ∈ LJΓ K, we must show that
(Ψ,L, c, χ) ∈ EJBiK. Thus, we further suppose some (Ψ,M, χ) ∈ M. Immediately,
this is enough to conclude both ⟨⟨M ||= L ∥ c⟩⟩ ⇓ c by EConst and (Ψ, c) ∈ VJτK
by c ∈ Bi.

Lemma 4 (TViewDeref ). If x:view(µ,Bi) ∈ Γ , µ ▷ χ, and Γ ⊨ E : N @ χ,
then Γ ⊨ x(E) : Bi @ χ.

Proof. Considering an arbitrary Ψ and (Ψ,L) ∈ LJΓ K, we must show that
(Ψ,L, x(E), χ) ∈ EJBiK. Thus, we further suppose some (Ψ,M, χ) ∈ M. By
the definition of LJΓ K with the initial assumption that x:view(µ,Bi) ∈ Γ ,
we know (Ψ,L(x)) ∈ VJview(µ,Bi)K. The definition of VJview(µ,Bi)K further
yields that L(x) = (µ, π) and Ψ(µ)(π) = Bi. By Γ ⊨ E : N @ χ with Ψ
and (Ψ,L) ∈ LJΓ K, we have (Ψ,L,E, χ) ∈ EJNK. And when combined with
(Ψ,M, χ) ∈ M, we know ⟨⟨M ||= L ∥ E⟩⟩ ⇓ n and (Ψ, n) ∈ VJNK. This lat-
ter fact gives that n ∈ N. By the property of M and the initial assumption
µ ▷ χ, we know M(µ)(π)(n) ∈ Bi and further that (Ψ,M(µ)(π)(n)) ∈ VJBiK.
The EViewDeref rule with ⟨⟨M ||= L ∥ E⟩⟩ ⇓ n with the previous fact is enough
to prove ⟨⟨M ||= L ∥ x(E)⟩⟩ ⇓ M(µ)(π)(n).

Lemma 5 (TOp). If Γ ⊨ E0 : τ0 @ χ, Γ ⊨ E1 : τ1 @ χ, and opi : τ0 → τ1 → τ ,
then Γ ⊨ E0 opi E1 : τ @ χ.

Proof. Considering an arbitrary Ψ and (Ψ,L) ∈ LJΓ K, we must show that
(Ψ,L,E0 opi E1, χ) ∈ EJτK. Thus, further suppose some (Ψ,M) ∈ M. By
our initial assumption Γ ⊨ E0 : τ0 @ χ with Ψ and (Ψ,L) ∈ LJΓ K, we know
(Ψ,L,E0, χ) ∈ EJτ0K. From this with (Ψ,M) ∈ M, we know ⟨⟨M ||= L ∥ E0⟩⟩ ⇓ V0

and (Ψ, V0) ∈ VJτ0K; we may conclude similar facts about E1. By our assump-
tions about value safe operations, (Ψ, c0) ∈ VJτ0K and (Ψ, c1) ∈ VJτ1K mean that
(Ψ, c0 opi c1) ∈ VJτK. And finally, ⟨⟨M ||= L ∥ E0 opi E1⟩⟩ ⇓ c0 opi c1 by EOp.

Lemma 6 (Non-Host TCom). If χ ̸= Host, Γ ⊨ C @ χ, and Γ ⊨ S @ χ, then
Γ ⊨ C;S @ χ.

Proof. Considering an arbitrary Ψ and (Ψ,L) ∈ LJΓ K, we must show that
(Ψ,L,C;S, χ) ∈ X . This follows from the property of the first initial assump-
tion Γ ⊨ C @ χ with S, Ψ , L, the second initial assumption Γ ⊨ S @ χ, and
(Ψ,L) ∈ LJΓ K.

Lemma 7 (Host TCom). If Γ ⊨ C @ Host, and Γ ⊨ S @ Host, then Γ ⊨
C;S @ Host.

Proof. Considering an arbitrary Ψ , Σ, and (Ψ,L) ∈ LJΓ K, we must show that
(Ψ,L,C;S) ∈ G. This follows from the property of the first initial assumption
Γ ⊨ C @ Host with S, Ψ , L, the second initial assumption Γ ⊨ S @ Host, and
(Ψ,L) ∈ LJΓ K.
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Lemma 8 (Non-Host TRet). If χ ̸= Host, then Γ ⊨ ret @ χ.

