
CSRI SUMMER PROCEEDINGS 2024

CSRI Summer Program
The Center for Computing Research at Sandia National

Laboratories

Editors:

M. Adams, T. Casey, B.W. Reuter

Sandia National Laboratories

November 4, 2024

CCR
Center for Computing Research

SAND#: TBD.

Sandia National Laboratories is a multimission laboratory managed and operated by National

Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-NA0003525. This report describes objective technical results and analysis.

Any subjective views or opinions that might be expressed in the report do not necessarily

represent the views of the U.S. Department of Energy or the United States Government.

SAND2024-16688O

ii CSRI Summer Proceedings 2024

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by National Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represent that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

M. Adams, T. Casey, B.W. Reuter iii

Preface
The Computer Science Research Institute (CSRI) brings university faculty and

students to Sandia National Laboratories for focused collaborative research on Department
of Energy (DOE) computer and computational science problems. The institute provides an
opportunity for university researchers to learn about problems in computer and computa-
tional science at DOE laboratories, and help transfer results of their research to programs
at the labs. Some specific CSRI research interest areas are: scalable solvers, optimization,
algebraic preconditioners, graph-based, discrete, and combinatorial algorithms, uncertainty
estimation, validation and verification methods, mesh generation, dynamic load-balancing,
virus and other malicious-code defense, visualization, scalable cluster computers, beyond
Moore’s Law computing, exascale computing tools and application design, reduced order
and multiscale modeling, parallel input/output, and theoretical computer science. The
CSRI Summer Program is organized by CSRI and includes a weekly seminar series and the
publication of a summer proceedings.

1. CSRI Summer Program 2024. In 2024 the CSRI summer program was again
executed in a hybrid fashion, with a large cohort of student interns working on-site at
both Albuquerque and Livermore campuses joined by their remote colleagues in program
activities virtually. Most remote students were able to at least visit the Albuquerque or
Livermore campuses during the internship. The summer program included students from
1400 – the Center for Computing Research (CCR) and 8700 – the Center for Computation
& Analysis for National Security (CANS). This year’s program included the traditional
Summer Seminar Series and Summer Proceedings, continued the annual Lightning Talks
session (previously Virtual Poster Blitz), and included a special seminar on 6/26/24 on
software development best-practices with the ”Introduction to Collaborative Git Workshop
for Interns”, presented by Sylvain Bernard and Miranda Mundt from Org. 1424. Our
participation in the Computational Science and Analysis Institute (CSA) continued again
this year with our partners in the Engineering Sciences Summer Institute (ESSI). Together,
we provided four sessions on professional development with Dr. Jacquilyn Weeks from Word
Tree Consulting, supported in-person site visits for some virtual interns, and ran an escape
room and various facilities tours at Sandia, including the CA Data Center and Combustion
Research Facility lab, and in the surrounding areas.

2. Seminar Series. The CSRI Summer Seminar Series is a quintessential part of the
CSRI Summer Intern Program Experience. Students are exposed to a broad showcase of
research from across Sandia, enriching their knowledge of the labs while providing introduc-
tions to novel subject areas, as well as different career paths available in the national labs.
We extend our deepest thanks to the staff who spoke at the 2024 Seminar Series. These
speakers and their talk titles are listed in Table 2.1.

iv CSRI Summer Proceedings 2024

Table 2.1: List of talks and speakers in the 2024 Seminar Series

Date Name Org Title

6/6 Chris Siefert 1465 From PDEs to Linear Algebra to
High Performance Computing

6/13 Amanda Dodd 8700 An Introduction to Sandia, its Missions
and Computational Research at the lab

6/17 Jeff Woolstrum 1684 FLEXO and Fusion
6/27 Meg McCarthy & Ember Sikorski 1444 How to Train your Atoms: the LAMMPS

and FitSNAP Codes at Sandia
7/1 Bill Rider 1544 Verification and Validation with Uncertainty

Quantification is the Scientific Method for
Computational Science

7/9 Dan Ibanez 1443 Evolving HPC Hardware and
Shock Physics Software

7/15 Brian Granzow 1443 Mesh Adaptivity in Computational Physics
7/29 Kara Peterson 1442 Climate Modeling & Analysis at Sandia:

An Applied Mathematician’s Perspective
8/5 Ben Feinberg 1422 Everything Old is New Again: The Past,

Present, and Future of Analog Computing
8/12 Pieterjan Robbe 8351 Between Phases: Understanding Uncertainty

in Nuclear Fission Gas Release via Phase
Field Models

8/19 Christophe Bonneville 8734 Accelerating Phase Field Simulations
Through a Hybrid Adaptive Fourier
Neural Operator with U-Net Backbone

3. Lightning Talks. In preparation for the proceedings, lightning talks were held on
7/31/2024 where all interns hired under the CSRI intern posting were invited to participate.
These students submitted a summary slide of their current results or intended research for
their summer project, and gave a two minute elevator-pitch style presentation to their peers.
Other interns outside of CSRI were also invited to participate with their mentor’s approval.
This event provided an opportunity to formalize work directions, socialize their ideas, as
well as offering a chance to network and interact with other interns and staff across the labs.
The slides from the lightning talk event are published under SAND2024-10948PE.

4. Proceedings. All students and their mentors were strongly encouraged to con-
tribute a technical article to the CSRI Proceedings. For many students, these proceedings
are the first opportunity to write a research article. These proceedings serve both as doc-
umentation of summer research and also as research training, providing students the first
draft of an article that could be submitted to a peer-reviewed journal. Each of these arti-
cles has been reviewed by a Sandia staff member knowledgeable in the technical area, with
feedback provided to the authors. Contributions to the 2024 CSRI Proceedings have been
organized into three categories: Computational & Applied Mathematics, High Performance
& Post-Moore Computing and Machine Learning.

All participants and their mentors who have contributed their technical accomplish-
ments to the proceedings should be proud of their work and we congratulate and thank
them for participating. Additionally, we would like to thank those who reviewed articles for

M. Adams, T. Casey, B.W. Reuter v

the proceedings. Their feedback is an extremely important part of the research training pro-
cess and has significantly improved the proceedings quality. Our many thanks are extended
to these reviewers: Jonas Actor ✧ ✧ Andrew Baczewski ✧ Sneha Banerjee✧ Jon Berry ✧
Patrick Blonigan ✧ Tiernan Casey ✧ Jeff Connors ✧ Mary Alice Cusentino ✧ Aditya Dhu-
muntarao ✧ Alejandro Diaz ✧ Matthew Dosangh ✧ Danny Dunlavy ✧ Christian Gilbertson
✧ James Goff ✧ Brian Granzow ✧ Joey Hart ✧ Dan Ibanez ✧ John Jakeman ✧ Anders
Johansson ✧ John Kallaugher ✧ Hemanth Kolla ✧ Paul Kuberry ✧ Richard Lehoucq ✧
Justin Li ✧ Jay Lofstead ✧ Denis Mamaluy ✧ Kathryn Maupin ✧ Jerry McNeish ✧ Meg
McCarthy ✧ Shane McQuarrie ✧ Stan Moore ✧ Erin Mussoni ✧ Justin Owen ✧ Steve
Owen ✧ Ravi Patel ✧ Tim Proctor ✧ Siva Rajamanickam ✧ Jaideep Ray ✧ Denis Ridzal
✧ Antonio Russo ✧ Mohan Sarovar ✧ Whit Schonbein ✧ Chris Siefert ✧ Andrew Steyer ✧
Carlos Michelon Strofer ✧ Corinne Teeter ✧ Josh Teves ✧ Irina Tezaur ✧ Aidan Thompson
✧ Anh Tranh ✧ Craig Ulmer ✧ Ryan Viertal ✧ Ruben Villarreal ✧ Rado Vuchkov ✧ Chris
Wentland ✧ Nick Winovich ✧ Mitch Wood ✧ Patrick Xiao ✧ Ichi Yamazaki ✧ Tian Yu
Yen ✧ Tianyi Zhang ✧.

Deepest Thanks. We would like to thank all students and mentors for their extraor-
dinary patience and dedication, especially given the hybrid nature of the intern program.
We would also like to thank the program managers for the CSRI Summer Intern Program,
Michael Wolf (1465) and Jerry McNeish (8734); as always, their support has been critical
throughout the organization of the seminars and the editing of these proceedings. Further-
more, the CSRI Summer Intern Program would not be possible without the administrative
support of Lisa Mahkee, Sandra Portlock, Hailey Poole, Sabrina Ahumada, and many oth-
ers. We would also like to extend a very special thank you to Erin Stelter of the CSA
program, Gaby Bran Anleu of the ESSI program, Sasha Safonov and Steven Barker of the
CCD program, and Jacob Davis for his role in setting up tours. Their assistance greatly
enriched the experiences of our interns this year, and we are deeply appreciative of their
help.

M. Adams
T. Casey

B.W. Reuter

November 4, 2024

vi CSRI Summer Proceedings 2024

Table of Contents

Preface M. Adams, T. Casey, B.W. Reuter . iii
Articles . 1
I. Computational & Applied Mathematics

M. Adams, T. Casey, B.W. Reuter . 1
Extracting Climate Phenomena: Beyond PCA

G.H. Brown, E.T. Phipps, H. Jolla, D.L. Bull, & T.S. Ehrmann 2
Comparing Stability Of Partitioned Heterogeneous Time-integration Methods In-

volving Index-2 DAEs Resulting From High-order Adams-Moulton And Back-
ward Difference Formula Time Integration Schemes
A. de Castro & P. Kuberry . 14

Backwards Sequential Monte Carlo For Efficient Bayesian Optimal Experimental
Design
A. Chin & T. Catanach . 26

Data Assimilation: Addressing Spurious Correlations And Scalability Issues
E. Crislip, M. Khalil, & K. Neal . 38

Uncertainty In Reduced Finite-rate Ablation Models For Reentry Vehicles
M. Drayton, R. Bandy, & T. Portone . 50

Implications Of The Two Interacting Blast Wave Verification Problem For Com-
putational Shock Hydrodynamics
R. de Farias, M.B.P. Adams, & W.J. Rider 58

Discrete Exterior Calculus For Hodge-Helmholtz Problem
D. Hughes, C. Eldred, & E.C. Cyr . 67

A DMD-based Partitioned Scheme For Time-dependent Coupled Parametric PDEs
E. Huynh, P. Bochev, & P. Kuberry . 79

An Inexact Weighted Proximal Trust-region Method
L.F. Maia, R. Baraldi, & D.P Kouri . 98

Domain Decomposition-based Coupling Of Operator Inference Reduced Order
Models Via The Schwarz Alternating Method
I. Moore, C.R. Wentland, A. Gruber, & I. Tezaur 109

Operator Inference Based Flux Surrogate Algorithm For Coupled Transmission
Problems
R. Pawar & P. Bochev . 127

TUSQH: Topological Control Of Volume-fraction Meshes Near Small Features
And Ugly Geometry
B. Shawcroft, K.M. Shepherd, & S.A. Mitchell 144

Parallel Incomplete LU Factorizations Based On Alternating Triangular Solves
M. Tunnell & E.G. Boman . 158

Tensor Parametric Operator Inference With Hamiltonian Structure
A. Vijaywargiya, S.A. McQuarrie, & A. Gruber 172

Simulating Atomic Precision Advanced Manufacturing (APAM) Enhanced BJT
E. Whitesides, J.P. Mendez, J. Ivie, X. Gao, & S. Misra 195

II. High Performance & Post-Moore Computing
M. Adams, T. Casey, B.W. Reuter . 203

Toward Automatic Kernel Fusion for Kokkos using MLIR
A. Alvey-Blanco, H. Liegeois, & B. Kelley . 204

Performance Insights Into Supporting Kokkos Views In The Kokkos Comm MPI
Library
C.N. Avans, J. Ciesko, C. Pearson, E.D. Suggs, S.L. Olivier, & A. Skjellum 216

M. Adams, T. Casey, B.W. Reuter vii

Analysis Of Modern Tools For Communication Impacts
N. Bacon, S. Levy, P. Bridges, & K.B. Ferreira 223

Sum Of Squares Bounds On The Performance Of The Quantum Approximate
Optimization Algorithm
A. Epperly, K. Thompson, & O. Parekh . 232

Experience Report On Observability And Its Effect On Security And Usability In
Software Systems
A. Krishna & R. Milewicz . 241

Analyzing Qubit-runtime Tradeoffs In Parallelizing Unary Iteration
C. O’Neil, M.D. Porter, & S.K. Seritan . 249

Storage System Characterization In Virtualized Testbed
J. Shawger & M.L. Curry . 260

Scalable Application-Oriented Benchmarking Of Quantum Computers
N.D. Siekierski, A.Q. Wilber-Gauthier, & S.K. Seritan 270

III. Machine Learning
M. Adams, T. Casey, B.W. Reuter . 277

Charge Dependent Machine Learned Models For Atomistic Simulations Of Diver-
tor Materials
H. Bayat, M.A. Cusentino, & J.M. Goff . 278

In Situ Machine Learning For Intelligent Data Capture And Event Detection
A.K. Boahen & W.L. Davis IV . 288

Large Language Model Accuracy On Post-processed AI-generated Code
M.C. Gaitan-Cardenas, C. Siefert, & S.W. Tsai 298

Mixture Of Neural Operator Experts For Nontrivial Boundary Conditions And
Model Selection
D. Deighan, J. Actor, & R. Patel . 310

Exploring Machine Learning Surrogates For Molecular Dynamics Simulations
A. Feeney & S. Rajamanickam . 324

Designing A Machine-learned Interatomic Potential For Gold-promoted Nickel
Catalysts Utilizing Magnetic Training Data
I. Furrick, M. Wood, & A. Hensley . 331

Event Detection Using Neural Networks Robust To Statistically Similar Distrac-
tors
M. Gahl, W. Chapman, S. Agarwal, & F.S. Chance 346

Machine Learned Interatomic Potential Development Accelerated Via Large-language
Models For Nickel-gold
J.D. Gonzales-Pasion, M. Wood, & A.J. Hensley 360

Decision Tree Machine Learning Model Construction For Particle Simulation
Q. Mason & K.A. Maupin . 370

Breaking Bad Structure Generation: Methods For Systematic, Data-driven Atom-
istic Structures For ML Model Training
C. Mullen, E. Salas, & J. Goff . 376

Ollama-Assisted Function Calls In Leap
P. Mutia & J. Davis . 387

Scientific Machine Learning For Surrogate Modeling
K.A. Ohene-Obeng & K. Maupin . 394

Quantifying Aleatoric Uncertainty In Operator Learning Using Generative Net-
works
J. Paez & R. Patel . 409

viii CSRI Summer Proceedings 2024

Coupled Deep Neural Operators As A Surrogate Model For Ice-sheet Dynamics
D. Rodriguez & M. Perego . 415

M. Adams, T. Casey, B.W. Reuter 1

Articles

I. Computational & Applied Mathematics

Computational & Applied Mathematics are concerned with the design, analysis, and imple-
mentation of algorithms to solve mathematical, scientific, or engineering problems. Articles
in this section describe methods to design or analyze new algorithms, discretize and solve
partial differential equations, couple multiphysics systems of equations, and analyze sensi-
tivity & quantify uncertainty in complex systems.

1. G.H. Brown, E.T. Phipps, H. Jolla, D.L. Bull, and T.S. Ehrmann Extracting Cli-
mate Phenomena: Beyond PCA

2. A. de Castro and P. Kuberry Comparing Stability Of Partitioned Heterogeneous
Time-integration Methods Involving Index-2 DAEs Resulting From High-order Adams-
Moulton And Backward Difference Formula Time Integration Schemes

3. A. Chin and T. Catanach Backwards Sequential Monte Carlo For Efficient Bayesian
Optimal Experimental Design

4. E. Crislip, M. Khalil, and K. Neal Data Assimilation: Addressing Spurious Cor-
relations And Scalability Issues

5. M. Drayton, R. Bandy, and T. Portone Uncertainty In Reduced Finite-rate Abla-
tion Models For Reentry Vehicles

6. R. de Farias, M.B.P. Adams, and W.J. Rider Implications Of The Two Interacting
Blast Wave Verification Problem For Computational Shock Hydrodynamics

7. D. Hughes, C. Eldred and E.C. Cyr Discrete Exterior Calculus For Hodge-Helmholtz
Problem

8. E. Huynh, P. Bochev, and E & P. Kuberry A DMD-based Partitioned Scheme For
Time-dependent Coupled Parametric PDEs

9. L.F. Maia, R. Baraldi, and D.P Kouri An Inexact Weighted Proximal Trust-region
Method

10. I. Moore, C.R. Wentland, A. Gruber, and I. Tezaur Domain Decomposition-based
Coupling Of Operator Inference Reduced Order Models Via The Schwarz Alternat-
ing Method

11. R. Pawar and P. Bochev Operator Inference Based Flux Surrogate Algorithm For
Coupled Transmission Problems

12. B. Shawcroft, K.M. Shepherd and S.A. Mitchell TUSQH: Topological Control Of
Volume-fraction Meshes Near Small Features And Ugly Geometry

13. M. Tunnell and E.G. Boman Parallel Incomplete LU Factorizations Based On
Alternating Triangular Solves

14. A. Vijaywargiya, S.A. McQuarrie and A. Gruber Tensor Parametric Operator
Inference With Hamiltonian Structure

15. E. Whitesides, J.P. Mendez, J. Ivie, X. Gao, and S. Misra Simulating Atomic
Precision Advanced Manufacturing (APAM) Enhanced BJT

M. Adams
T. Casey

B.W. Reuter

November 4, 2024

EXTRACTING CLIMATE PHENOMENA: BEYOND PCA

GABRIEL H. BROWN∗, ERIC. T PHIPPS† , HEMANTH KOLLA‡ , DIANA L. BULL§ , AND

THOMAS S. EHRMANN§

Abstract. Two new methods for the calculation of climate indices, one based on tensors and another on
affine subspaces, are proposed and experimentally studied by application to the Madden-Julian oscillation.
The tensor method is found to perform well when the data is highly preprocessed, but struggles as the
amount of preprocessing decreases. A theoretical mechanism for this behavior is conjectured. Unlike the
tensor method, which requires only a reference binary timeseries for the phenomena of interest (present/not
present), the affine method requires a continuous reference timeseries. However, it offers distinct advantages
over more common methods like PCA including: the ability to map a climate index from one level of
data preprocessing to another, the obviation of a combinatorial search. Preliminary experiments show that
the drop in performance is lesser for the affine approach when the amount of preprocessing is reduced.
We believe the affine method merits further study as a technique to approximately invert possibly non-
invertible, nonlinear preprocessing steps. Such an approach could enable indices derived from preprocessed
data to be viewed in the full, unprocessed climate space, providing direct insight into connections between
the phenomenon of interest and more dominant phenomena.

1. Background. Climate indices are scalar values, usually computed and reported
daily or monthly, which indicate the strength or presence of some particular phenomena. For
example, there are dozens of standard climate indices tracking phenomena like precipitation,
modes of variability like El Niño Southern Oscillation (ENSO), and heatwaves. Such indices
can be used by meteorologists and forecasters to quickly extract information on phenomena
relevant to global and local weather in the near future.

Such climate indices are usually defined and computed using a two stage offline-online
approach. The offline stage uses historical climate data to define an approximation for
the phenomena, usually the linear subspace implied by columns of a truncated principal
component decomposition. In the online stage, climate agencies use current climate data
and the phenomenon’s approximate representation to compute a daily or monthly index
value, often via projection. A full pipeline for the computation of a projection-based index
is detailed in the Methods section below.

The historical climate data used in the offline stage is most naturally thought of as a
dense tensor of shape (nspace, nvar, ntime); in particular, we will assume nspace ∈ {nlon, nlatnlon},
and nvar is the number of variables (e.g. sea surface temperature, windspeed, precipitation).
As a consequence of the data we use, this work includes altitude dependence implicitly using
a variable measured on two isobaric surfaces, but altitude may be included directly in nspace.
When longitude and latitude are used together, we combine them into a single tensor mode
since this results in approximate representations which are more interpretable by climate
scientists.