Proof. Considering an arbitrary Ψ and (Ψ,L) ∈ LJΓ K, we must show that
(Ψ,L, ret, χ) ∈ X . Thus, we further suppose some (Ψ,M, χ) ∈ M. We know
⟨⟨M ||= L ∥ ret⟩⟩ is a final state by definition.

Lemma 9 (Host TRet). Γ ⊨ ret @ Host.

Proof. Considering an arbitrary Ψ and (Ψ,L) ∈ LJΓ K, we must show that
(Ψ,L, ret) ∈ H. Thus, we further supposing some (Ψ,M, Host) ∈ M and (Ψ,S) ∈
S. In the case that S is empty, ⟨⟨M ∥ S ||= L ∥ S⟩⟩ is a final state and we are done.
Otherwise, the proof follows by the Lemma 1.

Lemma 10 (Non-Host TDeclVar). If Γ ⊨ E : τ @ χ and Γ, x:τ ⊨ S @ χ,
then Γ ⊨ decl x := E;S @ χ.

Proof. Considering an arbitrary Ψ and (Ψ,L) ∈ LJΓ K, we must show that
(Ψ, Γ, decl x := E;S, χ) ∈ X . That is, considering (Ψ,M, χ) ∈ M, we must show
that there is a unique XState such that ⟨⟨M ||= L ∥ decl x := E;S⟩⟩ 7−→ XState
where XState is well-behaved. Uniqueness is guaranteed by the determinism of
(7−→). We do not prove the first disjunct because the original state is not final.
By Γ ⊨ E : τ @ χ with (Ψ,L) ∈ LJΓ K, we know (Ψ,L,E, χ) ∈ EJτK. This with
(Ψ,M, χ) ∈ M yields that ⟨⟨M ||= L ∥ E⟩⟩ ⇓ V and (Ψ, V ) ∈ VJτK. Thus, the
transition LDeclVar applies, thereby making XState be ⟨⟨M ||= L[x 7→ V ] ∥ S⟩⟩.
We have left to show that this state is well-behavied with respect to the world
Ψ . (Ψ,M, χ) ∈ M holds because we have already assumed it. By the definition
of LJΓ, x:τK and (Ψ,L) ∈ LJΓ K, we can say about the extended local environ-
ment that (Ψ,L[x 7→ V ]) ∈ LJΓ, x:τK. And from Γ, x:τ ⊨ S @ χ with Ψ and
(Ψ,L[x 7→ V ]) ∈ LJΓ, x:τK, we know that (Ψ,L[x 7→ V ], S, χ) ∈ X .

Lemma 11 (Host TDeclVar). If Γ ⊨ E : τ @ Host and Γ, x:τ ⊨ S @ Host,
then Γ ⊨ decl x := E;S @ Host.

Proof. Considering an arbitrary Ψ and (Ψ,L) ∈ LJΓ K, we must show that
(Ψ,L, decl x := E;S) ∈ G. That is, considering (Ψ,M, Host) ∈ M and (Ψ, S) ∈
S, we must show that ⟨⟨M ∥ S ||= L ∥ decl x := E;S⟩⟩ is well-behaved. Since it
is not a final state, we must prove the second disjunct.

First, we consider any GState such that ⟨⟨M ∥ S ||= L ∥ decl x := E;S⟩⟩ −→
GState. By inspection of the transition rules, there are three possible cases:
GHStep, GXPop, or GXStep. The latter two cases are covered by Lemma 1.
For the case of GHStep, we know additionally that LDeclVar was used locally
and thus GState is ⟨⟨M ∥ S ||= L[x 7→ V ] ∥ S⟩⟩. We have left to show that this
state is well-behavied with respect to a future world. The future world is the
same world Ψ , which Ψ ⊑ Ψ holds by reflexivity. Left unchanged, the assump-
tions (Ψ,M, Host) ∈ M and (Ψ,S) ∈ S hold. By Γ ⊨ E : τ @ Host with
(Ψ,L) ∈ LJΓ K, we know (Ψ,L,E, Host) ∈ EJτK. This with (Ψ,M, Host) ∈ M
yields that ⟨⟨M ||= L ∥ E⟩⟩ ⇓ V and (Ψ, V ) ∈ VJτK. By the definition of LJΓ, x:τK
and (Ψ,L) ∈ LJΓ K, we can say about the extended local environment that
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(Ψ,L[x 7→ V ]) ∈ LJΓ, x:τK. And from Γ, x:τ ⊨ S @ Host with Ψ and (Ψ,L[x 7→
V ]) ∈ LJΓ, x:τK, we know that (Ψ,L[x 7→ V ], S) ∈ G.