While climate data is most naturally arranged as a tensor, PCA (called empirical orthog-
onal functions in the climate literature) is the most widely used technique to approximate
and intepret climate phenomena from data [10]. To apply PCA the climate tensor is first
unfolded, combining all non-temporal modes into the columns, and having each column
represent a different time (or vice versa). In such cases, it is often valuable to try applying
tensor methods, which respect the natural layout of the data, among other possible benefits
like uniqueness and ability to capture higher order connections.

∗Oden Institute, University of Texas at Austin, ghbrown@utexas.edu
†Sandia National Laboratory, Scalable Algorithms (01465), etphipp@sandia.gov
‡Sandia National Laboratory, Scalable Modeling & Analysis (08753), hnkolla@sandia.gov
§Sandia National Laboratory, Climate Systems (08931), dlbull@sandia.gov, tsehrma@sandia.gov

2 CSRI Summer Proceedings 2024

As a first attempt to apply tensor methods to climate science, we develop a tensor
decomposition based approach for computing a climate index and compare to indices gen-
erated using PCA. Inspired by some of the theoretical shortcomings of this tensor method,
we develop a new approach based on affine subspaces which has unique advantages over
traditional climate index methods, though operates in a slightly altered setting. A simple
and prototype implementation of this method is also compared to indices generated via
PCA, and shows promising behavior.

We believe the affine method can provide a route to overcoming difficulties arising from
the ubiquitous procedure of data preprocessing. If a climate index for the phenomenon of
interest is based on the decomposition of preprocessed data, then “raw” climate data (living
the unprocessed climate space) cannot be directly compared with the decomposition but
instead must first be preprocessed. The cost of processing new data daily or monthly is not
prohibitive, but forces users of the index to interpret and view the decomposition and the
processed daily data in the preprocessed climate space, which does not necessarily reflect
reality. We propose the affine method as a way to approximately invert the effects of the
processing on the index, enabling an effective decomposition in the full, unprocessed climate
space.

2. Methods.

2.1. Projection-based climate index. We will focus on the computation of a climate
index computed using a projection onto a linear space. If d ∈ Rnspacenvar is daily climate data,
and B ∈ Rnspacenvar×k is some basis for the phenomena of interest, then the climate index for
that day would be given by ∥PBd∥2, where PB is the projector on to the linear subspace
col(B), the column space of B. The motivation for such a formulation is clear: if d lies
near col(B) (intuitively the weather is similar) then not much will be lost in the projection,
alternatively if d is nearly orthogonal to col(B) (the weather is intuitively dissimilar) the
norm of of the projection will be small.

Note the importance of B and d being generated by the same preprocessing. Suppose B
is a basis for a linear space extracted from data from which the seasonal cycles (for example)
had been removed. One cannot fairly project daily climate data d that has not had its
seasonal component removed, B is simply not a meaningful basis for such vectors. This
restriction sometimes complicates the construction of processes to compute daily indices.
First, steps like annual cycle removal must rely on partial information about the yearly
climate to date, rather than a complete dataset of yearly climate. Perhaps more importantly,
intuition or meaning attached to a basisB (or really the linear space it represents) is strongly
tied to the level of preprocessing used in its creation. Preprocessing steps are often non-
invertible or non-trivial to apply to matrices, meaning that it can be hard to translate the
influence of the phenomenon captured by B onto the unprocessed global weather state.

2.2. Similarity measures for timeseries. Throughout this work it will be necessary
to estimate the similarity between two timeseries x and y.

If the timeseries are continuous we will use the Pearson correlation coefficient

r(x,y) =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
. (2.1)

If the continuous timeseries have an associated threshold (which can be used to cast to a
binary timeseries) or are binary, then one can use the Peirce skill score

PSS(x,y) =
TP · FP − TN · FN

(TP + FN)(FP + TN)
, (2.2)

G.H. Brown, E.T. Phipps, H. Jolla, D.L. Bull, & T.S. Ehrmann 3

where TP is the number of true positives, FN is the number of false negatives, and so on
[6]. For Peirce skill score the second argument y is treated as the reference timeseries for
the purpose of determining “true” and “false”. Throughout we use the Peirce skill score
to compare the performance of a thresholded timeseries with a reference binary forecast, as
well as to select the threshold for a timeseries (discussed in more detail below).

2.3. CP tensor decomposition. The canonical polyadic (CP) decomposition of a
tensor is a representation of the tensor as a sum of outer products. If X is rank-r, then it
may be written as the sum of r vector outer products and no fewer, X = a(1) ◦b(1) ◦ c(1) +
... + a(r) ◦ b(r) ◦ c(r) . It is often convenient to organize these vectors into so called factor
matrices, for example A =

[
a(1) ... a(r)

]
, and use the following shorthand to denote the

reconstruction of the tensor from these factor matrices

X = JA,B,CK :=
r∑

i=1

a(i) ◦ b(i) ◦ c(i). (2.3)

However, computing an exact decomposition is rarely useful or practical in application
settings. More frequently, low-rank CP decompositions are applied as a tool to approximate
tensors. To obtain a simultaneous rank-k CP approximation to X ∈ Rm×n×p one would
solve

min
A∈Rm×k,B∈Rn×k,C∈Rp×k

∥X − JA,B,CK∥2F . (2.4)

The problem in Equation 2.4 may be solved in a variety of ways, including gradient descent,
but the most popular algorithm is an alternating least squares algorithm [5]. A single
“sweep” of this algorithm solves a linear least squares problem for a locally optimal value
of A given fixed B and C, a locally optimal value of B given fixed A and C, and similarly
for C. Sweeps continue until some convergence criterion in satisfied.

Alternatively, one could solve a sequence of problems like 2.4, subtracting off recon-
structions of existing components. At the jth step of this approach, one would solve

min
A(j)∈Rm×k,B(j)∈Rn×k,C(j)∈Rp×k

∥∥∥∥∥X −
j−1∑

i=1

JA(i),B(i),C(i)K− JA(j),B(j),C(j)K
∥∥∥∥∥

2

F

. (2.5)

This is the so called sequential or greedy approach to CP decomposition, and is not equiv-
alent to the simultaneous approach. After p steps of this greedy process one would have
a CP approximation to X rank-pk. Strictly speaking pk is the number of components in
the decomposition, and the decomposition could have a lower rank; the same caveat applies
to the simultaneous approach above, but we will nevertheless use ”rank” colloquially to
describe the number of components in a CP decomposition.

2.4. Choosing between simultaneous and sequential CP approximations. The
primary goal in this work is to effectively isolate the linear subspace associated with a
phenomenon of interest, which in turn defines a timeseries climate index. This subsection
is dedicated to explaining the strengths and weaknesses of simultaneous and sequential CP
approximations for this task.

We begin by providing a basic overview of the properties and behavior of each method.

4 Extracting Climate Phenomena: Beyond PCA

strength weakness
simultaneous • exact selection of rank can re-

sult in unique solution
• optimal error for a given
rank (assuming global minima is
found)

• finding exact rank is NP-hard
[4]
• no relationship between rank-
k and k+1 decomposition, com-
ponents may be entirely differ-
ent • may converge to a local
minimum

sequential • components nest as number
of components increase (by con-
struction, assuming fixed initial-
ization)

• very few theoretical guaran-
tees or studies
• suboptimal error for given
rank
• no clear way to select k
• may converge to a local mini-
mum (at each step)

We note there are two primary ways to use a CP decomposition: compression and
interpretation. In the former one only uses the decomposition as an approximation to the
original tensor, while in the latter case the components are interpreted or otherwise used
directly. Of the two, the latter is more difficult; the different in reconstruction error between
a rank r and r + 1 approximant is likely small, but it is possible for the factors to change
drastically. Furthermore, well-posedness and existence of solutions is only an issue when
interpretation of components is necessary; the reconstructed tensor will converge, but the
components may not [2]. Our direct use of the components to form a linear subspace defining
the climate index means we must be more wary of such issues.

In other contexts, such as blind sources separation, simultaneous CP approximation is
often applied to a tensor that is assumed or known to have some low-rank outer
product structure [1]. Such knowledge about the tensor is related to physical and math-
ematical knowledge of the data generation process. Even if the data tensor is noisy, it is
often possible to tell (after iterating over different ranks) when the appropriate rank has
been chosen. In these cases the recovered components are often similar to the “true” factors
which generated the data. A sequential CP decomposition of the data enjoys no such prop-
erties, often requiring a much higher rank to achieve a comparable residual while providing
components different than those which generated the data.

We emphasize that we are not in the aforementioned setting, as climate tensors are
almost certainly not created by some outer product-like data generation pro-
cess. Instead, climate data is the sampling of the solution of a nonlinear partial differential
equation on a grid of space, time, and variables that is often tensorial. Such a tensor will
have some rank, but we believe it will be neither low nor meaningful. As such, we cannot
assume that the climate phenomenon of interest is comprised of a subset of the computed
components, regardless of whether the CP approximation is computed simultaneously or
sequentially. This will be a fundamental problem for the application of CP to the task
of extracting climate phenomenon from data which is not dominated by said phenomena.
In fairness, common linear algebra methods like singular value decomposition or principal
components are expected to behave similarly, as the returned vectors are guaranteed only
to be optimal approximations rather than interpretable components of one phenomenon or
another. The most important conclusion of this discussion is that we can expect to enjoy
none/few of the positive properties usually associated with (simultaneous) CP
decompositions.

G.H. Brown, E.T. Phipps, H. Jolla, D.L. Bull, & T.S. Ehrmann 5

2.5. Projection onto a CP decomposition. Anticipating a projection-based cli-
mate index based on an approximate CP decomposition, we define the projection of tensor
data onto a CP decomposition. Letting D ∈ Rnspace×nvar×ntime be a climate tensor to be
projected onto JA,B,CK of rank-k and with appropriate dimensions, we ultimately want a
projection-based index timeseries v ∈ Rntime . As such, we choose the basis for projection
to be the Khatri-Rao product B = A ⊙ B ∈ Rnspacenvar×k, and reshape the tensor into a

mode-3 unfolding D(3) ∈ Rntime×nspacenvar so v =
∥∥∥PA⊙BD

T
(3)

∥∥∥
col

. We refer to the function

∥·∥col : Rm×n → Rn as the ”column norm”, which operates by taking the 2-norm of every
column in a matrix.

Projections onto a matrix may be computed in a variety of ways, including QR de-
composition or pseudo-inverse. Here the pseudo-inverse definition of a projector allows
for convenient manipulation of the expression into a form that naturally leverages existing
tensor tools. The definition of projection using the pseudo-inverse would in this case give

PA⊙BD
T
(3) = (A⊙B)(A⊙B)†DT

(3). (2.6)

Note that the quantity (A⊙B)†DT
(3) is the solution to one of the three linear least squares

subproblems used in the popular alternating least squares algorithm for the solution of 2.4.
Specifically, it is the transpose of the solution to the linear least squares subproblem for the
third factor matrix. Recognizing that part of the above projection is a component of the
CP solve process allows us to use well-tested and optimized routines for the most costly and
complicated part of this projection.

2.6. Pipeline for a projection-based climate index. In Algorithm 1 we provide
an overview of the basic steps of a pipeline from raw data to climate index. This pipeline
uses a projection onto a linear space (hypothesized to represent the phenomena of interest)
as a critical step in determining the strength of said phenomena on a particular day.

Many of the steps in Algorithm 1 have multiple options for their implementation, each
with their own nuances, but the basic inputs and outputs have largely the same meaning.
Therefore, we dedicate a small discussion to each of the four steps below, as well as typical
choices for our specific investigation.

Algorithm 1 Climate index pipeline

// — Offline —
Dpre ← PREPROCESS(Draw)
Dapprox ← APPROX(Dpre)
// — Online —
Dpre,daily ← PREPROCESS(Draw,daily)
Dproj,daily ← PROJECT (Dapprox, Dpre,daily) // project daily data onto approximation
vdaily ← NORM(Dproj,daily)

PREPROCESS()
This function preprocesses raw climate data. Example steps include: removal of leading

(sub)annual harmonics, subtraction of the previous N -day average; averaging over latitudes.
Note that since this function works on a day-by-day basis it can just as well be applied to a
large concatenation of data (in the offline stage) and a single daily data point (in the online
stage).

APPROX ()
This function computes an approximation of the input whose general purpose is to

capture dominant features. The present work uses truncated PCA, CP decomposition, or

6 Extracting Climate Phenomena: Beyond PCA

a new affine subspace algorithm detailed in Section 5. Often these methods are applied to
(temporal) mean-centered data, and the removal of the mean could just as well belong to
PREPROCESS(). Another process that may be applied is a subselection of the features
captured by the approximation. For example, a rank-15 PCA might be computed, but only
2 features (not necessarily the first/dominant 2) might be returned by APPROX() after
some combinatorial search.

PROJECT()
This function projects daily data onto a non-temporal linear subspace implied by the

approximation of the data from the previous step. By non-temporal we mean that all modes
of the decomposition contribute, except for time. For example, if APPROX() is computed
using a rank-k PCA of the data the output would include two factors of shapes (nspacenvar, r)
and (ntime, k). The column space of the first is then the linear subspace onto which daily
data will be projected. Alternatively, if APPROX() employs a rank-k CP approximation of
the input data tensor then then the factor matrices for space and variables would together
form the column space by a process described later.

NORM ()
This function computes the norm of the input, typically the column norm, 2-norm, or

Frobenius norm.

2.7. Aligning climate indices. Often two climate indices for the same phenomenon
may not be directly comparable. For example, they may have different scales, thresholds,
or offsets from 0. Therefore, we propose a deterministic scheme to align any timeseries with
another timeseries which has a natural threshold. Let vref ∈ Rntime be a reference timeseries
with threshold bref ∈ R, and suppose we wish to compute the appropriate threshold b for
some other timeseries v. Leveraging the threshold of the reference timeseries we find b by
grid searching over thresholds to find the one which maximizes the Peirce skill score between
the reference binary classification implied by bref and the trial classification implied by using
b as the threshold for v. Although in practice we often have a continuous reference timeseries
vref and its threshold, this approach only needs a binary reference. Further operations like
shifting and scaling the timeseries to provide a good visual match are trivial, since any
affine transformation applied to the entire timeseries may also be applied to the computed
threshold without changing its classification.

3. Case study: Madden-Julian Oscillation. To analyze the performance of dif-
ferent approaches to compute climate indices, we examine the Madden-Julian oscillation
(MJO) as a case study. The MJO is an eastward propagating atmospheric phenomenon lo-
cated near to the equator, and can influence extreme events like monsoons and cyclones, as
well as local weather like precipitation [9]. Because the MJO is also characterized by convec-
tive, circulatory patterns and precipitation, some or all of the following variables are often
employed to investigate MJO: east-west windspeed at an 850 hPa isobar (lower troposphere),
east-west windspeed at a 200 hPa (upper troposphere), outgoing longwave radiation. Here,
these variables are represented on a rectangular longitude-latitude grid capturing the equa-
torial region of Earth, [−15◦, 15◦]× [0◦, 360◦]. The measurement of windspeeds at different
altitudes implicitly introduces some altitudinal dependence, even though the two quantities
are treated as variables. Specifically, this data is an assimilation product of measurements
to simulations from the Modern-Era Retrospective analysis for Research and Applications
2 (MERRA-2), during years 1980-2022 [3].

The state of the art method for real-time MJO index generation is that of Wheeler and
Hendon [8], who suggest using a rank-2 PCA to represent a linear subspace which including
all three physical variables. Their approach first preprocesses the data by removing annual
and seasonal harmonics as well as lower frequency components like ENSO, all phenomena

G.H. Brown, E.T. Phipps, H. Jolla, D.L. Bull, & T.S. Ehrmann 7

assumed to be “more dominant” than MJO, then latitudinally averaging. The first step is
intended to remove dominant signals relating to seasonal variability, the second is intended to
remove ENSO, while the third reduces computational cost by a reduction in dimension. After
extracting this subspace, the MJO index is generated by projection of similarly preprocessed
data onto the spatial PCA components. Due to unique properties of PCA, it is possible to
construct an index with a natural threshold of 1. For the purposes of generating vref we
latitudinally average the data, but we otherwise forgo the average across latitudes since it is
both interesting and computationally feasible with current hardware. Absent a “true” MJO
index we will compare to this vref, as the Wheeler and Hendon approach has been standard
and successful in the climate and forecasting community for over a decade. MJO indices
computed using their methodology are reported by various agencies including the National
Oceanic and Atmospheric Administration.

4. Tensor method. In Figure 4.1 we show the resulting indices of the CP based
approach for multiple levels of data preprocessing, using all three variables like Wheeler and
Hendon. For comparison, we also plot two indices generated using the Wheeler and Hendon
rank-2 PCA approach (one with and without latitudinal averaging). The original Wheeler
and Hendon approach of removing harmonics, high-pass filtering the data, and latitudinally
averaging is used to obtain our reference index vref, which is in turn used to threshold and
align the other timeseries. For each non-reference index, the Peirce skill score is computed
with vref as a rough measure of performance.

Fig. 4.1. MJO indices obtained by a greedy CP based approach compared the Wheeler and Hendon PCA
approach, each for a variety of different preprocessing amounts. The black curve is computed essentially
according to the original scheme of Wheeler and Hendon, and is the reference used to threshold and align
the other timeseries. The reported score is the Peirce skill score as compared to the reference data.

8 Extracting Climate Phenomena: Beyond PCA

A first conclusion unrelated to the CP results is that removing the latitudinal averaging
step does not appear to significantly degrade the performance of the Wheeler and Hendon
approach. That is, the grey and black index in 4.1 agree quite well to the eye, and have high
Peirce score. This would suggest that future efforts studying MJO should not latitudinally
average the data unless absolutely necessary, since this can remove information like North-
South shift that climatologists often try to add back in other ways.

The teal curve represents a rank-2 greedy CP approach applied to data which was pre-
processed by removing harmonics and then high pass filtering. In particular, it is the best
(in terms of Peirce score) subset of 4 or less components from a rank-15 greedy decomposi-
tion; which in this case is the first and second components. Since the point of preprocessing
the data this way is to make it dominated by MJO, it is not entirely surprising that these
2 components form the best subset. Perhaps more surprising is the fact that the Kronecker
structured linear subspace formed by the spatial and variable CP factor matrices captures
the arbitrary linear subspace formed by the PCA. This suggests empirically that although
the original data may not be outer product structured as a whole, the leading subspace of
this processed data is approximately Kronecker structured. Such a study is mathematically
interesting in its own right, and could lead to non-trivial upper bounds on the error incurred
by using CP instead of SVD.

Likewise, the orange curve is a rank-2 greedy CP approach applied to data which was
preprocessed by removing harmonics. The same subselection procedure as above is applied,
and again the best subset is the first and second components. However, because the data
is no longer dominated by the MJO, it is unclear how much these first two components
capture the MJO as compared to whatever phenomena dominate the data, perhaps ENSO.
The relatively small amount of an MJO signal in the first two components could explain the
large drop in performance on the less processed data.

Finally, we attempt to explain why the CP approach seems to perform adequately for
the highly preprocessed data, but much worse for less preprocessed data. Some degradation
is expected since the data is fundamentally different, but we suspect there are important
theoretical concerns at play here too. As emphasized above, the lack of outer product
structure in climate data tensors means that we cannot assume that the phenomenon of
interest (here MJO) will be cleanly represented by a small number of components in a
low-rank greedy or simultaneous CP decomposition. Simply stated, the components of the
low-rank decomposition are those which approximate the data tensor best, and there is no
known theory for this setting suggesting that different phenomena in the data tensor are
traceable to (sums of) different components. Instead, every component may contribute a
little to the reconstruction of the phenomenon of interest, making it impossible to select
a small number of representative components for the phenomenon. Why then does the
CP approach seem to work well when the data is highly preprocessed? When the data
tensor is dominated by MJO the first few components of a low-rank decomposition are
likely contribute almost entirely to MJO.

5. A new approach for subspace extraction. The approach to finding an optimal
decomposition (or really linear subspace) thus far has been to compute a decomposition of
the data minimizing the residual/reconstruction error, then choose the subset of components
achieving the optimal classification accuracy with some reference classification. From the
second step, there is some level of implicit ”trust” in the reference classification. If one trusts
this classification, then another approach is viable: find a subspace which best recovers the
reference classification when data is projected onto it. In particular we will search for an
affine subspace A = {v ∈ Rm : ∃c : v = Bc + b}, where B ∈ Rm×n and b ∈ Rm are
understood to be fixed quantities.