Second, we need to show that a step is always possible. This follows from
the assumption Γ ⊨ E : τ @ Host. That is, we know that we can generate a
well-behaved local environment and take a step with LDeclVar and GHStep.

Lemma 12 (TDeclView).
If Γ, x:view(µ,Bi) ⊨ S @ Host, then Γ ⊨ decl x in µ;S @ Host.

Proof. Considering an arbitrary Ψ and (Ψ,L) ∈ LJΓ K, we must be able to show
that (Ψ,L, decl x in µ;S) ∈ G. That is, further considering (Ψ,M, Host) ∈ M
and (Ψ,S) ∈ S, that ⟨⟨M ∥ S ||= L ∥ decl x in µ;S⟩⟩ is well-behaved. Since it is
not a final state, we must prove the second disjunct.

First, we consider any GState such that ⟨⟨M ∥ S ||= L ∥ decl x in µ;S⟩⟩ −→
GState. By inspection of the transition rules, there are three possible cases:
GDeclView , GXPop, and GXStep. The latter two cases are handled by Lemma 1.
For GDeclView , GState is ⟨⟨M[µ, π 7→ init] ∥ S ||= L[x 7→ (µ, π)] ∥ S⟩⟩ and we
must show that this is well-behaved with respect to a future world. That fu-
ture world is Ψ [µ, π 7→ Bi]. By the definition of VJview(µ,Bi)K, we know that
(Ψ [µ, π 7→ Bi], (µ, π)) ∈ VJview(µ,Bi)K. Since Ψ ⊑ Ψ [µ, π 7→ Bi] and type
environment realizers are closed under future worlds, we have that (Ψ [µ, π 7→
Bi], L) ∈ LJΓ K. By the definition of LJΓ, x:view(µ,Bi)K and (Ψ [µ, π 7→ Bi], L) ∈
LJΓ K, we know that (Ψ [µ, π 7→ Bi], L[x 7→ (µ, π)]) ∈ LJΓ, x:view(µ,Bi)K. And
from the initial assumption Γ, x:view(µ,Bi) ⊨ S @ Host with Ψ [µ, π 7→ Bi] and
(Ψ [µ, π 7→ Bi], L[x 7→ (µ, π)]) ∈ LJΓ, x:view(µ,Bi)K, we know that (Ψ [µ, π 7→
Bi], L[x 7→ (µ, π)], S) ∈ G. Our safe initialization assumption for views gives that
(Ψ [µ, π 7→ Bi],M[µ, π 7→ init], Host) ∈ M and (Ψ [µ, π 7→ Bi],S) ∈ S by the
Kripke property of S.

Second, we need to show that there is always a step we can take. Because of
our assumption that there is always π ̸∈ Dom(M(µ)), we can always step with
GDeclView .

Lemma 13 (Non-Host TSetVar).
If x:τ ∈ Γ and Γ ⊨ E : τ @ χ, then Γ ⊨ set x := E @ χ.

Proof. Considering an arbitrary Ψ , (Ψ,L) ∈ LJΓ K, and Γ ⊨ S @ χ, we must
show that (Ψ,L, set x := E;S, χ) ∈ X . Thus, we futher suppose (Ψ,M, χ) ∈ M,
and we must show that ⟨⟨M ||= L ∥ set x := E;S⟩⟩ is well behaved; since it is
not a final state that means proving the second disjunct. By Γ ⊨ E : τ @ χ with
(Ψ,L) ∈ LJΓ K, we know (Ψ,L,E, χ) ∈ EJτK. This with (Ψ,M, χ) ∈ M yields
that ⟨⟨M ||= L ∥ E⟩⟩ ⇓ V and (Ψ, V ) ∈ VJτK. By x:τ ∈ Γ and (Ψ,L) ∈ LJΓ K, we
know that L(x) is defined. Therefore, the LSetVar rule applies so that we step
to ⟨⟨M ||= L[x 7→ V ] ∥ S⟩⟩. We have left to show that this state is good for the
world Ψ . Note that (Ψ,L[x 7→ V ]) ∈ LJΓ K since it merely replaces the old value
for x with another well-behaved one: (Ψ, V ) ∈ VJτK. Thus, using the property
of Γ ⊨ S @ χ with Ψ and (Ψ,L[x 7→ V ]) ∈ LJΓ K gives (Ψ,L[x 7→ V ], S, χ) ∈ X .
Finally, the property with (Ψ,M, χ) ∈ M by assumption.
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Lemma 14 (Host TSetVar).
If x:τ ∈ Γ and Γ ⊨ E : τ @ χ, then Γ ⊨ set x := E @ χ.

Proof. Considering an arbitrary Ψ , (Ψ,L) ∈ LJΓ K, and Γ ⊨ S @ Host, we must
show that (Ψ,L, set x := E;S) ∈ G. Thus, we futher suppose (Ψ,M, Host) ∈ M
and (Ψ, S) ∈ S, and we must show that ⟨⟨M ∥ S ||= L ∥ set x := E;S⟩⟩ is well
behaved; since it is not a final state that means proving the second disjunct.

First, we consider any GState such that ⟨⟨M ∥ S ||= L ∥ set x := E;S⟩⟩ 7−→
GState. By inspection of the transition rules, there are three cases for which
we could have stepped: GHStep, GXPop, or GXStep. The latter two cases are
covered by Lemma 1. In the case of GHStep, we know that LSetVar was used
locally and thus GState is ⟨⟨M ∥ S ||= L[x 7→ V ] ∥ S⟩⟩ which we must show is well
behaved. By Γ ⊨ E : τ @ Host with (Ψ,L) ∈ LJΓ K, we know (Ψ,L,E, Host) ∈
EJτK. This with (Ψ,M, Host) ∈ M yields that ⟨⟨M ||= L ∥ E⟩⟩ ⇓ V and (Ψ, V ) ∈
VJτK. We have left to show that this state is good for some future world. That
future world is Ψ , which is a future world by reflexivity. Note that (Ψ,L[x 7→
V ]) ∈ LJΓ K since it merely replaces the old value for x with another well-behaved
one: (Ψ, V ) ∈ VJτK. Thus, using the property of Γ ⊨ S @ Host with Ψ and
(Ψ,L[x 7→ V ]) ∈ LJΓ K gives (Ψ,L[x 7→ V ], S) ∈ G. Finally, the properties
(Ψ,M, χ) ∈ M and (Ψ,S) ∈ S hold by assumption.

Second, we need to show that there is always a step that we can take. By
x:τ ∈ Γ and (Ψ,L) ∈ LJΓ K, we know that L(x) is defined. Therefore, the LSetVar
rule applies so that we step locally and then GHStep to step globally.

Lemma 15 (Non-Host TSetView). If x:view(µ,Bi) ∈ Γ , µ ▷ χ, Γ ⊨ E0 :
N @ χ, and Γ ⊨ E1 : Bi @ χ, then Γ ⊨ set x(E0) := E1 @ χ.

Proof. Considering an arbitrary Ψ , (Ψ,L) ∈ LJΓ K, and Γ ⊨ S @ χ, we must show
that (Ψ, Γ, set x(E0) := E1;S, χ) ∈ X . Thus, we suppose further (Ψ,M, χ) ∈ M,
and then we have left to show ⟨⟨M ||= L ∥ set x(E0) := E1;S⟩⟩ is well behaved.
Note that it is not a final state so we prove the second disjunct. By the initial
assumption Γ ⊨ E0 : N @ χ with (Ψ,L) ∈ LJΓ K, we know that (Ψ,L,E, χ) ∈
EJNK. From this property (Ψ,M, χ) ∈ M, we know that ⟨⟨M ||= L ∥ E0⟩⟩ ⇓ n
and (Ψ, n) ∈ VJNK. We can conclude ⟨⟨M ||= L ∥ E1⟩⟩ ⇓ c and (Ψ, c) ∈ VJBiK
similarly by the initial assumption Γ ⊨ E1 : Bi @ χ. By (Ψ,L) ∈ LJΓ K and
x:view(µ,Bi) ∈ Γ , we know that (Ψ,L(x)) ∈ VJview(µ,Bi)K; thus, L(x) =
(µ, π) and Ψ(µ)(π) = Bi. Further still, Ψ(µ)(π) = Bi and (Ψ,M, χ) ∈ M with
the initial assumption µ ▷ χ means that M(µ)(π) is defined. Therefore, the
LSetView rule applies so that we can step to the state ⟨⟨M[µ, π, n 7→ c] ||= L ∥ S⟩⟩,
which we have to show is well behaved. Note that (Ψ,M[µ, π, n 7→ c], χ) ∈ M
since it merely replaces the old value for x with another (Ψ, c) ∈ VJBiK. Using
the property of Γ ⊨ S @ χ with Ψ and (Ψ,L) ∈ LJΓ K, we know (Ψ,L, S, χ) ∈ X .