G.H. Brown, E.T. Phipps, H. Jolla, D.L. Bull, & T.S. Ehrmann 9

This approach has a few benefits:
• gives a direct and simple representation of a subspace which best captures the

phenomenon;
• by nature of the previous point, it provides an approximate way to map an index

generated by a large amount of preprocessing to less preprocessed data;
• no need for expensive combinatorial searches for components of a CP or PCA de-

composition;
• the pipeline from 2.6 still applies, APPROX() will find an optimal affine subspace

and PROJECT () will project onto it.
In addition, it has a few limitations:
• phenomena may reside on manifolds more complicated than affine; for example,

even if the phenomena is perfectly affine for preprocessed data, the preprocessing
steps are not necessarily linear nor invertible (e.g. latitudinal averaging);

• requires the solution of a nonlinear manifold-constrained optimization problem; this
is feasible but often more expensive than PCA or even CP via alternating least
squares;

• more difficult to leverage a discrete vref due to the nature of the optimization
problem (we attempt to mitigate this);

• while it is possible to obtain an orthogonal basis for the “linear part” of the affine
subspace, such a basis is not unique.

Note that the first of these limitations is shared by PCA and CP, since they will essen-
tially approximate the spatial part of the data with a linear subspace.

5.1. Problem formulation and solution. The basic problem to be solved inAPPROX()
is finding the best affine subspace as measured by some similarity measure on the index,
that is

min
A

d(∥PAD∥col,vref), (5.1)

whereA an affine subspace of dimension k, PA is the projector ontoA, andD ∈ Rnspacenvar×ntime

is the flattened data tensor, and d is some similarity measure between two continuous time-
series (not necessarily a proper metric). Choices for d include norms like the 2 norm or the
Pearson correlation coefficient. It is generally preferable to to choose similarity measures
that are “nearly binary”, meaning that they rely less on the continuous values of vref and as
much as possible on the binary classification it implies. However, to have a smooth objective
function, some level of continuity is necessary for d.

The formulation above is relatively abstract, as optimization over the space of affine
subspaces is a somewhat nonstandard task. One approach to turning this into a standard
optimization problem is to parameterize the affine subspace as a linear subspace and a shift
A = {v ∈ Rm : ∃c : v = Uc + b}. Here U ∈ Vk(Rm) is an orthogonal matrix (Vk is the
Stiefel manifold, rank-k orthonormal matrices) parameterizing the linear part and b ∈ Rm is
a vector parameterizing the shift. Writing PA in terms of U and b we obtain the equivalent
problem

min
U∈Vk(Rm),b∈Rm

d(
∥∥UUT (D− b)

∥∥
col
,vref), (5.2)

where we have explicitly written out the projection onto the affine space A using U and b.
Note that the solution to any problem of the form 5.2 is non-unique in U since UM for
some square orthonormal M achieves the same residual. The proposed approach works well,
but a more careful implementation would instead optimize over the Grassmannian (space
of linear subspaces) rather than Vk(Rm).

10 Extracting Climate Phenomena: Beyond PCA

Before giving the full form of the optimization problem used for our experiments, we will
comment on the general approach to solve optimization problems with the orthogonal matrix
constraint. For the above problem, the iterates and solution must lie on the product manifold
Vk(Rm) × Rm, which we achieve by using a manifold optimization package, Pymanopt.
Pymanopt handles the computation of appropriate differential geometric gradients and offers
multiple manifold constrained optimizers [7]. For simplicity, we use gradient descent with
derivatives calculated by automatic differentiation.

Finally, the actual objective function used for the rest of the experiments is

min
U∈Vk(Rm),b∈Rm,l∈R

−r
(
σ(3p(

∥∥UUT (D− b) + b
∥∥
col
− l), σ(3p(vref − lref))

)
, (5.3)

where r is the Pearson correlation coefficient and the function p : Rn → Rn is defined as
p(v) = v

max(v)−min(v) , essentially scaling the input to have peak-to-peak spread of 1. A

timeseries is first shifted by its respective threshold (after which threshold is 0), then scaled
by its peak-to-peak value (after which peak-to-peak is 1), then a scaled sigmoid function is
applied in order to make the index “more binary”. After processing both the candidate and
reference timeseries in this way, their similarity is measured using the Pearson correlation
coefficient, negated to promote a large correlation value.

5.2. Results. To analyze the performance of the affine approach, we also consider
the MJO and use the same climate data. However, we restrict ourselves to the latitudinally
averaged data for the sake of computational efficiency, discussed more later. Figure 5.1 shows
the resulting indices from the affine approach for multiple levels of data preprocessing. For
comparison we also plot the index generated using the Wheeler and Hendon rank-2 PCA
approach, including latitudinal averaging. For each non-reference index, the Peirce skill
score is computed with vref as a rough measure of performance.

From Figure 5.1, the resulting timeseries outperform the CP approach in terms of Peirce
score, and provide a closer visual match. In addition to many theoretical and computational
aspects of this problem discussed in the conclusion, more experimentation is needed to
determine if this improved performance remains when the data includes latitudes. Such
experiments were too costly given the prototype nature of the current implementation.

Separately, it is interesting to note that because the Wheeler and Hendon approach uses
PCA to effectively compute a dimension 2 affine subspace (the linear PCA subspace shifted
by the data’s mean), the affine approach could in theory exactly recover the black curve
when the preprocessing is the same (teal). Possibly due to the sigmoidal scaling and or a
local minima we do not quite achieve this, although the performance is still quite good.

6. Conclusion and future work. This work focused on projection-based climate
indices, and developed and tested two new approaches for computing such indices.

The first approach is based on a low-rank tensor decomposition of the data, and re-
quires only binary reference data for the purpose of index thresholding and alignment. This
approach works well on highly preprocessed data, but struggles on less processed data. We
attempt to explain this behavior, and relate it to the lack of theoretical results guaranteeing
that separate phenomena will be represented by separate components in the decomposition
when the data is not appropriately structured.

The second approach seeks an affine subspace which best recovers a reference contin-
uous timeseries, treating a measure of timeseries similarity as the objective function. As
such, this approach appears to outperform the tensor based approach for the task of re-
covering the index, but can also be used for other tasks, like mapping an approximation
of a phenomena from one level of preprocessing to another. This method may find use in
the generation of climate data decompositions which lie in the raw or unprocessed space,

G.H. Brown, E.T. Phipps, H. Jolla, D.L. Bull, & T.S. Ehrmann 11

Fig. 5.1. MJO indices obtained using a rank/dimension 2 affine approach compared the Wheeler and
Hendon PCA approach, each for a variety of different preprocessing amounts. The black curve is computed
essentially according to the original scheme of Wheeler and Hendon, and is the reference used to threshold
and align the other timeseries. The reported score is the Peirce skill score as compared to the reference
data.

enabling direct insight into how the phenomenon of interest couples with the full climate
system. The current mathematical formulation of the problem results in a non-unique solu-
tion (for which a remedy is provided), but a more thorough study on existence, uniqueness,
and special problem structure is of interest. Additionally, new or improved algorithms
and implementations for this problem may also be a topic of future work. For D with
nlon = 576, ntime = 15706, nvar = 3 each iteration of gradient descent takes about 30
seconds. This puts modest data sets, like the inclusion of latitudinal variation, outside the
realm of possibility for the current implementation (purely in terms of runtime).

Finally, we reiterate an important climatological observation from our case study on
the Madden-Julian oscillation. When using the Wheeler and Hendon-like PCA approach,
the removal of latitudinal averaging had a minimal effect on the resulting index. Since this
step destroys useful latitudinal information like North-South shifts, we suggest the climate
community review the viability of using fully resolved data regardless of their preferred
mathematical method.

REFERENCES

[1] P. Comon and M. Rajih, Blind Identification of Under-Determined Mixtures based on the Charac-
teristic Function, (2005).

[2] V. de Silva and L.-H. Lim, Tensor Rank and the Ill-Posedness of the Best Low-Rank Approximation
Problem, SIAM Journal on Matrix Analysis and Applications, 30 (2008), pp. 1084–1127.

[3] R. Gelaro, W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C. A. Randles,

12 Extracting Climate Phenomena: Beyond PCA

A. Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper,
S. Akella, V. Buchard, A. Conaty, A. M. Da Silva, W. Gu, G.-K. Kim, R. Koster, R. Luc-
chesi, D. Merkova, J. E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S. D.
Schubert, M. Sienkiewicz, and B. Zhao, The Modern-Era Retrospective Analysis for Research
and Applications, Version 2 (MERRA-2), Journal of Climate, 30 (2017), pp. 5419–5454.

[4] C. J. Hillar and L.-H. Lim, Most Tensor Problems Are NP-Hard, J. ACM, 60 (2013), pp. 45:1–45:39.
[5] T. G. Kolda and B. W. Bader, Tensor Decompositions and Applications, SIAM Review, 51 (2009),

pp. 455–500.
[6] A. Manzato, A Note On the Maximum Peirce Skill Score, Weather and Forecasting, 22 (2007),

pp. 1148–1154.
[7] J. Townsend, N. Koep, and S. Weichwald, Pymanopt: a python toolbox for optimization on man-

ifolds using automatic differentiation, J. Mach. Learn. Res., 17 (2016), pp. 4755–4759.
[8] M. C. Wheeler and H. H. Hendon, An All-Season Real-Time Multivariate MJO Index: Development

of an Index for Monitoring and Prediction, Monthly Weather Review, 132 (2004), pp. 1917–1932.
[9] C. Zhang, Madden-Julian Oscillation, Reviews of Geophysics, 43 (2005).

[10] Z. Zhang and J. C. Moore, Empirical Orthogonal Functions, in Mathematical and Physical Funda-
mentals of Climate Change, Elsevier, 2015, pp. 161–197.

G.H. Brown, E.T. Phipps, H. Jolla, D.L. Bull, & T.S. Ehrmann 13

COMPARING STABILITY OF PARTITIONED HETEROGENEOUS
TIME-INTEGRATION METHODS INVOLVING INDEX-2 DAES
RESULTING FROM HIGH-ORDER ADAMS-MOULTON AND

BACKWARD DIFFERENCE FORMULA TIME INTEGRATION SCHEMES

AMY DE CASTRO∗ AND PAUL KUBERRY†

Abstract.

We consider an extension of partitioned heterogeneous time integration (PHTI) methods developed in
the context of a Hessenberg index-1 DAE to that of a Hessenberg index-2 DAE. The PHTI framework
solves for an interface flux term through a dual Schur complement and allows for the coupling of arbitrary
multistep or multistage time integrators on each individual subdomain. Although this framework proved
successful for the Hessenberg index-1 DAE in [8], the higher index DAE considered here does not enjoy
the same stability or accuracy over a broad range of heterogeneous time integrators. We investigate, in
particular, the families of Adams-Moulton (AM) and backward difference formula (BDF) schemes and offer
an alternative definition of the Lagrange multiplier that improves the performance of the AM methods.

1. Introduction. In our previous work, we have considered the solution of coupled
problems sharing a non-overlapping interface through the Implicit Value Recovery (IVR)
method [7], as well as the extension of that scheme to the application of reduced order
models built from composite reduced bases [5]. The IVR method provides a framework to
evaluate well-posedness and the non-singularity of the Schur complement system arising in
the scheme. IVR decouples the subdomain equations and equates the temporal stability of
the formulation with the stability of the time integrator chosen without requiring additional
stability considerations; however, the resulting system is only an index-1 DAE when used
with explicit time integrators.

Our goal in this work is to formulate a coupling scheme following the partitioned het-
erogeneous time-integration (PHTI) methods presented in [8] and then extend the scheme
to the use of a reduced order model on at least one subdomain. PHTI methods allow for the
coupling of arbitrary implicit or explicit multistage or multistep methods, making them more
flexible and practical than IVR as they can utilize optimized discretizations specific to the
subdomain physics. Specific advantages of PHTI over other heterogeneous methods include
its balancing of the stability and accuracy of couplings based on monolithic formulations
with the greater flexibility provided by coupling schemes which lag interface coupling terms.
The PHTI approach is centered on two main cores: approximations of the interface flux
obtained from an auxiliary monolithic Schur complement system, and a polynomial-in-time
approximation of the interface flux over the time coupling window.

In [8], PHTI was applied to an air-sea system coupled by a Robin condition on the
interface. The inclusion of the algebraic variable within the Robin constraint results in
a differential algebraic equation (DAE) of Hessenberg index-1, which we will also refer to
as a semi-explicit index 1 DAE. Much work has been done to extend multistep methods
for ODEs to the case of these index-1 DAEs; however, as the index of the DAE increases,
one cannot expect the same method to work without adjustment. For example, multistep
methods applied directly to a semi-explicit index-1 DAE are stable and convergent to the
same order of accuracy for the DAE as for the standard nonstiff ODE, see [2], Section 3.2.
The only restrictions to this are that the constraint equation, if solved separately, must be
solved with sufficient accuracy, and there may be additional complications if the underlying
ODE is stiff. However, for general index-1 DAEs and for Hessenberg index-2 DAEs to attain

∗Sandia National Laboratories, agdecas@sandia.gov
†Sandia National Laboratories, pakuber@sandia.gov

14 CSRI Summer Proceedings 2024

order of accuracy greater than two, the coefficients of multistep methods for DAEs must
satisfy the order conditions for ODEs as well as an additional set of constraints. Theorem
3.1.1 of [2] states, “The k-step constant stepsize BDF method (k < 7) applied to constant
coefficient linear DAE systems of index ν is convergent of order O(hk) after (ν − 1)k + 1
steps.” This shows that the coefficients of BDF methods satisfy these additional constraints
and achieve higher order accuracy [1, 2].

Other traditional ODE methods, such as Adams-Moulton or Adams-Bashforth, may
not necessarily satisfy these additional order conditions; the literature grew out of BDF and
Runge-Kutta (RK) schemes for particular classes of DAEs and remains primarily focused
on these types of methods. Multistep or RK methods applied to general DAEs do not enjoy
universal stability or convergence properties; one can only show results that are dependent
on the form of the DAE.

Results for Runge-Kutta methods discuss fully implicit or half-explicit approaches, i.e.
Chapter 4 of [2] and Chapter 10 of [1]. Again, there are additional order conditions the
coefficients must satisfy, and these methods still often suffer from severe order reduction
for higher index DAEs. For Hessenberg index-2 DAEs, suggestions include adjusting the
method to include a projection step onto the constraint manifold, which makes the piecewise
polynomials approximating both the differential and algebraic variables possibly discontinu-
ous on the time grid points. Using Radau collocation instead of Gauss collocation may work
for lower index forms, but even here the algebraic variable is approximated by a piecewise
polynomial that may be discontinuous at the mesh points tk [1].

The problem we have focused on in [5, 7] involves traditional continuity of states and
continuity of flux conditions on the interface. This results in a Hessenberg index-2 DAE, and
the increased index poses difficulties for the extension of numerical methods. Previously for
the IVR method, we have overcome this difficulty by reducing the DAE to Hessenberg index-
1 form via differentiation of the continuity of state condition. The original implementation of
the PHTI method in [8] was also for an index-1 DAE. Thus, this paper represents our initial
work for the solution of the index-2 DAE. The above observations demonstrate that while
the PHTI method seems to enjoy convergence and accuracy for a wider range of methods
such as Adams-Moulton and explicit Runge-Kutta schemes in [8], its application to a higher
index DAE is not straightforward. The increased index requires more care as to which
methods may be used for discretization. Analysis for how these methods would perform
when combined is not available, and it is unclear whether the foundational assumption that
the algebraic variable may be approximated by a continuous-in-time polynomial is valid.

In the rest of this paper, we present our model problem and show its formulation as a
Hessenberg index-2 DAE in Section 2. Different multistep time discretizations are developed
and compared in Section 3, and the auxiliary monolithic Schur complement formulation is
derived. Next, we examine the extension to a multistage method and the corresponding
Lagrange interpolating polynomial in Section 4, showing numerical results for different cou-
plings in Section 5 and offering conclusions and suggestions in Section 6.

2. Model problem. We consider the following transmission problem, defined on a
bounded domain Ω ∈ Rd for d = 2, 3 divided into two non-overlapping subdomains Ω1,Ω2

with interface γ:

u̇i −∇ · Fi(ui) = fi Ωi × (0, T]

ui = gi on Γi × (0, T], for i = 1, 2

ui = ui,0 on Ωi, t = 0.

(2.1)

In the above, for i = 1, 2, Γi = ∂Ωi/γ, ui := ui(x, t) is the unknown scalar field,
Fi(ui) := κi∇ui−aui is the total flux function, fi, gi are given source and boundary terms,

A. de Castro & P. Kuberry 15

ui,0 is the initial condition, and a := a(x, t), κi := κi(x, t) > 0 are the advection field and
diffusion coefficients. In contrast to our previous work, which solves these equations by the
partitioned Implicit Value Recovery (IVR) scheme [5, 7], we enforce continuity of the states
ui and continuity of the total flux along the interface:

u1(x, t)− u2(x, t) = 0 and F1(x, t) · nγ − F2(x, t) · nγ = 0 on γ × [0, T]. (2.2)

Without loss of generality, we may take the interface normal vector nγ to point in the
direction of Ω1; i.e. on the interface, nγ = n2.

For the IVR method, continuity of the velocities is enforced in place of the state con-
tinuity condition, as this gives rise to a Hessenberg Index-1 DAE, which is central to the
scheme. As we are going to pursue an extension of the PHTI framework [8], we retain the
more common interface condition, which results in a Hessenberg Index-2 DAE form. How-
ever, we note that in the original PHTI work, a Hessenberg Index-1 DAE was obtained by
the enforcement of the Robin condition Fγ := F1 · nγ = F2 · nγ and Fγ = α(u1 − u2) on γ.

Let H1(Ωi) denote the Sobolev space of all square integrable functions on Ωi whose
first derivatives are also square integrable, with H1

Γ(Ωi) the subspace of H1(Ωi) containing
functions that vanish on Γi. For ease of notation, we omit the subscript i on Γ, and Γi,
denoted Γ, should be understood to correspond to the i from Ωi. The notation (·, ·)ω denotes
the L2 inner product on a subdomain or interface ω. The trace of H1(Ωi) is represented by
H1/2(γ), with dual space H−1/2(γ) and dual product ⟨·, ·⟩γ .

The weak form of (2.1) may be derived, where we enforce the continuity of states
condition in (2.2) by a Lagrange multiplier (LM):
Find {u1, u2} ∈ H1

Γ(Ω1)×H1
Γ(Ω2) such that

(u̇1, v1)Ω1
+ (F1(u1),∇v1)Ω1

= (f1, v1)Ω1
− (F1(u1) · nγ , v1)γ ∀v1 ∈ H1

Γ(Ω1)

(u̇2, v2)Ω2 + (F2(u2),∇v2)Ω2 = (f2, v2)Ω2 + (F2(u2) · nγ , v2)γ ∀v2 ∈ H1
Γ(Ω2)

⟨u1 − u2, µ⟩γ = 0 ∀µ ∈ H−1/2(γ)

(2.3)

Discretization of (2.3) will yield a monolithic formulation where the subdomains are
coupled through the interface flux (2.2) and through the constraint equation, and our goal
is to derive a Schur complement equation from this auxiliary monolithic formulation. Before
proceeding, we briefly recall the formulas of the families of multistep Backwards Differenti-
ation Formulas (BDF) and Adams-Moulton (AM) methods for an equation ẏ = f(t, y):

• BDF(s), order s, with weights {wj}sj=0:

yn+1 = w0∆tf(t
n+1, yn+1) +

s∑

j=1

wjy
n+1−j ,

• AM(s), order s+ 1, with weights {wj}sj=0:

yn+1 = yn +∆t

s∑

j=0

wjf(t
n+1−j , yn+1−j).

We want to use a LM to represent the interface flux terms (Fi(ui) · nγ , vi)γ in (2.3),
as these quantities are equivalent for i = 1, 2 from (2.2). At this juncture, we must decide
whether to consider the LM as a variable representing a single flux value at each time step or
as an integral of the flux over a time step with coefficients suggested by the multistep method.
The first approach suggests that the LM may be thought of as representing traction forces at

16Comparing Stability Of Partitioned Heterogeneous Time-integration Methods Involving Index-2 DAEs Resulting From High-order Adams-Moulton And Backward Difference Formula Time Integration Schemes

a particular instance in time, and PHTI uses this assumption to construct an approximation
of the LM using a Lagrange interpolating polynomial. However, we are without assurance
that the LM is indeed continuous in time, and the second option of considering it as purely
algebraic may be advantageous, as we will discuss in the following section.