Lemma 16 (Host TSetView). If x:view(µ,Bi) ∈ Γ , µ ▷ Host, Γ ⊨ E0 : N @
Host, and Γ ⊨ E1 : Bi @ Host, then Γ ⊨ set x(E0) := E1 @ Host.

Proof. Considering an arbitrary Ψ , (Ψ,L) ∈ LJΓ K, and Γ ⊨ S @ Host, we must
show that (Ψ, Γ, set x(E0) := E1;S) ∈ G. Thus, we suppose (Ψ,M, Host) ∈ M
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and (Ψ, S) ∈ S, and then we must show ⟨⟨M ∥ S ||= L ∥ set x(E0) := E1;S⟩⟩ is
well behaved. Note that it is not a final state so we prove the second disjunct.

First, consider some GState where ⟨⟨M ∥ S ||= L ∥ set x(E0) := E1;S⟩⟩ −→
GState. By inspection of the transition rules, there are three possible cases
GHStep, GXPop, and GXStep. The latter two cases are covered by Lemma 1.
In the case GHStep, we know that LSetView was used locally so GState is
⟨⟨M[µ, π, n 7→ c] ∥ S ||= L ∥ S⟩⟩. This we must show is well behavied. By the
initial assumption Γ ⊨ E0 : N @ Host with (Ψ,L) ∈ LJΓ K, we know that
(Ψ,L,E, Host) ∈ EJNK. From this property (Ψ,M, Host) ∈ M, we know that
⟨⟨M ||= L ∥ E0⟩⟩ ⇓ n and (Ψ, n) ∈ VJNK. We can conclude ⟨⟨M ||= L ∥ E1⟩⟩ ⇓
c and (Ψ, c) ∈ VJBiK similarly by the initial assumption Γ ⊨ E1 : Bi @
Host. By (Ψ,L) ∈ LJΓ K and x:view(µ,Bi) ∈ Γ , we know that (Ψ,L(x)) ∈
VJview(µ,Bi)K; thus, L(x) = (µ, π) and Ψ(µ)(π) = Bi. Further still, Ψ(µ)(π) =
Bi and (Ψ,M, Host) ∈ M with the initial assumption µ ▷ Host means that
M(µ)(π) is defined. Note that (Ψ,M[µ, π, n 7→ c], Host) ∈ M since it merely
replaces the old value for x with another (Ψ, c) ∈ VJBiK. (Ψ, S) ∈ S holds by
assumption and (Ψ,L, S) ∈ G holds by Γ ⊨ S @ Host with (Ψ,L) ∈ LJΓ K.

Second, we must show that there exists a step that we can take. The rea-
soning above shows that from the initial assumption that ⟨⟨M ||= L ∥ E0⟩⟩ ⇓ n,
⟨⟨M ||= L ∥ E1⟩⟩ ⇓ c, and M(µ)(π) is defined. Thus, we can step locally with
LSetView and globally with GHStep.

Lemma 17 (TFence). Γ ⊨ fence(χ) @ Host.

Proof. Considering some Ψ , Γ ⊨ S @ Host, and (Ψ,L) ∈ LJΓ K, we must show
that (Ψ,L, fence(χ);S) ∈ G. Thus, we further suppose some (Ψ,M, Host) ∈ M,
(Ψ, S) ∈ S. Note that ⟨⟨M ∥ S ||= L ∥ fence(χ);S⟩⟩ is not a final state, so we
must prove the second property.

First, let us consider ⟨⟨M ∥ S ||= L ∥ fence(χ);S⟩⟩ −→ GState. There are
three possible transitions: GFence, GXPop, and GXStep. Lemma 1 covers the
latter two cases. For GFence, we know that ⟨⟨M ∥ S ||= L ∥ fence(χ);S⟩⟩ −→
⟨⟨M ∥ S ||= L ∥ S⟩⟩, which we can conclude by Γ ⊨ S @ Host.

Second, we need to show that there exists a global step. This follows from
whether S contains an empty queue for χ. If so then GFence applies; otherwise,
either GXPop or GXStep applies.

Lemma 18 (TDeepCopy). If Γ ⊨ E0 : view(µ0, Bi) @ Host and Γ ⊨ E1 :
view(µ1, Bi) @ Host, then Γ ⊨ deep_copy(E0, E1) @ Host.