At each time step of a BDF(s) scheme, only the current unknown LM appears in the
formulation; as no LMs appear on the right-hand side of the system, these two represen-
tations of the LM may differ only in semantics. However, for AM methods, the difference
between these two options impacts results. With this in mind, we define two different LMs
and formulate the Schur complement system for the auxiliary monolithic system with both
methods.

1. Method 1: LM as flux at a single time step.
Define λ̂n+1 ∈ H−1/2(γ) as λ̂n+1 := F2(u2(t

n+1)) · nγ

2. Method 2: LM as an integral of flux over time.

Define λ∗,n+1 ∈ H−1/2(γ) as λ∗,n+1 :=
∫ tn+1

tn
F2(u2(t)) · nγdt

≈ ∆t
∑s

j=0 wjF2(u2(t
n+1−j)) ·nγ , where wj are the weights for the AM(s) method.

3. Comparison of auxiliary monolithic systems. We discretize (2.3) in time first,
enforcing the constraint equation at time tn+1. We will refer to a s-step BDF method as
BDF(s) and to a s-step AM method as AM(s)-M1 or AM(s)-M2, where M1 and M2 refer to
method 1 and method 2 of defining the LM, given at the end of Section 2.

The subdomain equations for i = 1, 2 and for all vi ∈ H1
Γ(Ωi) are given by the following

for BDF(s), AM(s)-M1, AM(s)-M2:

(un+1
i , vi)Ωi =

s∑

j=1

wj(u
n+1−j
i , vi)Ωi + w0∆t

(
(fn+1

i , vi)Ωi − (Fi(u
n+1
i),∇vi)Ωi + (−1)i⟨λ̂n+1, vi⟩γ

)
,

(un+1
i , vi)Ωi = (uni , vi)Ωi +∆t

s∑

j=0

wj

(
(fn+1−j

i , vi)Ωi − (Fi(u
n+1−j
i),∇vi)Ωi + (−1)i⟨λ̂n+1−j , vi⟩γ

)
,

(un+1
i , vi)Ωi

= (uni , vi)Ωi
+∆t

s∑

j=0

wj

(
(fn+1−j

i , vi)Ωi
− (Fi(u

n+1−j
i),∇vi)Ωi

)
+ (−1)i⟨λ∗,n+1, vi⟩γ .

(3.1)

Discretizing in space, let Mi,Ki represent the mass and flux matrices for each subdomain,
and let Gi represent the algebraic form of the continuity constraint in (2.3) for i = 1, 2.

Define the matrices

A0 =

M1 +∆tw0K1 0 c0G

T
1

0 M2 +∆tw0K2 −c0GT
2

G1 −G2 0

 A1 =

M1 −∆tw1K1 0 −B1

1

0 M2 −∆tw1K2 B1
2

0 0 0

Aj =

−∆twjK1 0 −Bj

1

0 −∆twjK2 Bj
2

0 0 0

 fk =

∆tfk1
∆tfk2
0

 ,

where

c0 =

{
∆tw0 BDF, AM(s)-M1

1 AM(s)-M2
and Bj

i =

{
∆twjG

T
i AM(s)-M1

0 AM(s)-M2.

A. de Castro & P. Kuberry 17

α AM(2)-M1 AM(2)-M2
0 1.716 0.999
1 0.999 0.999

1/200 0.999 0.999
Table 3.1

Magnitude of largest eigenvalue for AM(2) discretizations: α = 0 corresponds to the transmission
problem in (2.1)-(2.2), while α ̸= 0 represents the Robin condition used in [8].

For BDF(s), the algebraic system becomes:

A0

un+1
1

un+1
2

λ̂n+1

 =

s∑

j=1

wjM1 0 0

0 wjM2 0
0 0 0

un+1−j
1

un+1−j
2

λ̂n+1−j

+ w0f

n+1. (3.2)

For AM(s)-M1, the matrix system is:

A0

un+1
1

un+1
2

λ̂n+1

 = A1

un1
un2
λ̂n

+

s∑

j=2

Aj

un+1−j
1

un+1−j
2

λ̂n+1−j

+

s∑

j=0

wjf
n+1−j , (3.3)

whereas for AM(s)-M2 we have:

A0

un+1
1

un+1
2

λ∗,n+1

 = A1

un1
un2
λ∗,n

+

s∑

j=2

Aj

un+1−j
1

un+1−j
2

λ∗,n+1−j

+

s∑

j=0

wjf
n+1−j . (3.4)

A prominent similarity between the BDF and the AM(s)-M2 discretizations is the ab-
sence of any previous LM terms on the right-hand sides of the system. Notably, the AM(s)-
M1 method differs in this way, and we will show that this affects the stability of the system.
Although our notation for the BDF(s) system refers to a LM at each time step, note that

no previous λ̂n+1−j appear on the RHS of (3.2). Thus, we can think of the LM for BDF as
purely algebraic also, behaving similarly to λ∗ in (3.4).

For AM(2)-M1 and AM(2)-M2, we conduct eigenvalue analysis to examine the stability
of each method. Discretizing the unit square with ∆x = ∆y = 1/64, with γ at x = 0.5,
and setting ∆t = 3.37 × 10−3, the magnitude, truncated to three decimals, of the largest

eigenvalue of the matrix

[
A0 0
0 I

]−1 [
A1 A2

I 0

]
is shown in the first row of Table 3.1.

As a further examination, we calculate the eigenvalues of the AM(2) methods when
applied to a model problem utilizing the Robin interface condition, which corresponds to
the case studied in [8]. For this adjustment, the lower right block of the matrix A0 contains
a scaled interface mass matrix, α−1Mγ , where α is the parameter from the Robin condition.
Including this term improves the stability of the system, as seen in last two rows of Table
3.1.

From this analysis, we observe that a Hessenberg Index-1 DAE, represented by the
Robin condition, allows for more leniency in the treatment of the LM. When the index
of the system is increased to a Hessenberg Index-2, it seems that Adams-Moulton methods
require the LM to represent an integral over time of the interface flux rather than a particular
flux value at time tn. BDF methods avoid this difficulty entirely as the discretization only
results in a single LM term.

18Comparing Stability Of Partitioned Heterogeneous Time-integration Methods Involving Index-2 DAEs Resulting From High-order Adams-Moulton And Backward Difference Formula Time Integration Schemes

3.1. Schur complement formulation. We now derive the auxiliary monolithic Schur
complement equation used to update the interface flux at each time step. Once the LM is
solved for, the two subdomain systems may be updated separately using a different time
scheme than the one used to derive the Schur complement, although there may be limitations
on what schemes are allowable.

Whether BDF(s), AM(s)-M1, or AM(s)-M2 is used to discretize the monolithic system,
notice that each of (3.2)-(3.4) results in a similar algebraic structure. In order to discuss
the derivation of the Schur complement for the auxiliary monolithic system in a way that
encapsulates the BDF(s) and both AM(s) methods, define the variable

gn+1 =

{
λ̂n+1 BDF(s), AM(s)-M1

λ∗,n+1 AM(s)-M2.

Then (3.2)-(3.4) all result in the structure:

A0

un+1
1

un+1
2

gn+1

 =

sn+1
1

sn+1
2

sn+1
3

 , (3.5)

with the vector [sn+1
1 , sn+1

2 , sn+1
3]T representing the right-hand side of (3.2), (3.3), or (3.4)

accordingly. We partition each subdomain into components corresponding to interior and
interface variables, represented by a subscript of 0 and γ. With Wi = Mi + ∆tw0Ki for
i = 1, 2, and with a slight abuse of notation so that the matrix Gi is taken to act only on
the interface variables, the expanded system is:

W1,00 W1,0γ 0 0 0
W1,γ0 W1,γγ 0 0 c0G

T
1

0 0 W2,00 W2,0γ 0
0 0 W2,γ0 W2,γγ −c0GT

2

0 G1 0 −G2 0

un+1
1,0

un+1
1,γ

un+1
2,0

un+1
2,γ

gn+1

=

sn+1
1,0

sn+1
1,γ

sn+1
2,0

sn+1
2,γ

sn+1
3

. (3.6)

Eliminating interior degrees of freedom, define the matrices Pi =Wi,γγ−Wi,γ0(Wi,00)
−1Wi,0γ

and vectors ŝi
n+1 = sn+1

i,γ −Wi,γ0(Wi,00)
−1sn+1

i,0 for i = 1, 2. Then (3.6) becomes

P1 0 c0G

T
1

0 P2 −c0GT
2

G1 −G2 0

un+1
1,γ

un+1
2,γ

gn+1

 =

ŝn+1
1

ŝn+1
2

sn+1
3

 , (3.7)

and we may eliminate the upper 2 × 2 block for the interface DoFs as well to obtain the
auxiliary monolithic Schur complement system:

Sgn+1 = G1P
−1
1 ŝn+1

1 −G2P
−1
2 ŝn+1

2 − sn+1
3 . (3.8)

Above, S is the Schur complement matrix S := c0(G1P
−1
1 GT

1 + G2P
−1
2 GT

2). Once gn+1 is
obtained by (3.8), the subdomain problems are effectively decoupled, and may be updated
with different time integrators from the scheme used to derive this auxiliary monolithic
Schur complement.

4. Multistage methods. Ideally, PHTI would allow us to combine an implicit mul-
tistep AM or BDF method for the auxiliary monolithic Schur complement with a different
time integrator that is appropriate to update Ωi, i = 1, 2. As a multistage solver such as the

A. de Castro & P. Kuberry 19

q-stage Runge Kutta (RK) methods are commonly used explicit time integration schemes,
we describe the application of the q-stage RK scheme, RK(q), to our subdomain problem,
defined by weights {ajm, bj , cj} for j = 1, . . . , s, m ≤ j from a Butcher tableau. For RK
schemes, it makes most sense to consider the LM as continuous in time as in method 1 of
Section 2, so that we may reasonably query it in the formulation at intermediate stages.
Thus, we begin from a subdomain equation of the form Miu̇i = fi − Kiui + (−1)iGT

i λ̂.
Discretization with an explicit RK(q) method results in:

Miu
n+1
i =Miu

n
i +∆t

q∑

j=1

bjkj(u
n
i , t

n), where

kj(u
n
i , t

n) := fi(t
n + cj∆t)−Ki

(
uni +∆t

j−1∑

m=1

ajmkm

)
+ (−1)iGT

i λ̂(t
n + cj∆t).

(4.1)

In order to compute the term λ̂(tn + cj∆t) at intermediate time steps, we approximate

the LM λ̂ by its Lagrange interpolating polynomial of degree saux − 1, where saux is the
order of the BDF or AM scheme used to derive the auxiliary monolithic Schur complement.
Given solutions λ̂n−k for k = 1, . . . , saux − 1, we construct the interpolant L(t) as

L(t) =

saux−1∑

k=0

ℓk(t)λ̂
n−k, (4.2)

where ℓk(t) is the kth Lagrange basis function. We refer the reader to Sections 3 and 4
of [8] for more details. We also note that creating a Lagrange interpolant of the solutions
λ∗,n+1 to the AM(s)-M2 scheme does not seem meaningful to combine with RK methods,
as one is creating an interpolation of values that are already time integrated. In summary,
the PHTI method allows us to solve for an interface flux term by forming an auxiliary
monolithic system with an implicit multistep method. Once the flux term is solved for by
the Schur complement equation (3.8), each subdomain may be updated independently using
a multistep or multistage method of choice. We describe the solution process below for a
heterogeneous coupling, and WLOG assume that a multistep solver is used on Ω1 and a
multistage solver on Ω2; the formulation for multistep or multistage on both subdomains
would follow.

1. Choose a multistep method of order s, either BDF(s), AM(s)-M1, or AM(s)-M2, to
discretize the monolithic system, following the steps outlined in Section 3.1.

2. Form and solve the auxiliary monolithic Schur complement (3.8). The solution of

this equation is λ̂n+1 if using BDF(s) or AM(s)-M1, or λ∗,n+1 if using AM(s)-M2.

3. If using a multistage method for a subdomain solver, construct the Lagrange inter-
polating polynomial L(t) of degree s-1 (4.2).

4. Update Ω1 using a multistep method of order p:

• BDF(p): W1u
n+1
1 = ∆tw0f

n+1
1 −∆tw0G

T
1 λ̂n+1 +

∑p
j=1 wjM1u

n+1−j
1

• AM(p): Define rn+1 :=M1u
n
1+∆tw0f

n+1
1 +

∑p
j=1 ∆twj

(
fn+1−j
1 −K1u

n+1−j
1

)

– For AM(p)-M1, W1u
n+1
1 = rn+1 −∑p

j=0 ∆twjG
T
1 λ̂

n+1−j

– For AM(p)-M2, W1u
n+1
1 = rn+1 −GT

1 λ
∗,n+1

5. Update Ω2 using a multistage method of order q:

20Comparing Stability Of Partitioned Heterogeneous Time-integration Methods Involving Index-2 DAEs Resulting From High-order Adams-Moulton And Backward Difference Formula Time Integration Schemes

kj(u
n
2 , t

n) := f2(t
n + cj∆t)−K2

(
un2 +∆t

j−1∑

m=1

ajmkm

)
+GT

2 L(t
n + cj∆t)

M2u
n+1
2 =M2u

n
2 +∆t

q∑

j=1

bjkj(u
n
2 , t

n).

Lastly, note that we have assumed that the same time step is used on each subdomain to
ease the notation and formulation. If the time step on Ωi differs from that used to derive
the auxiliary monolithic system, the state variable ui on Ωi must be evolved until the end
of the coupling window by using a Lagrange interpolating polynomial (4.2) to derive the
needed values of the LM within the coupling window.

5. Numerical Results. We consider two manufactured solutions which are linear in
space and either linear or quadratic in time, referred to as problems 1 and 2, respectively,
in Table 5.1. The diffusion coefficients in each subdomain are set to κi = 10−5, and the

Problem (1) Problem (2)
uexact(x, y, t) = t(x+ 2y + 3) uexact(x, y, t) = t2(x+ 2y + 3)

Table 5.1
Manufactured solutions on Ω

advection field is chosen as a = (0.5 − y, x − 0.5). The domains under consideration are
Ω1 = [0, 0.5] × [0, 1] and Ω2 = [0.5, 1] × [0, 1], so that the interface γ is the line x = 0.5.
We impose homogeneous Dirichlet boundaries on all non-interface boundaries Γi. Using a
spatial mesh of ∆x = 1/32 and ∆y = 1/64 on each subdomain yields 2145 nodes in Ωi for
i = 1, 2, and we set the final time to be T = 3, with ∆t = 3.37 × 10−3. In each of the
following tables, relative L2 errors are shown between the computed and exact solutions,
where

L2 error =
(
∑2

i=1 ||ui − uexact||20,Ωi
)1/2

||uexact||0,Ω
.

Note that AM(0) and BDF(1) are both Backward-Euler and AM(1) is the trapezoidal
method. We expect AM(s) to exactly capture linear and quadratic solutions for s ≥ 0
and s ≥ 1, respectively. Likewise, BDF(s) should be able to represent linear and quadratic
solutions exactly for s ≥ 1 and s ≥ 2, respectively. We begin by using homogeneous
couplings, implementing the same time discretization for the auxiliary monolithic system as
we implement on each subdomain Ωi. In Table 5.2, we observe that each AM(s)-M2 and
BDF(s) method is able to accurately capture the linear problem, as expected. The AM(s)-
M1 methods, however, only solve the system accurately for s ≤ 1. Based on the eigenvalue
analysis in Section 3, we anticipated that AM(2)-M1 would not be stable, and this behavior
is also exhibited by higher order AM(s)-M1 methods.

Table 5.3 shows similar results for the quadratic in time problem. The first order
methods do not reach machine precision, but higher order schemes for BDF(s) and AM(s)-
M2 accurately capture the quadratic solution. Again, AM(s)-M1 is unstable for s ≥ 2.

Next, we experiment with coupling AM(s)-M2 methods of different orders for the
quadratic in time problem. Table 5.4 shows that these couplings are accurate to machine
precision for s ≥ 2. The use of AM(1)-M2 with any higher order method experiences a loss
in accuracy, but combinations of AM(2)-M2, AM(3)-M2, and AM(4)-M2 for the auxiliary

A. de Castro & P. Kuberry 21

Scheme for aux. monolithic Scheme on Ω1 Scheme on Ω2 L2 Error
AM(0)-M2 AM(0)-M2 AM(0)-M2 8.4424e-15
AM(1)-M2 AM(1)-M2 AM(1)-M2 9.1996e-15
AM(2)-M2 AM(2)-M2 AM(2)-M2 9.0012e-15
AM(3)-M2 AM(3)-M2 AM(3)-M2 8.8577e-15
AM(4)-M2 AM(4)-M2 AM(4)-M2 9.0032e-15
AM(0)-M1 AM(0)-M1 AM(0)-M1 8.4434e-15
AM(1)-M1 AM(1)-M1 AM(1)-M1 9.0293e-15
AM(2)-M1 AM(2)-M1 AM(2)-M1 Inf
AM(3)-M1 AM(3)-M1 AM(3)-M1 NaN
AM(4)-M1 AM(4)-M1 AM(4)-M1 NaN
BDF(1) BDF(1) BDF(1) 8.4105e-15
BDF(2) BDF(2) BDF(2) 2.8666e-14
BDF(3) BDF(3) BDF(3) 4.1021e-14
BDF(4) BDF(4) BDF(4) 1.2004e-14
BDF(5) BDF(5) BDF(5) 1.2194e-14

Table 5.2
Homogeneous couplings for the linear in time problem (1)

Scheme for aux. monolithic Scheme on Ω1 Scheme on Ω2 L2 Error
AM(0)-M2 AM(0)-M2 AM(0)-M2 9.8838e-04
AM(1)-M2 AM(1)-M2 AM(1)-M2 7.9203e-15
AM(2)-M2 AM(2)-M2 AM(2)-M2 7.8532e-15
AM(3)-M2 AM(3)-M2 AM(3)-M2 7.7915e-15
AM(4)-M2 AM(4)-M2 AM(4)-M2 7.9485e-15
AM(0)-M1 AM(0)-M1 AM(0)-M1 9.8838e-04
AM(1)-M1 AM(1)-M1 AM(1)-M1 7.9072e-15
AM(2)-M1 AM(2)-M1 AM(2)-M1 Inf
AM(3)-M1 AM(3)-M1 AM(3)-M1 NaN
AM(4)-M1 AM(4)-M1 AM(4)-M1 NaN
BDF(1) BDF(1) BDF(1) 9.8838e-04
BDF(2) BDF(2) BDF(2) 1.9410e-14
BDF(3) BDF(3) BDF(3) 2.8341e-14
BDF(4) BDF(4) BDF(4) 1.0399e-14
BDF(5) BDF(5) BDF(5) 1.0253e-14

Table 5.3
Homogeneous couplings for the quadratic in time problem (2)

monolithic equation and each subdomain seem to work well. We also implement AM(s)-M2
for the auxiliary monolithic with BDF on one or both subdomains, resulting in O(1) errors.
Implementing BDF for the auxiliary monolithic with AM-M2 on the subdomains is highly
unstable. One example of each of these scenarios is included in Table 5.4.