Proof. Considering some Ψ , Γ ⊨ S @ Host, and (Ψ,L) ∈ LJΓ K, we must show
that (Ψ,L, deep_copy(E0, E1);S) ∈ G. Thus, we further suppose (Ψ,M, Host) ∈
M and (Ψ, S) ∈ S. Note that ⟨⟨M ∥ S ||= L ∥ deep_copy(E0, E1);S⟩⟩ is not a
final state, so we must prove the second disjunct.

First, we consider some ⟨⟨M ∥ S ||= L ∥ deep_copy(E0, E1);S⟩⟩ −→ GState,
which by inspection of the transition rules could have been GDeepCopy , GXPop,
or GXStep. The latter two cases are proved by Lemma 1. In the GDeepCopy
case, we know that GState is ⟨⟨M[µ1, π1 7→ M(µ0)(π0)] ∥ S ||= L ∥ S⟩⟩. We know
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(Ψ, S) ∈ S by assumption; however, we have left to show that (Ψ,M[µ1, π1 7→
M(µ0)(π0)], Host) ∈ M and (Ψ,L, S) ∈ G for the world Ψ ⊑ Ψ . By the first
of the initial assumptions Γ ⊨ E0 : view(µ0, Bi) @ Host with Ψ and (Ψ,L) ∈
LJΓ K, we know (Ψ,L,E0, Host) ∈ EJview(µ0, Bi)K; further using this property
with (Ψ,M, Host) ∈ MJΨK, we know ⟨⟨M ||= L ∥ E0⟩⟩ ⇓ (µ0, π0), (Ψ, (µ0, π0)) ∈
VJview(µ0, Bi)K, and Ψ(µ0)(π0) = Bi. We can conclude similar facts from Γ ⊨
E1 : view(µ1, Bi) @ Host. Since they both have the same type of constants, we
can conclude the update is well-behaved (Ψ,M[µ1, π1 7→ M(µ0)(π0)], χ) ∈ M
for any execution space χ. Finally, (Ψ,L, S) ∈ G follows from the assumption
Γ ⊨ S @ Host together with (Ψ,L) ∈ LJΓ K.

Second, we need to know that we may take a step. As the first conjunct
showed ⟨⟨M ||= L ∥ E0⟩⟩ ⇓ (µ0, π0) and similarly for the E1. Thus, the global
step HDeepCopy always applies.

Lemma 19 (TKernel). If ∀i ∈ 0, . . . , n. xi:τi ∈ Γ and x0:τ0, . . . , xn:τn ⊨ S @ χ,
then Γ ⊨ kernel(χ, λx0, . . . , xn. S) @ Host.

Proof. Considering some Ψ , Γ ⊨ S′ @ Host, and (Ψ,L) ∈ LJΓ K, we must show
that (Ψ,L, kernel(χ, λx0, . . . , xn. S);S

′) ∈ G. Thus, we further consider some
well-behaved global memory (Ψ,M, Host) ∈ M and execution space queues
(Ψ, S) ∈ S. Note that ⟨⟨M ∥ S ||= L ∥ kernel(χ, λx0, . . . , xn. S);S

′⟩⟩ is not a final
state so we must prove the second disjunct.

First, we consider ⟨⟨M ∥ S ||= L ∥ kernel(χ, λx0, . . . , xn. S);S
′⟩⟩ −→ GState.

By inspection of the rule, we know this is by GKernel , GXPop, or GXStep.
The latter two cases are proved by Lemma 1. In the GKernel case, we know
that ⟨⟨M ∥ S.pusht(χ, (L′, S)) ||= L ∥ S′⟩⟩ where L′ is x0 7→ L(x0), . . . , xn 7→
L(xn); this is defined by the definition of LJΓ K and the assumption that ∀i ∈
0, . . . , n. xi:τi ∈ Γ . We can also conclude that (Ψ,L′) ∈ LJx0:τ0, . . . , xn:τnK by
definition and (Ψ,L(xi)) ∈ VJΓ K for each xi. By the initial assumption that
x0:τ0, . . . , xn:τn ⊨ S @ χ with Ψ and (Ψ,L′) ∈ LJx0:τ0, . . . , xn:τnK, we know
that (Ψ,L′, S, χ) ∈ X . Thus, we know that (Ψ, S.pusht(χ, (L′, S))) ∈ S by
definition.From the property of the assumption Γ ⊨ S′ @ Host with Ψ and
(Ψ,L) ∈ LJΓ K, we know that (Ψ,L, S′) ∈ G thereby concluding this conjunct.