We now combine multistep and multistage solvers. Using BDF for the auxiliary mono-
lithic and RK for the subdomains, Table 5.5 shows that BDF(1) and BDF(2) work with
almost all RK(q) schemes for the linear in time problem, with the exception of BDF(2) and
RK(1). BDF(3) and BDF(4) are unstable with any order RK scheme; we restrict ourselves
to BDF(3) in the table. For the quadratic in time problem, BDF-RK couplings behave
similarly; however, Table 5.6 show that none of the schemes reach machine precision when

22Comparing Stability Of Partitioned Heterogeneous Time-integration Methods Involving Index-2 DAEs Resulting From High-order Adams-Moulton And Backward Difference Formula Time Integration Schemes

Scheme for aux. monolithic Scheme on Ω1 Scheme on Ω2 L2 Error
AM(2)-M2 AM(1)-M2 AM(1)-M2 6.4204e-09
AM(3)-M2 AM(2)-M2 AM(2)-M2 7.8707e-15
AM(4)-M2 AM(3)-M2 AM(3)-M2 7.7797e-15
AM(1)-M2 AM(2)-M2 AM(2)-M2 6.2517e-09
AM(2)-M2 AM(3)-M2 AM(3)-M2 7.7908e-15
AM(3)-M2 AM(4)-M2 AM(4)-M2 7.8578e-15
AM(4)-M2 AM(2)-M2 AM(2)-M2 7.7380e-15
AM(2)-M2 AM(4)-M2 AM(4)-M2 7.9283e-15
AM(2)-M2 AM(4)-M2 AM(2)-M2 7.8894e-15
AM(2)-M2 BDF(3) BDF(3) 1.7826
BDF(3) AM(2)-M2 AM(2)-M2 NaN

Table 5.4
Combinations of implicit solvers for the quadratic in time problem (2)

used for the quadratic problem.

Scheme for aux. monolithic Scheme on Ω1 Scheme on Ω2 L2 Error
BDF(1) RK(1) RK(1) 7.9622e-15
BDF(1) RK(2) RK(2) 8.2862e-15
BDF(1) RK(3) RK(3) 1.1895e-14
BDF(1) RK(4) RK(4) 8.4319e-15
BDF(2) RK(1) RK(1) 1.2433e+104
BDF(2) RK(2) RK(2) 8.2766e-15
BDF(2) RK(3) RK(3) 1.1691e-14
BDF(2) RK(4) RK(4) 8.3731e-15
BDF(3) RK(1) RK(1) Inf
BDF(3) RK(2) RK(2) 1.5764e+98
BDF(3) RK(3) RK(3) 1.4245e+98
BDF(3) RK(4) RK(4) 1.7185e+98

Table 5.5
Discretizations using RK(q) for each subdomain and BDF(s) for the auxiliary monolithic system for

the linear in time problem (1)

Lastly, we notice that the use of BDF(s) for the auxiliary monolithic system, RK(q) for
Ω1, and BDF(s) for Ω2 as seen in Table 5.7 loses accuracy when compared to similar schemes
using RK(q) on both subdomains in Table 5.5. Although they show the same stability
behavior, schemes that use RK(q) for both subdomains achieve much better accuracy than
their counterparts that use BDF(s) on Ω2. Multistage RK(q) methods for discretizing the
subdomains combine better with BDF(s) for the auxiliary monolithic system than with
AM(s)-M2, as observed in Table 5.8.

6. Conclusions. Our previous work with the IVR method, as well as the PHTI im-
plementation in [8], have both shown promising results in terms of accuracy and stability
for index-1 DAEs. However, our investigations in this paper demonstrate that the extension
of the PHTI framework to an index-2 DAE is not straightforward. Care needs to be taken
as the index of the DAE is increased, and combinations of multistage and multistep time
integrators on subdomains should not be coupled arbitrarily. Additionally, the results for
the AM(s)-M1 method suggest that considering the LM as continuous at the points tn may

A. de Castro & P. Kuberry 23

Scheme for aux. monolithic Scheme on Ω1 Scheme on Ω2 L2 Error
BDF(1) RK(1) RK(1) 9.8843e-04
BDF(1) RK(2) RK(2) 2.0482e-07
BDF(1) RK(3) RK(3) 2.0482e-07
BDF(1) RK(4) RK(4) 2.0482e-07
BDF(2) RK(1) RK(1) 2.3808e+115
BDF(2) RK(2) RK(2) 1.9868e-07
BDF(2) RK(3) RK(3) 1.9868e-07
BDF(2) RK(4) RK(4) 1.9868e-07
BDF(3) RK(1) RK(1) Inf
BDF(3) RK(2) RK(2) 6.1426e+105
BDF(3) RK(3) RK(3) 6.1426e+105
BDF(3) RK(4) RK(4) Inf

Table 5.6
Discretizations using RK(q) for each subdomain and BDF(s) for the auxiliary monolithic system for

the quadratic in time problem (2)

Scheme for aux. monolithic Scheme on Ω1 Scheme on Ω2 L2 Error
BDF(1) RK(1) BDF(1) 8.3222e-07
BDF(1) RK(2) BDF(1) 6.8516e-07
BDF(1) RK(3) BDF(1) 6.8516e-07
BDF(1) RK(4) BDF(1) 6.8516e-07
BDF(2) RK(1) BDF(2) 1.1841e+96
BDF(2) RK(2) BDF(2) 7.8704e-07
BDF(2) RK(3) BDF(2) 7.8704e-07
BDF(2) RK(4) BDF(2) 7.8704e-07
BDF(3) RK(1) BDF(3) Inf
BDF(3) RK(2) BDF(3) 3.4667e+77
BDF(3) RK(3) BDF(3) 3.4671e+77
BDF(3) RK(4) BDF(3) 3.4657e+77

Table 5.7
Discretizations using RK(q) for Ω1 and BDF(s) for Ω2 and the auxiliary monolithic system for the

linear in time problem (1)

not be a valid assumption.

Further progress might be found via the recent coupling framework that uses discon-
tinuous Galerkin methods in time (DGiT), [4, 3]. The subdomain integrators must first be
derived using a representation as piecewise polynomial in time (examples may be found in,
e.g. [6, 9]). The Lagrange multiplier is given its own polynomial structure, which might
not be continuous. In [3], for example, it was shown that one may appeal to the stability
analysis to inform the construction of discrete coupling conditions that close the system
and determine the flux in a way that enforces the stability. Although this was done using
an unconditionally stable integrator with an energy analysis, the same principles could be
investigated in the current setting of PHTI methods.

After this proceeding was compiled detailing the work performed as part of the summer
intern program, we noted that Method 2 yields a LM that represents a time integrated
quantity. We are investigating projecting this time integrated quantity to a flux time-density
before passing it to other time integrators, which appears to be a promising direction.

24Comparing Stability Of Partitioned Heterogeneous Time-integration Methods Involving Index-2 DAEs Resulting From High-order Adams-Moulton And Backward Difference Formula Time Integration Schemes

Scheme for aux. monolithic Scheme on Ω1 Scheme on Ω2 L2 Error
AM(2)-M2 RK(1) RK(1) 2.5201
AM(2)-M2 RK(2) RK(2) 2.5227
AM(2)-M2 RK(3) RK(3) 2.5227
AM(2)-M2 RK(4) RK(4) 2.5227
AM(3)-M2 RK(1) RK(1) 2.5276
AM(3)-M2 RK(2) RK(2) 2.5302
AM(3)-M2 RK(3) RK(3) 2.5302
AM(3)-M2 RK(4) RK(4) 2.5302

Table 5.8
Discretizations using RK(q) for each subdomain and AM(s)-M2 for the auxiliary monolithic system

for the linear in time problem (1)

7. Acknowledgements. The authors would like to thank Jeffrey Connors and Andrew
Steyer for their constructive feedback that improved the quality of this manuscript.

REFERENCES

[1] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations, Society for Industrial and Applied Mathematics, 1998.

[2] K. Brenan, S. Campbell, and L. Petzold, Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations, Elsevier Science Publishing Co., Inc., 1989.

[3] J. M. Connors, J. Owen, P. Kuberry, and P. Bochev, A conservative discontinuous-galerkin-in-
time (dgit) multirate time integration framework for interface-coupled problems with applications
to solid–solid interaction and air–sea models, Computer Methods in Applied Mechanics and Engi-
neering, 426 (2024), p. 116975.

[4] J. M. Connors and K. C. Sockwell, A multirate discontinuous-Galerkin-in-time framework for
interface-coupled problems, SIAM Journal on Numerical Analysis, 60 (2022), pp. 2373–2404.

[5] A. de Castro, P. Bochev, P. Kuberry, and I. Tezaur, Explicit synchronous partitioned scheme
for coupled reduced order models based on composite reduced bases, Computer Methods in Applied
Mechanics and Engineering, 417 (2023), p. 116398.

[6] M. Delfour and F. Dubeau, Discontinuous polynomial approximations in the theory of one-step,
hybrid and multistep methods for nonlinear ordinary differential equations, Mathematics of Com-
putation, 47 (1986), pp. 169–189.

[7] K. Peterson, P. Bochev, and P. Kuberry, Explicit synchronous partitioned algorithms for interface
problems based on Lagrange multipliers, Computers & Mathematics with Applications, 78 (2019),
pp. 459–482.

[8] K. C. Sockwell, P. Bochev, K. Peterson, and P. Kuberry, Interface flux recovery framework for
constructing partitioned heterogeneous time-integration methods, Numerical Methods for Partial
Differential Equations, 39 (2023), pp. 3572–3593.

[9] S. Zhao and G. W. Wei, A unified discontinuous Galerkin framework for time integration, Mathemat-
ical Methods in the Applied Sciences, 37 (2014), pp. 1042–1071.

A. de Castro & P. Kuberry 25

BACKWARDS SEQUENTIAL MONTE CARLO FOR EFFICIENT
BAYESIAN OPTIMAL EXPERIMENTAL DESIGN

ANDREW CHIN∗ AND TOMMIE CATANACH†

Abstract. The expected information gain (EIG) is a crucial quantity in Bayesian optimal experimental
design (OED), quantifying how useful an experiment is by the amount we expect the posterior to differ from
the prior. However, evaluating the EIG can be computationally expensive since it requires the posterior
normalizing constant for which analytical solutions are only possible for basic models. A rich literature
exists for estimation of this normalizing constant, with sequential Monte Carlo (SMC) approaches being
one of the gold standards. In this work, we leverage two idiosyncrasies of OED to improve efficieny of EIG
estimation via SMC. The first is that in OED, we simulate the data and thus know the true underlying
parameters. Second, we ultimately care about the EIG, not the individual normalizing constants. This
lets us create an EIG-specific SMC estimator that starts with a sample from the posterior and tempers
backwards towards the prior. The method arises from the observation that, in many cases, the Monte Carlo
variance of standard SMC estimators for the normalizing constant of a single dataset are significantly lower
than the variance of the normalizing constants across datasets; the latter thus contributes the majority of
the variance for EIG estimates. This suggests the potential to slightly increase variance while drastically
decreasing computation time by reducing the SMC population size and, taking this idea to the extreme,
opens the door to unique estimators. We demonstrate our method on a coupled spring-mass system where
we observe significant performance improvements.

1. Introduction. Optimal experimental design (OED) is a powerful method for select-
ing design parameters for experiments that update model uncertainty using observational
data. By quantifying the utility U of a certain design d, one can then maximize this utility
over all the designs to find the best experiment d∗:

d∗ = argmax
d

U(d).

In Bayesian settings, we are often interested in the information gain (IG) from an
experiment for an unknown parameter θ given the dataset y. This is quantified by the
Kullback-Leibler (KL) divergence from the prior p(θ), which we assume does not depend on
d, to the posterior p(θ | y, d) [15]:

IG(y | d) = DKL(p(θ | y, d) ∥ p(θ)) =
∫

θ

p(θ | y, d) log p(θ | y, d)
p(θ)

dθ.

As we do not have access to y before an experiment is run, our utility function is the expected
information gain (EIG):

EIG(d) = Ey|d[DKL(p(θ | y, d) ∥ p(θ))]

=

∫

y

p(y | d)
∫

θ

p(θ | y, d) log p(θ | y, d)
p(θ)

dθ dy

=

∫

y

∫

θ

p(θ, y | d) log p(y | θ, d)
p(y | d) dθ dy (1.1)

Henceforth, we omit d from the notation for brevity.
This expectation has no analytical solution outside of the most basic examples, and

thus we resort to Monte Carlo integration. This proceeds by drawing a dataset, estimating
the information gain, and repeating this many times to obtain an average information gain.

∗Johns Hopkins University, achin23@jhu.edu
†Sandia National Laboratories, tacatan@sandia.gov

26 CSRI Summer Proceedings 2024

However, the information gain itself is also generally intractable due to the presence of the
posterior normalizing constant p(y), also known as the evidence or marginal likelihood. Thus
considerable effort is often placed on estimating p(y) or its log [16], and not all methods are
guaranteed to give accurate results. In low dimensions and simple problems, simple nested
Monte Carlo based on importance sampling is a common choice [15]. In more complex
cases, more stable but expensive Monte Carlo estimators are required. A wide variety of
these estimators exist, as p(y) arises in other applications such as Bayesian model selection
and free energy estimation [10, 7]. An alternative approach relies on approximate variational
methods [6, 13], but these lack the same asymptotic guarantees as Monte Carlo.

Principal among these is a class of estimators based on sequential Monte Carlo (SMC)
[4]. SMC starts with a large number n of samples from a known distribution. This group of
samples is often referred to as a population of particles. It then evolves this population via
importance resampling and Markov Chain Monte Carlo (MCMC) to sample a sequence of
intermediate tempered distributions that converge to the posterior. One common sequence
is the following power posterior sequence [8], which we index by the increasing sequence
of temperatures ti, i = 0, . . . , N . By convention, t0 = 0 and tN = 1, so at the lowest
temperature we recover the prior, and at the highest temperature we recover the posterior.

pti(θ | y) =
p(y | θ)tip(θ)

zt(y)
, zti(y) =

∫

θ

p(y | θ)tip(θ) dθ (1.2)

At each level, we can compute

E[p(y | θ)∆ti] =

∫

θ

p(y | θ)∆ti
p(y | θ)tip(θ)

zti
dθ

=

∫
θ
p(y | θ)ti+∆tip(θ) dθ

zti

=

∫
θ
p(y | θ)ti+1p(θ) dθ

zti

=
zti+1

zti

where ∆ti = ti+1 − ti. Taking the product up to the N − 1 level yields p(y):

N−1∏

i=0

zti+1

zti
=
zt1
zt0

zt2
zt1

. . .
ztN
ztN−1

=
ztN
zt0

=

∫
θ
p(y | θ)p(θ) dθ∫

θ
p(θ) dθ

=
p(y)

1
.

This is known as the stepping stone algorithm [18], and in SMC the number of levels and
their temperatures can be chosen adaptively [3]. The tempering gradually guides the samples
to areas of high posterior density, and leads to some of the most accurate estimates of p(y)[7]
via the following estimator:

p̂(y) =

N−1∏

i=0

1

n

n∑

j=1

p(y | θi,j)∆ti

A. Chin & T. Catanach 27

where θi,j is the jth particle of the ith temperature.
This accuracy, however, comes at the expense of computational efficiency. Often, hun-

dreds, if not thousands, of particles are used, each requiring numerous MCMC steps for each
tempering level. This can lead to hundreds of millions of likelihood evaluations to compute
the EIG for a single design, quickly becoming infeasible for some models.

We propose a new estimator inspired by SMC but tailored to the OED setting, which
hinges on two key observations. The first is that in OED, we require E[log p(y)], and the
variance in log p(y) across different y often dominates the variance in estimating log p(y)
for a single y when using SMC. We find that we can significantly reduce the number of
particles to achieve similar Monte Carlo error but with far less computational cost. The
second observation is that because we generate the data y when computing the EIG, we
know the true θ that led to the data and can utilize this for sampling. Generating y requires
drawing θ ∼ p(θ) and then y ∼ p(y | θ), resulting in the joint sample (θ, y). Instead of
discarding θ, we can treat this joint sample as if we drew y ∼ p(y) and θ ∼ p(θ | y), giving
us a free posterior sample. Our estimator starts with the posterior sample and draws from
a sequence of distributions tempered backwards towards the prior. In other words, for the
power posterior in Equation 1.2, we start at tN = 1 and decrease towards t0 = 0, opposite
of what is traditionally done in SMC. This lead to an algorithm we call backwards sequential
Monte Carlo that is also robust to overestimating the EIG under poor MCMC mixing. A
number of modifications are possible which we highlight for future exploration.

We demonstrate our estimator on a coupled spring-mass system with multimodal pos-
teriors. Not only do we show that traditional SMC estimators can be used with an order
of magnitude fewer particles, but also that our backwards estimator provides a further
fourfold improvement in computational cost. An additional simulation based on fitting a
Johnson-Cook model is included in Appendix A.

2. Backwards sequential Monte Carlo.

2.1. Motivation: balancing variances. Unlike areas like Bayesian model selection,
in OED we are not interested with solely estimating p(y); we are interested in EIG(d), for
which individual IG(y) will depend on their own p(y). Hence for an estimate of the EIG
there are two sources of variance. The first is variance in IG(y) across the datasets y, and
the second is variance from its estimate ˆIG(y) for a given y, which we denote V ar(ˆIG(y) | y).
Even if IG(y) is known in closed form, in which case V ar(ˆIG(y) | y) = 0, an estimate of
the EIG can still have high variance if V ar(IG(y)) is high. If we assume V ar(ˆIG(y) | y) is
constant across y and ˆIG is unbiased, we can formalize this through the law of total variance:

V ar(ˆIG(y)) = E[V ar(ˆIG(y) | y)] + V ar(E[ˆIG(y) | y])
= V ar(ˆIG(y) | y) + V ar(IG(y))

In our experiments, we find that standard SMC can be overly precise in the sense that
V ar(ˆIG(y) | y) ≪ V ar(IG(y)). Significant cost is spent on achieving excellent information
gain estimates, but this precision is unwarranted in light of the overall variance across
datasets. As an example, we demonstrate this on a coupled spring-mass system model that
we elaborate further on in Section 3.2. For a fixed design, we draw 100 different y using
different θ, and for each we compute 30 estimates ˆIG(y) using an SMC algorithm [3] with
250 particles. The results for 5 such datasets are shown in Table 2.1. We find that the
variance of ˆIG(y) are over two orders of magnitude less than the variance of IG(y) across
the 100 datasets, which was 22.4.

In standard nested Monte Carlo, the total variance is a simple function of the inner and
outer loops [12], and the variance tradeoff can be balanced appropriately. We apply this idea

28 Backwards Sequential Monte Carlo For Efficient Bayesian Optimal Experimental Design

Dataset ˆIG(yi) V ar(ˆIG(yi) | yi)
y1 20.210 0.081
y2 12.218 0.079
y3 21.272 0.067
y4 13.462 0.044
y5 16.098 0.056

Table 2.1
Comparison of variances of 30 SMC estimates of IG using 250 particles within datasets and values

of IG across datasets. The variance of the information gains across 100 datasets was 22.4, though only 5
datasets are shown here.

to SMC by reducing the number of particles. Shown in Table 2.2, we find that on a single y
with 150 particles, the variance is almost identical to 250 particles. At 50 and 20 particles,
we still have an order of magnitude less variance than V ar(IG(y)). Only when we get to 10
particles does the V ar(ˆIG(y) | y) approximately equal V ar(IG(y)). While this trend may
not hold for all types of problems, it should be relatively cheap to determine this empirically
for a given problem; the cost of ballparking V ar(ˆIG(y) | y) using a handful of SMC runs is
small relative to the entire OED process, which would require hundreds, if not thousands, of
SMC runs. It is important to recognize that these few-particle SMC estimators are no longer
useful for estimating individual information gains due to their variance and thus could not
be applied in other contexts; their utility is unique to calculating EIGs.

Particles Estimate of IG(y1) V ar(ˆIG(y1) | y1)
250 20.210 0.081
150 20.377 0.133
50 20.513 0.570
20 20.399 1.384
10 24.802 25.123

Table 2.2
Comparison of V ar(ˆIG(y1) | y1) for different numbers of SMC particles.

We can try pushing this further by considering the extreme case of using only a single
particle. This seems ill-advised due to the inability to do importance resampling with a
single particle, and indeed in practice many attempts are unsuccessful. However, this is
mostly a consequence of the algorithm failing to mix, not a failure of estimation using few
samples. We consider the slightly different question of whether we can use a single sample,
assuming hypothetically we could directly draw from each temperature. To emulate this, we
run SMC using 1000 particles to ensure good mixing, but do the information gain estimation
using only a single random particle from each temperature. This results in a variance of
14.903. In other words, while using one particle is not feasible in this case, using one sample
is. We may need more total datasets to achieve the same Monte Carlo standard error, but
this would be a small cost relative to the overall speedup. In the next section, we propose
a method to draw these single samples.