Second, we need to know that we may take a step. Since L′ is well-defined
by our initial assumptions, GKernel is always a valid step here.

A.3 Type Safety

Lemma 20 (Reachability Preserves State Relations).

– If (Ψ,M, χ) ∈ M, (Ψ,L, S, χ) ∈ X , and ⟨⟨M ||= L ∥ S⟩⟩ 7−→∗ XState, then
XState = ⟨⟨M′ ||= L′ ∥ S′⟩⟩ such that (Ψ ′,M′, χ) ∈ M, (Ψ ′, L′, S′, χ) ∈ X ,
and Ψ ⊑ Ψ ′ for some Ψ ′, M′, L′, and S′.

– If (Ψ,M, Host) ∈ M, (Ψ, S) ∈ S, (Ψ,L, S) ∈ G, and ⟨⟨M ∥ S ||= L ∥ S⟩⟩ −→∗

GState, then GState = ⟨⟨M′ ∥ S′ ||= L′ ∥ S′⟩⟩ such that (Ψ ′,M′, Host) ∈ M,
(Ψ ′,S′) ∈ S, (Ψ ′, L′, S′) ∈ G, and Ψ ⊑ Ψ ′ for some Ψ ′, M′, S′, L′, and S′.
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Proof.

– Follows by induction on the transition sequence:
Case the transition sequence is empty so XState = ⟨⟨M ||= L ∥ S⟩⟩ and the

properties follow from the original assumptions.
Case the transition sequence is ⟨⟨M ||= L ∥ S⟩⟩ 7−→ XState ′ 7−→∗ XState.

Since the original state takes a step, it is not final. By (Ψ,L, S, χ) ∈
X with (Ψ,M, χ) and that the state is not final, we know XState ′ =
⟨⟨M′ ||= L′ ∥ S′⟩⟩ such that (Ψ ′,M′, χ) ∈ M, (Ψ ′, L′, S′, χ) ∈ X , and Ψ ⊑
Ψ ′ for some Ψ ′, M′, L′, and S′. The inductive hypothesis with these prop-
erties and the smaller transition sequence ⟨⟨M′ ||= L′ ∥ S′⟩⟩ 7−→∗ XState
concludes the proof.

– Also follows by induction on the transition sequence:
Case the transition sequence is empty so GState = ⟨⟨M ∥ S ||= L ∥ S⟩⟩ and

the properties follow from the original assumptions.
Case the transition sequence is that ⟨⟨M ∥ S ||= L ∥ S⟩⟩ −→ GState ′ −→∗

GState. Since the original state takes a step, it is not final. By (Ψ,L, S) ∈
G with the assumed facts that (Ψ,M, Host) ∈ M, (Ψ,S) ∈ S, and
⟨⟨M ∥ S ||= L ∥ S⟩⟩ −→ GState ′, we know GState ′ = ⟨⟨M′ ∥ S′ ||= L′ ∥ S′⟩⟩
such that (Ψ ′,M′, Host) ∈ M, (Ψ ′,S′) ∈ S, Ψ ⊑ Ψ ′, and (L, S) ̸=
(L′, S′) implies (Ψ ′, L′, S′) ∈ G for some Ψ ′, M′, S′, L′, and S′. The
inductive hypothesis with these properties and the smaller transition se-
quence ⟨⟨M′ ∥ S′ ||= L′ ∥ S′⟩⟩ −→∗ GState concludes the proof. Note that
if (L, S) = (L′, S′), then we know (Ψ ′, L, S) ∈ G by the Kripke property.

Theorem 3 (Type Soundness).

– If Γ ⊢ E : τ @ χ, then Γ ⊨ E : τ @ χ.
– If Γ ⊢ C @ χ, then Γ ⊨ C @ χ.
– If Γ ⊢ S @ χ, then Γ ⊨ S @ χ.

Proof. By mutual induction on the typing derivations and the compatibility
lemmas for each typing rule.

Theorem 4 (Semantic Judgements imply Safety). If ⊨ S @ Host, then
Safe(Init(S)).