2.2. Algorithm. Now we make use of a second unique feature of OED: datasets are
simulated when computing the EIG. This means we have access to the true underlying
parameter θ∗. Crucially, we can treat joint sample (y, θ∗) as being generated first by drawing
y from its marginal, and then θ∗ from the posterior. This gives us one free draw from the
posterior, and so we can start our sampling from θ∗ and consider sampling a sequence

A. Chin & T. Catanach 29

of tempered distributions beginning from the posterior and going to the prior, taking a
single sample at each level. This makes sampling easier since we start with a sample from
the most difficult distribution and decrease temperature over time, preventing degeneracy
issues where our samples end up stuck in low likelihood regions. This also means we are
less concerned with multimodality since we are not trying to explore each power posterior
thoroughly, only enough to get a single effective sample. We call this scheme backwards
SMC.

Since we will be increasing the variance in our estimates, we switch to using the thermo-
dynamic integral to help reduce bias by directly targeting log p(y) at the expense of needing
more tempering levels:

log p(y) =

∫ 1

0

∫

θ

log p(y | θ)p(y | θ)
tp(θ)

z(y | θ) dθ dt.

The sequence of temperatures provide a discretization of t on [0, 1], and we then use Simp-
son’s rule to approximate the outer integral [1]. By interchanging the order of integration,
we can also view our estimator as first doing numerical integration with Simpson’s rule using
a single draw at each temperature, and then averaging over all the integrals. This enables
us to estimate Monte Carlo standard errors by computing the variance across the integrals.
The thermodynamic integral approach is also valid for SMC, but the number of tempering
levels needed for accurate integration tends to be higher than the number of tempering levels
needed for good SMC estimates, and the bias is less of an issue when the estimate of p(y)
is precise.

The full algorithm is presented in Algorithm 1, and despite only using a sample at each
iteration, we will see in Section 3 that it is still effective. The tempering sequence and
MCMC kernel are user specified, with further discussion on their selection in Section 3.1.

Algorithm 1 Backwards sequential Monte Carlo

Require: Dataset (θ∗, y), Temperatures t = {t0, . . . , tN}
Ensure: Output ˆIG(y)
1: Initialize θ ← θ∗, i← N − 1, l← Array[log p(y | θ∗)]
2: while i ≥ 0 do
3: θ ←MCMC(θ, pti) // Run MCMC on pti starting at θ
4: i← i− 1
5: l.append(log p(y | θ))
6: end while
7: return log p(y | θ∗)−Simpson(t, l) // Use Simpson’s rule for thermodynamic integral.

One downside to not having a large population of samples is that we lose some ability to
estimate the covariance of the past temperature levels for use in adapting the MCMC ker-
nel for the current temperature, especially when using random walk Metropolis algorithms.
However, because we start at a point of relatively high likelihood and then temper in the
backwards direction, poor mixing generally results in expected likelihoods at each tempera-
ture to be slightly higher than the true values; lower temperatures normally place more mass
in areas where the likelihood is extremely small by nature of being more spread out, but the
MCMC may not have time visit these tail regions. Thus our estimates of log p(y) will be
biased upwards, and so IG estimates are biased downwards. This means that even in this
suboptimal regime for MCMC, our estimator is not overly optimistic about any experiment.
As we will see in Section 3, OED can still be conducted with these biased estimates.

30 Backwards Sequential Monte Carlo For Efficient Bayesian Optimal Experimental Design

2.3. Extensions. While simply tempering backwards is a novel scheme, we can further
augment this by the fact that, as in traditional SMC, we are able to draw directly from the
prior distribution. This leads to various extensions of backwards SMC.

The first is to set the MCMC transition kernel to converge to the prior distribution;
we know that the optimal proposal distribution at t = 0 is the prior itself, so we can use a
proposal density which tempers to the prior, for example

f(θ′ | θ) = p(θ′)1−tg(θ′ | θ)t

where g(θ′ | θ) is the standard random walk proposal of a Gaussian density centered at
the current value θ with some chosen standard deviation. Assuming the prior is Gaussian,
f is still a Gaussian density. An alternative that we leave for future work is to use the
preconditioned Crank-Nicolson method [5], tempering the step size parameter to converge
to the prior.

The second extension is to inform the initialization at each level based on the idea that
the next temperature level should place more mass towards where the prior has more mass.
Instead of starting θ at the last position of the previous level, we can nudge the starting
point of the MCMC towards the prior mean or mode, either by taking a number of steps in
that direction, or by searching in that direction until the likelihood ratio of the new point
and the existing point reaches some threshold. We call these methods “magnetic” backwards
SMC. A primitive version of this method, as well as the tempered proposals, are used for
the primary simulation in Section 3.

Another possibility is to run SMC both forward and backwards, since the sample on
either end can be drawn directly. For example, for N tempering levels, one run forward
SMC from the prior for first N/2 levels, and use backwards SMC from the posterior for
the last N/2 levels. If the MCMC accrues a minor bias at each level, this process could
conceivably reduce that bias by reducing the distance of each level from a level where we
can draw directly. This bidirectional property can be used for diagnosing the performance
of the sampler as well. By comparing the distribution of log likelihoods after tempering to
the distribution from direct draws, we can get a sense of how well the samplers have mixed
to get to that point. We can also compared the final values output by the forward and
backwards directions to see if they are relatively similar. We leave further exploration of
this to future work.

3. Simulations.

3.1. Setup. We compare our algorithm to the SMC algorithm of [3], which adaptively
chooses the tempering levels and MCMC iterations based on effective sample size calcu-
lations. Different numbers of particles are also considered to illustrate the discussion in
Section 2.1, with a 250 particle run being considered the gold standard we compare against.

For our backwards estimator, we use a tempering sequence based on previous work [1],
with N = 100 levels and temperatures ti = (i/N)5. For the MCMC, a simple random
walk Metropolis is used, where the proposal standard deviation is adapted based on the
previous temperature’s acceptance rate using the feedback controller of [2] to target an
ideal acceptance rate of 0.234 [9]. There is a balance between the number of temperature
levels and number of MCMC iterations because more temperatures means that the difference
between subsequent distributions is smaller; fewer MCMC iterations should then be required
to achieve convergence. Assuming the number of levels is sufficiently large to calculate the
thermodynamic integral, it is unclear whether, for example, 100 levels of 100 iterations is
generally better than 200 levels of 50 iterations. Figure 3.1 demonstrates how the absolute
error changes for the model in Section 3.2 as we vary these parameters when compared to a

A. Chin & T. Catanach 31

10 20 40 60 80 100 150 200 300

MCMC steps

40
60

80
10

0
12

0
14

0
te
m
pe

rin
g
le
ve

ls
-6.66 -3.65 -2.16 -1.36 -1.21 -0.89 -0.65 -0.30 -0.32

-4.80 -2.54 -1.27 -0.79 -0.81 -0.79 -0.16 -0.30 -0.14

-3.92 -2.10 -0.96 -0.86 -0.71 -0.35 -0.40 -0.29 0.02

-3.43 -1.77 -1.06 -0.70 -0.75 -0.38 -0.21 -0.06 -0.19

-3.02 -1.76 -1.04 -0.73 -0.45 -0.41 -0.29 -0.08 -0.02

-2.63 -1.48 -0.79 -0.58 -0.37 -0.35 0.07 -0.11 0.01

10 20 40 60 80 100 150 200 300

-4.79 -2.01 -0.93 -0.51 -0.47 -0.62 -0.38 -0.22 -0.17

-2.84 -0.63 -0.06 -0.06 -0.13 -0.21 0.19 0.06 -0.02

-1.75 -0.06 0.30 0.07 0.24 -0.00 0.03 0.02 0.05

-0.91 0.51 0.46 0.30 0.34 0.15 0.06 0.10 -0.01

-0.24 1.13 0.61 0.35 0.50 0.07 0.06 0.09 0.04

0.26 1.26 0.79 0.57 0.43 0.32 0.29 0.22 0.05

−6

−4

−2

0

Fig. 3.1. Left: Absolute error of the standard backwards SMC, with downward bias trend clearly visible
when levels or steps are too low. Right: Error of magnetized backwards SMC. Values are in comparison to
a long 250 particle SMC estimate, with Monte Carlo standard errors around 0.3.

k1

m1

k2

m2

x1

x2

Fig. 3.2. Coupled spring-mass system. Each of the masses also has an associated friction coefficient
b1 and b2.

gold standard SMC run, and it appears that there is not a significant difference past a certain
threshold. Baed on this, we fix the number of levels at 100 and only adjust the number of
MCMC iterations per temperature for simplicity. We implement an early stopping criteria
for MCMC at each level once the Spearman correlation between the starting log likelihoods
and the current log likelihoods drops below 0.1. We also halve the number of steps taken
once the proposal standard deviation equals the prior standard deviation, indicating the
power posterior is spread out enough such that more iterations are not critical. These
are heuristic adaptations for now, though further investigation in this area would help the
robustness of the sampler.

For initialization, we use the magnetized estimator where, between levels, we take up to
a tenth of the planned MCMC iterations toward the prior mean using the proposal standard
deviation as the step size, stopping if the log likelihood at any new step is less than a tenth
of the starting log likelihood. We observe better performance with fewer MCMC iterations
across almost all configurations, though overestimation is now more likely.

For tuning, we fix a design and run multiple MCMC iterations, stopping roughly when
our estimates stabilize while accounting for Monte Carlo standard error, which ended up
being 60 iterations. Any initial SMC runs used to determine whether this sampler is viable
as mentioned in Section 2.1 can also be used to inform tuning.

3.2. Coupled spring-mass system. Our model will be a coupled spring-mass system
where two masses, m1 and m2, are on a surface with respective friction coefficients b1 and
b2. They are joined together by a spring with spring constant k2, with the first mass then
joined to a fixed point by a second spring with spring constant k1. The springs are assumed
to have length 0 when no forces are applied to them, and the starting positions and velocities

32 Backwards Sequential Monte Carlo For Efficient Bayesian Optimal Experimental Design

of the masses are set to 0. This setup is outlined in Figure 3.2. Each of the two masses,
their friction coefficients, and the two spring constants are considered unknown parameters,
so we will have a six dimensional posterior for (m1,m2, b1, b2, k1, k2). All parameters are
given log-normal priors with mean 0 and standard deviation 1.

The experiment involves imparting a damped oscillating force on the system representing
a vibration, described by the following differential equations:

x′1 = v1

v′1 =
−b1v1 − (k1 + k2)x1 + k2x2

m1

x′2 = v2

v′2 =
−b2v2 + k2(x1 − x2) + f(γ, t)

m2

where f(γ, t) = 5 sin(γt) exp(−t/5) is the forcing function, xi is the position of the ith mass,
and vi is the velocity of the ith mass.

We observe a noisy version of the position x1 at 100 equally spaced time points. The
noise is Gaussian with mean 0 and standard deviation 0.025, resulting in the observed data
y = {y1, . . . , y100} with

yt = x1t + ϵt, ϵt
iid∼ N(0, 0.0252), t = 1, . . . , 100

where x1t represents the position of the first mass at time t. Figure 3.3 shows examples of
three randomly generated datasets.

0 50 100
−0.1

0.0

0.1

0.2

po
sit

io
n

0 50 100
t

−1.0

−0.5

0.0

0.5

1.0

0 50 100
0.0

0.2

0.4

0.6

0.8 true value x1
observed value y

Fig. 3.3. Three examples of observed data y in orange, along with the true signal x in blue. The true
signal corresponds to the position of the first mass m1 over the 100 time points.

We consider γ to be the design variable and evaluate ten equally spaced designs between
0 and 2 of the form 0.2j, j = 1, . . . , 10. By observing only one mass, we induce multimodality
and curvature in the posterior distribution. Figure 3.4 shows four dimensions of an example
posterior.

1000 datasets are drawn for each method, with performance measured by the number
of likelihood evaluations required and how well the final EIG values correspond to those
of an expensive SMC run. The likelihood evaluations are the dominant operation from a
computational cost perspective and are therefore used as a hardware agnostic metric for
computational efficiency.

3.3. Results. Our first result highlights the discussion from Section 2.1. Shown in
Figure 3.5, by decreasing the number of SMC particles by an order of magnitude to 20,

A. Chin & T. Catanach 33

m2

k 1

b1

b 2

Fig. 3.4. Example posterior for four of the parameters based on kernel density estimation using samples
from SMC, with the standard normal priors shown in grey. The posterior demonstrates multimodality as
well as curvature.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
design

15

16

17

18

19

20

21

22

EI
G

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
design

107

108

109

lik
el

ih
oo

d
ev

al
ua

 io
ns

Backwards SMC 60 s eps
SMC 250 par icles
SMC 20 par icles
SMC 10 par icles

Fig. 3.5. Left: EIG estimates across 10 designs, with vertical bars representing two Monte Carlo
standard errors above and below the estimate. Right: Number of likelihood evaluations used to generate
each estimate. The adaptive nature of SMC results in a varying number of evaluations per design.

we gain an order of magnitude of efficiency with little loss of performance compared to the
gold standard 250 particle runs. At 10 particles, significantly more upward bias and noise
occurs. Notably, the failure seems to be catastrophic as opposed to gradual; below some
threshold, mixing fails and the estimates are poor, while above that threshold the estimates
are still stable. Reducing the SMC particles below 10 led to even worse estimates with
occasional numerical instability and are not shown. Our backwards estimator performs well
but with another fourfold decrease in likelihood evaluations compared to the 20 particle
SMC. Standard nested Monte Carlo was ineffective, with Monte Carlo standard errors over
90 for the same computation cost as the 20 particle SMC.

For demonstration, we also run a basic version of our estimator with only 10 MCMC
iterations for each temperature and no further adaptivity, shown in Figure 3.6. As expected,
this yields underestimates of the EIG. However, the resulting EIG curve can still be used
for OED, as the bias is sufficiently similar across designs. The curve is also still relatively
smooth due to the lack of degenerate samples increasing the variance. Even if accurate EIG

34 Backwards Sequential Monte Carlo For Efficient Bayesian Optimal Experimental Design

estimates are required, this could be used to enable a coarse first pass to narrow the search
space of designs.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
design

12

13

14

15

16

17

18
EI

G

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
design

106

107

108

109

lik
el

ih
oo

d
ev

al
ua

tio
ns

Backwa ds SMC 60 steps
SMC 250 pa ticles
Backwa ds SMC 10 steps, no adapt

Fig. 3.6. Comparison of results using 10 iterations of MCMC per temperature for backwards SMC.
The EIGs are clearly underestimated but still form a usable curve for OED.

One caveat is that the backwards SMC has around a 15% higher Monte Carlo standard
error, being about 0.167 compared to about 0.145 for SMC. This is not surprising since we
are increasing V ar(ˆIG(y) | y), and so it is reasonable to say that cost of obtaining estimates
with the same precision as SMC in this case would require about 33% more iterations
than what was ran in our simulations. However, our main takeaways do not change, as an
additional 33% cost still represents significant savings over alternatives.

4. Discussion. In this work, we introduced our backwards SMC estimator and demon-
strated its computational benefit over traditional SMC estimators. We now present a number
of future directions to be explored.

One main downside of backwards SMC is the difficulty in tuning or adapting the number
of iterations per level, so additional work here could significantly ease implementation.
Since we only have a single chain for each distribution, convergence criteria are hard to
establish. One possibility is running multiple chains, though this comes at the expense of
computation time and is not clearly better than running the standard SMC. Changing the
MCMC transitions kernel to use an algorithm like Hamiltonian Monte Carlo [14] could also
be an improvement, both in terms of mixing in high dimensions as well as having the ability
to adaptively set trajectory lengths with an algorithm like the No-U-Turn sampler [11].

Another key question is understanding when this estimator can be used. Currently, one
would have to rely on a handful of SMC runs to determine whether this estimator might
lead to efficiency gains. A more robust method or diagnostic that does not require running
other SMC algorithms would be valuable.

Lastly, the use of the free posterior sample is not restricted to SMC. Other techniques
for normalizing constant estimation, like parallel tempering [17], could utilize this to speed
up convergence of the chains and potentially overcome some of the shortcomings of SMC.

REFERENCES

[1] B. Calderhead and M. Girolami, Estimating Bayes factors via thermodynamic integration and
population MCMC, Computational Statistics & Data Analysis, 53 (2009), pp. 4028–4045.

A. Chin & T. Catanach 35

[2] T. A. Catanach, Computational methods for Bayesian inference in complex systems, California In-
stitute of Technology, 2017.

[3] T. A. Catanach and J. L. Beck, Bayesian updating and uncertainty quantification using se-
quential tempered MCMC with the rank-one modified Metropolis algorithm, arXiv preprint
arXiv:1804.08738, (2018).

[4] N. Chopin, O. Papaspiliopoulos, et al., An introduction to sequential Monte Carlo, vol. 4, Springer,
2020.

[5] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White, MCMC Methods for Functions:
Modifying Old Algorithms to Make Them Faster, Statistical Science, 28 (2013), pp. 424 – 446.

[6] A. Foster, M. Jankowiak, E. Bingham, P. Horsfall, Y. W. Teh, T. Rainforth, and N. Good-
man, Variational bayesian optimal experimental design, Advances in Neural Information Process-
ing Systems, 32 (2019).

[7] M. Fourment, A. F. Magee, C. Whidden, A. Bilge, F. A. Matsen IV, and V. N. Minin, 19 dubious
ways to compute the marginal likelihood of a phylogenetic tree topology, Systematic biology, 69
(2020), pp. 209–220.

[8] N. Friel and A. N. Pettitt, Marginal likelihood estimation via power posteriors, Journal of the
Royal Statistical Society Series B: Statistical Methodology, 70 (2008), pp. 589–607.

[9] A. Gelman, W. R. Gilks, and G. O. Roberts, Weak convergence and optimal scaling of random
walk metropolis algorithms, The annals of applied probability, 7 (1997), pp. 110–120.

[10] A. Gelman and X.-L. Meng, Simulating normalizing constants: From importance sampling to bridge
sampling to path sampling, Statistical science, (1998), pp. 163–185.

[11] M. D. Hoffman, A. Gelman, et al., The No-U-Turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo., J. Mach. Learn. Res., 15 (2014), pp. 1593–1623.

[12] X. Huan and Y. M. Marzouk, Simulation-based optimal Bayesian experimental design for nonlinear
systems, Journal of Computational Physics, 232 (2013), pp. 288–317.

[13] Q. Long, M. Scavino, R. Tempone, and S. Wang, Fast estimation of expected information gains for
Bayesian experimental designs based on Laplace approximations, Computer Methods in Applied
Mechanics and Engineering, 259 (2013), pp. 24–39.

[14] R. M. Neal, MCMC using Hamiltonian dynamics, arXiv preprint arXiv:1206.1901, (2012).
[15] T. Rainforth, A. Foster, D. R. Ivanova, and F. Bickford Smith, Modern Bayesian experimental

design, Statistical Science, 39 (2024), pp. 100–114.
[16] K. J. Ryan, Estimating expected information gains for experimental designs with application to

the random fatigue-limit model, Journal of Computational and Graphical Statistics, 12 (2003),
pp. 585–603.

[17] S. Syed, A. Bouchard-Côté, G. Deligiannidis, and A. Doucet, Non-reversible parallel tempering:
a scalable highly parallel mcmc scheme, Journal of the Royal Statistical Society Series B: Statistical
Methodology, 84 (2022), pp. 321–350.

[18] W. Xie, P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen, Improving marginal likelihood estimation
for Bayesian phylogenetic model selection, Systematic biology, 60 (2011), pp. 150–160.

Appendix A. Johnson-Cook model. As an additional example, we run a Johnson-
Cook model of a stress-strain curve for a hypothetical material. The data follows the
following model, where the experiment involves observing the stress at 100 equally spaced
strain percentages ϵ from 0 to 0.5, with varying measurement noise dependent on whether
the material is in the elastic or plastic phase:

y =

{
Eϵ+ δe if ϵE < A(
A+B

(
ϵ− A

E

)n)
(1 + C log (ϵ̇))

(
1−

(
T−293
775−293

)m)
+ δp otherwise

where δe
iid∼ N(0, 1) and δp

iid∼ N(0, 10). We consider the strain rate ϵ̇ and temperature T
as experimental variables. The other parameters represent unknown material constants for
which we assign the following priors:

E ∼ N(73000, 100002), A ∼ N(350, 1002)

B ∼ N(650, 2002), n ∼ Beta(2, 5)
C ∼ Beta(2, 10), m ∼ Beta(2, 5)

For simplicity, we evaluate five strain rates {0.001, 0.005, 0.01, 0.05, 0.1} for the same
temperature 300, and then multiple temperatures {300, 400, 500, 600, 700} for the same

36 Backwards Sequential Monte Carlo For Efficient Bayesian Optimal Experimental Design

strain rate 0.1. For the MCMC, we use a proposal standard deviation equal to the prior
standard deviations scaled to target the 0.234 acceptance rate, though no tempering of the
proposal to the prior is done since the prior is not multivariate Gaussian. We use the same
1000 datasets with 60 MCMC steps as in the coupled spring-mass model in Section 3.

10−3 10−2 10−1

design

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

EI
G

10−3 10−2 10−1

design

106

107

108

109

lik
el
ih
oo

d
ev

al
ua

tio
n

Backward SMC 10 tep
Backward SMC 60 tep
SMC 250 particle
SMC 20 particle
SMC 10 particle

Fig. A.1. EIG and computational cost results for different strain rates at temperature 300.

Similar results are achieved as Section 3.3 for the different strain rates, shown in Figure
A.1. However, changing the temperatures highlights an advantage of standard SMC, shown
in Figure A.2: its adaptivity allows it to use far fewer iterations if they are not needed.
There is currently no straightforward method for backwards SMC to do the same, even
though as few as 10 iterations yielded good estimates in our testing.

300 400 500 600 700
design

5

6

7

8

9

10

11

12

EI
G

300 400 500 600 700
design

106

107

108

109

lik
el

ih
oo

d
ev

al
ua

 io
ns

Backwards SMC 10 s eps
Backwards SMC 60 s eps
SMC 250 par icles
SMC 10 par icles

Fig. A.2. EIG and computational cost results for different temperatures at strain rate 0.1. Here, SMC
is able to effectively adapt the number of iterations required at the higher temperatures.

A. Chin & T. Catanach 37

DATA ASSIMILATION: ADDRESSING SPURIOUS CORRELATIONS AND
SCALABILITY ISSUES

ERIC CRISLIP ∗, MOE KHALIL † , AND KYLE NEAL ‡

Abstract.
Data assimilation in the form of the ensemble Kalman filter (EnKF) is commonly used to combine

large-scale physics-based models and real-world observations of a quantity of interest. However, the EnKF
is known to be adversely affected by spurious correlations when applied to Numerical Weather Prediction
(NWP) models with high-dimensional state spaces. To mitigate the effect of spurious correlations, various
localization methods have been proposed in the NWP literature. Unfortunately, the efficacy of and need
for these methods in the setting of general PDE-based forward models with large spatial mesh sizes is not
well-understood. We conducted a numerical data assimilation experiment on an example PDE model to
demonstrate the presence of spurious correlations and need for localization methods outside of the context
of NWP. In addition, we compared the computational efficiency of various EnKF implementations in high-
dimensional settings for which theoretical complexity bounds are available but empirical costs are unclear.

1. Motivation. Data assimilation is the process in which scientific or engineering mod-
els and observations are combined to create estimates of an unkown state that is evolving
in time. The ensemble Kalman filter (EnKF) has emerged as the premiere choice of data
assimilation technique in the context of expensive and large-scale dynamical systems. One
such application area is Numerical Weather Prediction (NWP), where the EnKF has been
studied extensively. However, the extension of methods developed in the context of NWP
to broader PDE-based systems has been hitherto lacking. The objective of this paper is to
investigate the application of the EnKF to general large-scale dynamical systems in two re-
gards: we will examine both the phenomenom of spurious correlations as noted in the NWP
literature and the performance of popular algorithms developed to reduce them, as well as
compare the empirical computational costs of various EnKF analysis step formulations.

2. Data assimilation.

2.1. Bayesian inference on dynamical systems. Let ut ∈ Rp denote the unknown
state at time t. We model the time-evolution of ut by

ut =Mt(ut−1), (2.1)

where Mt(·) is our forward model which determines the evolution distribution p(ut|ut−1).
Implicitly, we make a Markovian assumption, where the current state depends only on the
state at the previous time-step when conditioning on all previous states. If the initial state
u0 is unknown, we may also define a prior distribution p(u0) for it. We model measurements
yt ∈ Rqt of the unknown state by the expression

yt = Ht(ut) + ϵt, (2.2)

where Ht(·) is the observation operator with measurement noise ϵt, which is typically as-
sumed to follow a Gaussian distribution. We will also assume measurements depend only on
the current state and are independent of past and future measurements when conditioning
on the true state.

The goal of data assimilation is often to obtain the forecast distribution p(ut|y1, . . . ,yt−1),
which estimates the unknown state at a future time given current knowledge, and the anal-
ysis distribution p(ut|y1, . . . ,yt), which estimates the unknown state at the time a measure-
ment is collected [12].

∗Department of Statistics, The Ohio State University, escrisl@sandia.gov,
†Sandia National Laboratories, mkhalil@sandia.gov,
‡Sandia National Laboratories, kneal@sandia.gov

38 CSRI Summer Proceedings 2024

Under the stated conditional independence assumptions, we can acquire the forecast
distribution by integration:

p(ut | y1, . . . ,yt−1) =

∫
p(ut | ut−1)p(ut−1 | y1, . . . ,yt−1)dut−1. (2.3)

The analysis distribution of ut can then be computed by Bayes’ rule:

p(ut|y1, . . . ,yt) =
p(yt,ut | y1, . . . ,yt−1)

p(yt)
(2.4)

∝ p(yt,ut | y1, . . . ,yt−1) (2.5)

= p(yt | ut)p(ut | y1, . . . ,yt−1) (2.6)

However, the desired distributions are rarely available in closed form and must be obtained
through numerical means.

2.2. Kalman filter. Forecast and analysis distributions are available analytically when
the forward model and observation model are both linear and all stochasticitiy is additive
Gaussian, i.e.

u0 ∼ N (µf
0 ,P

f
0), (2.7)

yt = Htu+ ϵt, Ht ∈ Rqt×p, (2.8)

ϵt ∼ N (0,Rt), (2.9)

Mt(u) = Mtu+ qt, Mt ∈ Rp×p, (2.10)

qt ∼ N (0,Λt). (2.11)

In this setting, our Bayesian prodecure reduces to the Kalman filter [8]. When we have
a Markovian assumption for the current state and assume measurements are independent
when conditioning on the state variable, the analysis distribution is

ut | y1, . . . ,yt−1 ∼ N (µf
t ,P

f
t), (2.12)

and the forecast distribution is

ut | y1, . . . ,yt ∼ N (µa
t ,P

a
t), (2.13)

where

µf
t = Mtµ

a
t−1, (2.14)

Pf
t = MtP

a
t−1M

′
t +Λt, (2.15)

Pa
t = (I−KtHt)P

f
t , (2.16)

µa
t = µf

t +Kt(yt −Htµ
f
t). (2.17)

The matrix Kt = Pf
t H

′
t(HtP

f
t H

′
t +Rt)

−1 is known as the Kalman gain.

E. Crislip, M. Khalil, & K. Neal 39

2.3. Ensemble Kalman filter. Recall that the goal of data assimilation is to obtain
the forecast and analysis distributions for the hidden state. When equations (2.10) and
(2.11) do not hold, the analytic expressions of the Kalman filter are invalid and the forecast
and analysis distributions must be obtained by other means. A popular approach is to
use ensemble-based methods, which approximate the forecast and analysis distributions
through a discrete set of representative ensemble members (also known as particles). The
ensemble Kalman filter (EnKF) is one such method that accomodates nonlinear forward
models through the use of particles, yet still utilizes analytic expressions for the analysis
update [4].

The EnKF algorithm begins by generating N ensemble members from the prior on the

initial state, {u0,i}Ni=1
iid∼ p(u0). Evolving these ensemble members in time to the forecast

distribution of u1 is straightforward. We simply pass the ensemble members through the
forward model, uf

1,i =M1(u0,i) for i = 1, . . . , N . However, updating our forecast ensemble
members for u1 to the analysis distribution of u1 is more challenging. The first hurdle is
the choice of algorithm. Multiple deterministic updating schemes exist for the EnKF, such
as the Square Root Filter [4]. We will utilize a stochastic approach, which updates each
ensemble member by

ua
t,i = uf

t,i +Kt

(
yt + ϵt,i −Htu

f
t,i

)
, i = 1, . . . , N, (2.18)

{et,i}Ni=1
iid∼ N (0,Rt) (2.19)

Once our ensemble members have been updated to the analysis distribution of u1, we can
iterate between forecast evolutions and analysis updates for each subsequent timestep.

Though the ability to accomodate nonlinear forward models is a strength of the EnKF,
the algorithm still relies on a linear observation operator. If Ht is nonlinear, one option is
to linearize it by taking Ht to be its Jacobian.

In practice, we do not know the forecast the forecast mean µf
t or covariance Pf

t and
must approximate these moments by the ensemble estimates,

µ̂t
f =

1

N

N∑

i=1

uf
t,i, (2.20)

P̂t
f =

1

N − 1

N∑

i=1

(uf
t,i − µf

t)(u
f
t,i − µf

t)
′, (2.21)

and use a plug-in estimator for the Kalman gain,

K̂t = P̂f
t H

′
t(HtP̂

f
t H

′
t +Rt)

−1, (2.22)

which gives us the analysis update

ua
t,i = uf

t,i + K̂t

(
yt + ϵt,i −Htu

f
t,i

)
, i = 1, . . . , N, (2.23)

Under the assumption of the Kalman filter, the forecast ensemble is updated to the analysis
ensemble exactly. However, whenMt(·) is nonlinear, Gaussianity cannot be maintaned even
ignoring the Monte Carlo error of the estimated covariance matrix [12]. Instead, the EnKF
analysis updates correspond to Bayesian ”best linear-in-the observations” theory [11].

40 Data Assimilation: Addressing Spurious Correlations And Scalability Issues

3. Localization methods.

3.1. Motivation for localization. As noted, the forecast covariance matrix Pf
t is

typically unkown and must be approximated by the ensemble covariance matrix P̂f
t . How-

ever, P̂f
t is rank-deficient whenever N < p and may have high sampling error when the

ensemble size N is small, which can cause noisy or unphysical state updates. This is a
common setting for the EnKF, as limitations on computational resources often prohibit en-
semble sizes greater than 100. In particular, ”spurious correlations” are a concern, where
nontrivial correlations are estimated where theory suggests none should exist. Spurious
correlations are especially apparent when the state space of interest is a large spatial field.

To ameliorate the effects of spurious correlations, a variety of ”localization” techniques
have been proposed in the literature. These techniques seek to filter the noisy correlation
estimates from the matrix P̂t. As the name ”localization” implies, many of these tech-
niques utilize a priori knowledge of the correlation structure of a latent spatial field; namely,
that spatially-distant locations should be uncorrelated. However, to accomodate complex
correlation structures or state vectors without natural distance metrics, some adaptive ”lo-
calization” methods have been introduced.

3.2. Distance-based methods. Distance-based localization techniques enjoy wide
use in the data assimilation literature, owing to their interpretability, ease of implementa-
tion, low computational cost, and ability to incorporate prior domain knowledge. However,
they are not without downsides. Distance-based methods generally rely on expert input to
determine the choice of length-scales, which may be difficult to specify a-priori, or they must
be tuned by potentially expensive procedures. Furthermore, they generally ignore any spa-
tial or temporal non-stationarity in correlation structure, assume a monotonic relationship
between distance and correlation strength, and exclude the possibility of genuine long-range
dynamics. Still, when the implicit assumptions behind their use are not severely violated,
their advantages remain especially attractive.

Many distance-based methods fall into two categories: B localization and R localization
[6].

3.2.1. B localization. Methods for B localization act upon the forecast covariance
matrix, which is known as the background error matrix in the weather forecasting literature.
They typically aim to reduce spurious correlations by modifying the Kalman gain so that

K̂t =
[
Γ ◦ (P̂f

t H
′
t)
][
Γ ◦ (H′

tP̂
f
t Ht) +Rt

]−1
. (3.1)

Here ◦ denotes the Schur (entry-wise) product and Γ is a pre-specified correlation matrix
that exhibits decay in spatial correlation. A common choice for Γ is the matrix obtained
from the compactly-supported Gaspari-Cohn correlation function with half-width parameter
c [5, 7],

C(r) =

− 1
4 (

|r|
c)5 + 1

2 (
r
c)

4 + 5
8 (

|r|
c)3 − 5

3 (
r
c)

2 + 1, 0 ≤ |r| ≤ c
1
12 (

|r|
c)5 − 1

2 (
r
c)

4 + 5
8 (

|r|
c)3 + 5

3 (
r
c)

2 − 5(|r|c) + 4− 2
3

c
|r| , c < |r| ≤ 2c

0, 2c < |r|
(3.2)

Here the input variable r is generally taken to be Euclidean distance. One benefit of B
localization is that the Schur product of a positive-definite matrix and a positive-semi-
definite matrix is positive-definite whenever the latter has non-zero rows.

3.2.2. R localization. Methods for R localization instead act upon the observation
varianceR. They generally inflate the observation variance by a function of physical distance

E. Crislip, M. Khalil, & K. Neal 41

from the individiual state components, such that the impact of far-away observations on the
analysis update equations is limited.

3.3. Adaptive methods. To relax the rigid assumptions implicit in distance-based
methods of localization, a variety of adaptive methods have been introduced. These methods
generally place emphasis on the magnitude of the estimated forecast correlations, although
they may also include some spatial information. While the adaptive nature of these methods
is alluring, their statistical efficiency is not well-understood, and their performance may
hinge on the choice of hyperparameters that are difficult to interpret. Two popular adaptive
methods are the hierarchical filter of Anderson (2006) and the ECO-RAP method of Bishop
and Hodyss (2009).

3.3.1. Hierarchical filter. Anderon’s hierarchical filter begins by splitting the EnKF
ensemble of size N into L sub-ensembles of size N

L . At each analysis step, the Kalman gain

for each sub-ensemble is computed separately to obtain K̂t,1, . . . , K̂t,L. The Kalman gain of
each sub-ensemble is shrunken by a measure of disagreement between them. Mathematically,
let

κijℓ =
[
K̂t,ℓ

]
ij

(3.3)

for all i, j = 1, . . . , p and ℓ = 1, . . . , L. The hierarchical filter collects disagreement measures

αij := argmin
α

L∑

ℓ=1

L∑

m=1,m̸=ℓ

(
κijℓ − ακijm

)2
(3.4)

for all i, j = 1, . . . , p. Using the matrix representation
[
α̂
]
ij

= α̂ij , the analysis update

equations 2.23 are then replaced by:

ua
t,i = uf

t,i +
[
α̂ ◦ K̂t

][
yt + ϵt,i −Htu

f
t,i

]
, i = 1, . . . , N, (3.5)

The idea of Anderson’s hierarchical filter is that estimates with high variability may not
be stable and should not be trusted.

3.3.2. ECO-RAP. Ensemble COrrelations Raised to A Power (ECO-RAP) is another
adaptive localization method. The idea behind ECO-RAP is to amplify large correlations
and penalize small correlations by exponentiation, then localize the Kalman gain according
to the weighted coefficients of the Discrete Cosine Transform applied to the exponentiated
correlations. ECO-RAP constructs the correlation matrix

Γ = (S̃C⊙q
t)′(S̃C⊙q

t), (3.6)

where the tilde denotes column-wise normalization, the symbol ⊙q denotes entry-wise ex-
ponentiation by the power q, S is a smoothing matrix and Ct is the estimated forecast
ensemble correlation matrix for the state vector ut. We let S = DE, where D,E are p× p
matrices with entries chosen to be

[
D
]
ij
=

{
e−(i

d)
2

, i = j

0, i ̸= j
(3.7)

[
E
]
ij
=

1√
p , j = 1√
2
pcos(

π(2i−1)(j−1)
2p), j ̸= 1

(3.8)

Here d is a parameter to control the degree of spectral smoothing.

42 Data Assimilation: Addressing Spurious Correlations And Scalability Issues

4. Numerical experiments for localization.

4.1. Toy problem: Gaussian process with known covariance. We will first il-
lustrate the effects of various localization methods with a simple example where the true
correlation function is known analytically. 48 samples were taken of a zero-mean stationary

Gaussian process with covariance C(x, x′) = e−
|x−x′|
0.05 over an equally-spaced grid of 101

points on [0, 1]. Figure 4.1(a) shows the estimated sample correlations over space as an esti-
mate of C(x, 0.5). Note that estimation is poor for points that are spatially distant. Figure
4.1(b) shows the effect of applying the Gaspari-Cohn and ECO-RAP localization techniques
to the correlation estimates. Estimation at spatially distant points appears to be greatly
improved, with many spurious correlations shrinking to zero. The hierarchical filter was not
considered for this exposition as that method modifies the entire Kalman gain matrix.

(a) Sample correlation function. (b) Localized correlation function.

Fig. 4.1: Effects of localization on the estimation of a simple correlation function when the
data are Gaussian.

4.2. Application to 1-D KPP-Fisher equation: Random diffusitivty. To com-
pare localization methods more comprehensively, another study was conducted using the
KPP-Fisher equation in one spatial dimension as a forward model, which is a reaction-
diffusion equation of the form

∂u

∂t
= D

∂2u

∂x2
+ u(1− u). (4.1)

We modified the equation such that D = D(x) is spatially varying,

∂u

∂t
=
∂u

∂x
D(x)

∂u

∂x
+ u(1− u). (4.2)

This partial differential equation was solved using the Finite Volume method. The state
space was defined to be the values at 2500 equally-sized cells over the spatial domain [0, 1].
We followed trajectories over the temporal domain [0, 0.5]. The initial condition was treated
as known and defined to be:

u(x, 0) = 1 + 9e−800(x−0.2)2 + 9e−800(x−0.8)2 . (4.3)

Measurements were taken with with additive N (0, γ2) noise at a selected cell with center
x = 0.3002, hereby referred to as the sensor location. We set γ2 = 0.00025 to achieve a
reasonable ratio of ensemble member variation to measurement noise level. Measurements

E. Crislip, M. Khalil, & K. Neal 43

were taken at times t = 0.1, 0.2, 0.3, 0.4, 0.5 for a total of five obsevations. Figure 4.2
shows the true (’ground truth’) solution as a function of space for four specific time points,
while Figure 4.3 illustrates the true solution at the sensor location and an example of
measurements taken at that location.

Fig. 4.2: The true solution as a function of space at select times.

Fig. 4.3: The true solution and noisy measurements at the sensor location for a given run
of the EnKF.

To initialize our ensemble members, we considered D unknown and assigned a Gaus-
sian process prior to it, D(·) ∼ GP

(
m,C

)
. This prior was set with constant mean function

m(x) = 0.005 and covariance function C(x, x′) = σ2e|x−x′|/0.1 where σ = 0.0005. Further-
more, we set the true D to be a random realization from this prior. Since estimation of D
was not of interest, each ensemble member was associated with a realization of D and the
ensemble was treated was marginalized over D. Figure 4.4 provides an example of estimated
correlations between the cell at the sensor location and other locations in the state space.
The poor estimation of spatially-distant correlations suggest the need for localization.

44 Data Assimilation: Addressing Spurious Correlations And Scalability Issues

(a) First timestep. (b) Last timestep.

Fig. 4.4: Estimated correlations with the sensor location.

To assess the performance of localization techniques, we tested the Gaspari-Cohn B
localization method of [7], the hierarchical filter of [1], and the ECO-RAP method of [2, 3].
Initial guesses for the localization tuning parameters were set to be c = 0.1 for the Gaspari-
Cohn function and (q, d) = (6, 5) for ECO-RAP. These parameters were then tuned by
considering our model as true, generating a synthetic ground truth for comparison, and
doing a trial run of the first step of data assimilation. The criterion chosen was the squared
deviation from the ensemble mean and ground truth value (i.e. squared bias), which was
averaged over space for a scalar metric. To minimize the effects of sampling variability, we
repeated the process 5 times, varying the measurement errors, diffusivities, and measurement
perturbations, then averaged the result for a final criterion. A grid search was performed
over the set of values 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, and 0.3 for the Gaspari-
Cohn half-width parameter and the grid (q, d) ∈ {3, 6, 9} × {4, 5, 6} for the ECO-RAP
parameters. The parameters c∗ = 0.05 and (q∗, d∗) = (9, 6) were selected for all ensemble
sizes based off our criterion, which indicates a strong need for localization. The hierarchical
filter was set to K = 4 sub-ensembles in accordance with the original paper.