Proof. Note that Init(S) is ⟨⟨ε ∥ ε ||= ε ∥ S⟩⟩. Supposing ⟨⟨ε ∥ ε ||= ε ∥ S⟩⟩ −→∗

GState, we must show that Final(GState) or that we can take another step. From
our initial assumption with the empty world ε and an empty type environment
realizer (ε, ε) ∈ LJεK, we know (ε, ε, S) ∈ G. Moreover, we know trivially that
the empty memory state is a realizer (ε, ε, Host) ∈ M and the empty execution
space stack is as well (ε, ε) ∈ S. Thus, Lemma 20 allows us to conclude the proof.
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∆ ⊢ χ :: ES

ex x ∈ ∆
∆ ⊢ x :: ES

EsVar
∆ ⊢ χ :: ES

EsAvail

∆ ⊢ µ :: MS

mem x ∈ ∆
∆ ⊢ x :: MS

MsVar
∆ ⊢ µ :: MS

MsAvail

∆ ⊢ µ ▷ χ

∆ ⊢ µ :: MS ∆ ⊢ χ :: ES ∀σ ∈ Inst(∆), µ[σ] ⊵ χ[σ]

∆ ⊢ µ ▷ χ

Γ ⊢∆ E : τ @ χ

x:τ ∈ Γ
Γ ⊢∆ x : τ @ χ

TVar
c ∈ Bi

Γ ⊢∆ c : Bi @ χ
TConst

x:view(µ,Bi) ∈ Γ ∆ ⊢ µ ▷ χ Γ ⊢∆ E : N @ χ

Γ ⊢∆ x(E) : Bi @ χ
TViewDeref

Γ ⊢∆ E0 : τ0 @ χ Γ ⊢∆ E1 : τ1 @ χ opi : τ0 → τ1 → τ

Γ ⊢∆ E0 opi E1 : τ @ χ
TOp

Γ ⊢∆ S @ χ

Γ ⊢∆ C @ χ Γ ⊢∆ S @ χ

Γ ⊢∆ C;S @ χ
TCom

Γ ⊢∆ ret @ χ
TRet

Γ ⊢∆ E : τ @ χ Γ, x:τ ⊢∆ S @ χ

Γ ⊢∆ decl x := E;S @ χ
TDeclVar

∆ ⊢ µ :: MS Γ, x:view(µ,Bi) ⊢∆ S @ Host

Γ ⊢∆ decl x in µ;S @ Host
TDeclView

Γ ⊢∆ C @ χ

x:τ ∈ Γ Γ ⊢∆ E : τ @ χ

Γ ⊢∆ set x := E @ χ
TSetVar

x:view(µ,Bi) ∈ Γ ∆ ⊢ µ ▷ χ Γ ⊢∆ E0 : N @ χ Γ ⊢∆ E1 : Bi @ χ

Γ ⊢∆ set x(E0) := E1 @ χ
TSetView

Γ ⊢∆ fence(χ) @ Host
TFence

Γ ⊢∆ E0 : view(µ0, Bi) @ Host Γ ⊢∆ E1 : view(µ1, Bi) @ Host

Γ ⊢∆ deep_copy(E0, E1) @ Host
TDeepCopy

∆ ⊢ χ :: ES ∀i ∈ 0, . . . , n. xi:τi ∈ Γ χ ̸= Host x0:τ0, . . . , xn:τn ⊢∆ S @ χ

Γ ⊢∆ kernel(χ, λx0, . . . , xn. S) @ Host
TKernel

Fig. 9: H-IMP with Space Variables Typing Rules
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B Portability Theorem

Definition 8 (Instantiation).

Inst(∆) = {σ : Var ⇀ Inst . Space | Dom(∆) ⊆ Dom(σ)}

Lemma 21 (Instantiation Preserves Typing).

– Γ ⊢∆ E : τ @ χ and σ ∈ Inst(∆) implies Γ ⊢ E[σ] : τ @ χ[σ],
– Γ ⊢∆ S @ χ and σ ∈ Inst(∆) implies Γ ⊢ S[σ] @ χ[σ], and
– Γ ⊢∆ S @ χ and σ ∈ Inst(∆) implies Γ ⊢ S[σ] @ χ[σ].

Proof. Follows by mutual induction on the typing derivation for expressions,
statements, and commands. The interesting cases are those from TViewDeref
and TSetView where Γ ⊢ µ ▷ χ must be used to show µ[σ] ▷ χ[σ] in the original
type system. This is given by inversion on Γ ⊢ µ ▷ χ.

Theorem 5 (Typing Ensures Portability). If Γ ⊢∆ S @ Host, then S is
portable.

Proof. From Lemma 21, we know that Γ ⊢ S[σ] @ Host for any instantiation σ.
Thus, we know the program is portable by the soundness of H-IMP’s types.
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