To mitigate the effect of sampling error, the experiment was repeated 50 times, varying
the observation noise, ensemble diffusivites, and EnKF measurement perturbations, while
keeping the ground truth the same and all tuning parameters fixed. Only 50 repetitions
were conducted due to resource constraints. Figure 4.5 shows the absolute bias of the EnKF
mean taken as a function of space for t = 0.1 and t = 0.5, averaged over the different runs
of the algorithm. We can see that the bias of the EnKF mean is mostly dominated by the
dynamics of system, but there is noticeable variation in performance due to localization in
the spatial region [0.15, 0.3].

Figure 4.6 shows the absolute bias averaged over space for a scalar summary of the
EnKF performance. Intuition suggests the necessity of localization methods should wane as
the ensemble size increases (and thus the estimation of correlations becomes more precise).
We see evidence of this in Figure 4.6, as the gap between the baseline and localized EnKF
appears to decrease for greater ensemble sizes. In Figure 4.7 we see that estimated vari-
ances are uniformly higher when using localization methods, which indicates localization
can combat filter divergence. Overall, we can see that all localization methods considered
offer improvements of the baseline EnKF in the context of this problem. The hierarchical
filter appears to be the preferred choice of localization technique for this problem, with the
runner-up being B localization with Gaspari-Cohn half-width parameter c∗ = 0.05.

E. Crislip, M. Khalil, & K. Neal 45

(a) First analysis step. (b) Last analysis step.

Fig. 4.5: Absolute bias of the EnKF mean averaged over 50 algorithm runs. The ensemble
size is fixed at N = 24.

(a) After first analysis update. (b) After last analysis update.

Fig. 4.6: Absolute bias of the EnKF mean averaged over space and 50 algorithm runs.

5. Computational efficiency of the EnKF. Multiple methods exist for the com-
putation of the analysis update in (2.18). If we collect the ensemble members and model
perturbations into matrices

ua
t = [ua

t,1, . . . ,u
a
t,N], (5.1)

uf
t = [uf

t,1, . . . ,u
f
t,N], (5.2)

Yt = [yt + ϵt,1, . . . ,yt + ϵt,N], (5.3)

then we can write (2.18) as

ua
t = uf

t + P̂f
t H

′
tZ, (5.4)

where Z is the solution to the linear system

(HtP̂
f
t H

′
t +Rt)Z = Yt −Htu

f
t , (5.5)

46 Data Assimilation: Addressing Spurious Correlations And Scalability Issues

(a) After first analysis update. (b) After last analysis update.

Fig. 4.7: Estimated ensemble variance averaged over space and 50 algorithm runs.

thus circumventing the invertion of a qt×qt matrix [10]. We will call this the ’direct’ method
(DIR). An alternative method exploits the fact Rt is often easy to invert or decompose and
reduces the problem to inverting an N ×N matrix using the Sherman-Morrison-Woodbury

formula (SMW) [9]. Another approach that only requires the calculation of
√
R−1

t is to

utilize singular value decompositions (SVD) [9, 10]. Lastly, an iterative method utilizing
the Sherman-Morrison formula was proposed in [10] which only requires the inversion of Rt

(ISM). Theoretical computational complexity for these approaches are available and given
in Table 5.1.

Analysis method Theoretical computational cost

DIR O(pN2 + qtN
2 + q2tN + q3t)

SMW O(pN2 + qtN
2 +N3)

SVD O(pN2 + qtN
2 +N3)

ISM O(pN2 + qtN
2)

Table 5.1: Theoretical cost of different methods for the analysis update.

If Rt is block-diagonal, observations can be assimilated sequentially in independent
batches, which only requires inverting square matrices with dimensions of the batch size
[7]. Sequential updates can be combined with any of the previously mentioned techniques.
However, we do not consider this option as assimilating observations one-by-one was found
to be prohibitively slow.

A major limitation of the direct method is the need to access the qt × qt matrix
(HtP̂

f
t H

′
t + Rt). Naive storage of this matrix in memory quickly becomes infeasible for

qt ≥ 5e4. As such, we only investigate this method up until that cutoff.

Table 5.2 shows empirical computation times for the selected methods when when p, q
vary over 5e3, 1e4, and 5e4 with p ≥ q. Computations were performed using Python 3.7.6,
utilizing the library numpy 1.18.1 wherever possible, with the exception of scipy version
1.4.1 for solving linear systems and SVD. The observation operator was assumed to be dense
and was applied to the state vector before computations. Observations were taken to be
independent, i.e. Rt is diagonal. As we can see from Table 5.2, the SVD and SMW analysis

E. Crislip, M. Khalil, & K. Neal 47

update techniques are substantially more computationally efficient than DIR and ISM. The
poor performance of ISM, despite the attractive theoretical computational complexity, is
likely due to the method’s sequential Python implementation which does not take advantage
of numpy’s vectorized operations. Table 5.3 demonstrates the superior performance of the
SMW method up until the largest state and observation space considered, where SVD is
estimated to perform slightly better but with larger variance in computation times.

State Dimension Observation Count

Method p 5e3 1e4 5e4

DIR 5e3 3075.4 ± 23.0
SMW 56.4± 3.1
SVD 109.2 ± 8.5
ISM 2073.3 ± 51.0
DIR 1e4 3106.8 ± 14.4 10573.1 ± 22.8
SMW 72.7± 4.6 116.2± 6.1
SVD 121.9 ± 7.2 148.7 ± 5.4
ISM 2063 ± 88.9 3996.5 ± 103.1
DIR 5e4 3189.8 ± 20.3 10624.1 ± 25.3 —
SMW 159.1± 6.5 209.5± 9.8 774.7± 10.1
SVD 205.1 ± 11.3 236.6 ± 11.8 850.0 ± 34.1
ISM 2168.8 ± 109.7 4192.6 ± 98.1 10786.1 ± 141.8

Table 5.2: Mean ± standard deviation times for 10 runs averaged over 100 loops for each of
analysis update formulations. Units are in miliseconds. Ensemble size was set to N = 100
for all calculationss.

State Dimension Observation Count

Method p 5e5 1e6 5e6

SMW 5e5 1.16± 0.01
SVD 2.20 ± 0.02
SMW 1e6 1.29± 0.20 2.13± 0.02
SVD 2.33 ± 0.24 4.23 ± 0.12
SMW 5e6 2.36± 0.01 3.20± 0.01 41.7 ± 0.37
SVD 3.26 ± 0.64 5.19 ± 44.4 40.2± 1.33

Table 5.3: Mean ± standard deviation times for 10 runs averaged over 100 loops for each of
the two cheaper analysis update formulations. Units are in seconds. Ensemble size was set
to N = 50 for all calculations.

48 Data Assimilation: Addressing Spurious Correlations And Scalability Issues

6. Conclusion. Ensemble Kalman methods are extremely powerful and cost-effective
tools for combining physics-based models with real-world measurements to provide estimates
of a state variable. They can provide good performance on large-scale systems even with
less than one-hundred forward model runs. However, as we have shown, even in non-
Numerical Weather Prediction contexts the ensemble Kalman filter is still subject to spurious
correlations and can benefit from localization methods. Specifically, we recommend the
Gaspari-Cohn localization if filter divergence is the primary concern and a natural distance
metric exists, and we recommend Anderson’s hierchical filter for general usage or when no
such distance metric exists or is appropriate to the dynamics of the problem. Furthermore,
we note that the analysis update can be expedited considerably using the Sherman-Morrison-
Woodbury formula.

REFERENCES

[1] J. L. Anderson, Exploring the need for localization in ensemble data assimilation using a hierarchical
ensemble filter, Physica D: Nonlinear Phenomena, 230 (2007), pp. 99–111.

[2] C. Bishop and D. Hodyss, Ensemble covariances adaptively localized with ECO-RAP. part 1: Tests
on simple error models, Tellus A: Dynamic Meteorology and Oceanography, 61 (2009), pp. 84–96.

[3] , Ensemble covariances adaptively localized with ECO-RAP. part 2: A strategy for the atmo-
sphere, Tellus A: Dynamic Meteorology and Oceanography, 61 (2009), pp. 97–111.

[4] G. Evensen, Data Assimilation: The Ensemble Kalman Filter, Springer Berlin Heidelberg, 2006.
[5] G. Gaspari and S. E. Cohn, Construction of correlation functions in two and three dimensions,

Quarterly Journal of the Royal Meteorological Society, 125 (1999), pp. 723–757.
[6] S. J. Greybush, E. Kalnay, T. Miyoshi, K. Ide, and B. R. Hunt, Balance and ensemble Kalman

filter localization techniques, Monthly Weather Review, 139 (2011), pp. 511 – 522.
[7] P. L. Houtekamer and H. L. Mitchell, A sequential ensemble Kalman filter for atmospheric data

assimilation, Monthly Weather Review, 129 (2001), pp. 123 – 137.
[8] R. E. Kalman, A new approach to linear filtering and prediction problems, (1960).
[9] J. Mandel, Efficient implementation of the ensemble Kalman filter, University of Colorado at Denver

and Health Sciences Center, Center for Computational Mathematics, 2006.
[10] E. D. Nino-Ruiz, A. Sandu, and J. Anderson, An efficient implementation of the ensemble Kalman

filter based on an iterative Sherman-Morrison formula, 2015.
[11] M. West and J. Harrison, Bayesian forecasting and dynamic models, Springer Science & Business

Media, 2006.
[12] C. K. Wikle and L. M. Berliner, A Bayesian tutorial for data assimilation, Physica D: Nonlinear

Phenomena, 230 (2007), pp. 1–16. Data Assimilation.

E. Crislip, M. Khalil, & K. Neal 49

UNCERTAINTY IN REDUCED FINITE-RATE ABLATION MODELS FOR
REENTRY VEHICLES

MAYAH DRAYTON∗, RILEIGH BANDY† , AND TERESA PORTONE‡

Abstract.

In this work we will explore the Air-Carbon Ablation (ACA) model implemented by Prata et alṫo
simulate the ablation of the carbon heat shield that protects the vehicle during reentry at hypersonic speeds.
We want to reduce the computational cost to use this model by only using the most impactful reactions.
We also want to quantify the uncertainty that will occur as we modify the ACA model. By focusing on
these reactions, we hope to have a model that is cost-efficient without compromising its accuracy.

1. Introduction. When a vehicle reenters the atmosphere at hypersonic speeds, or
above Mach 5, it is exposed to extreme temperatures that vary at different altitudes [1]. To
protect these vehicles, a carbon heat shield (an ablator) is placed on the surface. During
reentry, a plethora of chemical reactions occur that result in a loss of carbon, changing the
surface in response to the high speeds [4]. Since testing the reentry of a vehicle to collect data
from the flight is very costly, the design for the heat shield is dependent on computational
models [6]. A good model will adequately predict what occurs in flight, and how chemical
reactions will impact flight and the ablator [4].

Currently, there are two general ablation model approaches: equilibrium and nonequi-
librium, or finite-rate. Equilibrium ablation models are often seen as conservative and tend
to play it safe by overcompensating in the estimated loss of material in a heat shield [4].
Finite-rate ablation models are a fairly nascent approach to ablation modeling, so there is
still significant uncertainty regarding what chemical reactions are needed and what the pa-
rameters for the reaction rates should be. Finite-rate can be the more appropriate approach
depending on the type of flight condition we want to simulate. However, finite-rate models
are computationally expensive in comparison to equilibrium models since the ablation model
queries every location on the surface of the vehicle and time of flight [6]. Thus, finite-rate
ablation models are too costly for practical use due to the sheer amount of locations and
calculations that need to be performed.

In this work, the Air-Carbon Ablation (ACA) model [6] is used. Since nonequilibrium
models are expensive, this work will test if it is possible to work with only the most impactful
reactions, in hopes of it being less expensive. Throughout this testing, it is imperative to
question if the removal of reactions is appropriate seeing that this model has uncertainty,
and how it impacts the uncertainty.

The finding from our can contribute to developing more accurate and cost-efficient
computational models for predicting the changes that occur to the protective carbon heat
shields during a hypersonic flight. This work could also enhance the reusability of the
vehicles after being exposed to extreme temperatures. Our framework is general, allowing
its application to future ablation models that could include more complex sets of reactions
for complex materials, for example, ceramics, decomposing materials etc.

2. Background. The nomenclature for the ACA model is defined in Table 2.1. The
ACA model takes the gas species in the air and the possible chemical reactions occurring
at the vehicle’s surface to give the probability of 11 different chemical species, with carbon
monoxide (CO) being anticipated as the major ablation product, forming. In the ACA

∗Department of Electrical & Computer Engineering, North Carolina A&T State University
†Sandia National Laboratories, rjbandy@sandia.gov
‡Sandia National Laboratories, tporton@sandia.gov

50 CSRI Summer Proceedings 2024

Table 2.1
Nomenclature

Av = Avogadro constant, mol−1

B = total active site density, mol·m−2

E = Activation energy, J
f = flux of a species, mol ·m−2 · s−1

h = Planck’s constant, J·s
kb = Boltzmann constant, J·K−1

m = mass of an atom or molecule of a species, kg
P = Partial pressure, Pa
R = Universal gas constant, J·K−1·mol−1

S = sticking coefficient
T = Temperature, K
x = Longitudinal distance from the stagnation point, m
γ = reaction probability

Subscript
G = Gas

model, there are 20 chemical reactions that fall into three reaction sets: weakly bonded
oxygen (O), strongly bonded oxygen (O*) and bonded nitrogen (N).

The reactions that make up the ACA model are present in Table 2.2 which include
the parameters used to define the reaction rates. The ACA model includes four different
reaction types, or how these chemical species occur: adsorption, desorption, Eley-Rideal,
and Langmuir-Hinshelwood [1, 4]. We are summarizing the reaction rate coefficient, k,
defined in [6]. Below are the equations to demonstrate how the table is implemented in the
computation of the model.

Adsorption occurs when the chemical species attach to the free surface site(s). The
power of B depends on the gas species being adsorbed: O and N, k = 1 and O2, k = 2 [1].
The reaction rate with an adsorption reaction type takes the form

kad =
FG

Bk
S exp

(
− E

RT

)
, (2.1)

where

FG =
1

4

√
8kbT

πmG
.

Desorption is the inverse of adsorption, as the reactant detaches from the surface back
into the air without taking any carbon from the surface. The reaction rate for desorption
takes the form

kde =
2πmGk

2
bT

2

AvBh3
exp

(
− E

RT

)
. (2.2)

Eley-Rideal occurs when a chemical species in the air collides with a molecule that’s
already absorbed on the surface and goes through a transformation almost instantly, allowing
a carbon-gas species to form. The reaction rate for Eley-Rideal takes the form

M. Drayton, R. Bandy, & T. Portone 51

Table 2.2
ACA gas-surface chemistry model reaction set.

AD = Adsorption, DE = Desorption, ER = Eley-Rideal, LH = Langmuir-Hinshelwood

Reaction S γ E/R Type

1 O + (s)→ O(s) 0.3 − 0 AD

2 O(s)→ O + (s) − − 44277 DE

3 O +O(s) + C(b)→ CO +O + (s) − 100.0 400 ER

4 O +O(s) + C(b)→ CO2 + (s) − 1.0 500 ER

5 O + (s)→ O∗(s) 0.7 − 0 AD

6 O∗(s)→ O + (s) − − 96500 DE

7 O +O∗(s) + C(b)→ CO +O + (s) − 1000.0 4000 ER

8 O∗(s) +O∗(s)→ O2 + 2(s) − 10−3 15000 LH

9 O(s) +O(s)→ O2 + 2(s) − 5× 10−5 15000 LH

10 N + (s)→ N(s) 1.0 − 2500 AD

11 N(s)→ N + (s) − − 73971 DE

12 N +N(s) + C(b)→ CN +N + (s) − 1.5 7000 ER

13 N +N(s)→ N2 + (s) − 0.5 2000 ER

14 N(s) +N(s)→ N2 + 2(s) − 0.1 21000 LH

15 N(s) + C(b)→ CN + (s) − 108 20676 ER

16 O2 + 2(s)→ 2O(s) 1.0 − 8000 AD

17 O2 +O(s) + C(b)→ CO +O2 + (s) − 100.0 4000 ER

18 O2 +O(s) + C(b)→ CO2 +O + (s) − 1.0 500 ER

19 O2 + 2(s)→ 2O∗(s) 1.0 − 8000 AD

20 O2 +O∗(s) + C(b)→ CO +O2 + (s) − 1000.0 4000 ER

ker =
FG

B
γ exp

(
− E

RT

)
. (2.3)

Langmuir-Hinshelwood occurs on the surface when two chemical species are already
adsorbed to the surface, react with each other, and desorb from the surface. Langmuir-
Hinshelwood does not produce carbon in the air, nor involve bulk carbon in its reactions.
The reaction rate for Langmuir-Hinshelwood takes the form

klh =

√
Av

B
FG,2Dγ exp

(
− E

RT

)
, (2.4)

52 Uncertainty In Reduced Finite-rate Ablation Models For Reentry Vehicles

where

FG,2D =

√
πkbT

2mG
.

When reaction rate parameters were originally fit to data, the environment conditions
were different from the hypersonic flight conditions we aim to use in the ACA model. Data
was collected using molecular beam experiments, where the measurement of individual re-
actions and rate parameters is enabled by using a pulsed beam of a gas-species to impact
a heated material surface. This then allows the measurement of reaction products. In con-
trast, the air in flight conditions will have a mix of atomic chemical species, like oxygen and
nitrogen, and their molecules. Additionally, temperatures and pressures will vary signifi-
cantly from those in experiment during flight [3, 5]. Because of these differences between
the conditions of the experiments used to fit the parameters originally and flight conditions
we want to model, there is uncertainty in the parameter values [6].

The ACA model takes as inputs the incoming fluxes of atomic and molecular oxygen
and nitrogen, as well as temperature and pressure at the surface of the vehicle. It outputs
fluxes from the surface of the 11 chemical species included in Table 2.2. Further discussion of
the numerical solution of the model is presented in [6]. Our goal is to compare the predicted
CO probability, which is the ratio of carbon monoxide that is probable for production. The
CO probability can be found from the flux of CO off the surface divided by the total oxygen
flux to the surface in the form of atomic and molecular oxygen and

CO probability =
fCO

fO + 2fO2

. (2.5)

Carbon monoxide probability is our quantity of interest because carbon monoxide is the
most common way carbon is ablated from the surface.

3. Method. The objective of this study is to remove bonding groups and explore the
potential for cost reduction in nonequilibrium models by selectively removing less impactful
reactions. We modified the model code by adding a function to remove preset groups of
reactions. These sets of reactions are the three different types of bonds as well as a ‘nil’ set,
which provides a full model as it does not remove any reactions. When removing, or zeroing
out, reactions, we opt to choose an entire bonding set instead of individual reactions. Specific
reactions in Table 2.2 are the foundation of others, so if one is removed, it can implicitly
remove that of another. It’s important to be cautious of this because we may not get proper
results, so in this work we opted to remove all of a bond’s reactions.

As discussed in the previous section, parameter values for this model were hand set
to fit a specific experiment that was different from the conditions that are experienced in
a hypersonic flight. Because of the difference in the environments this leads us to have a
level of uncertainty in the parameters when considering reentry flight conditions. Since we
are dealing with uncertainty in our inputs, we will have uncertainty in our output. As we
remove reactions, we want to study the relationship between reduced models and full models,
looking at what has drastically changed, or had little to no change occur while considering
the uncertainty in our model, then comparing how output statistics change versus the full
model. We tackle this uncertainty by feeding random samples of the parameters in a specified
range through the model, then comparing how output statistics change versus the full model.

There are 34 parameters defined to be uncertain. Probability distributions to express
uncertainty in these parameters were defined in [1] and are summarized here for complete-
ness.

M. Drayton, R. Bandy, & T. Portone 53

The adsorption selectivity (S) is assumed to fall between 0 and 1, inclusive

Sj ∼ U [0, 1], j ∈ {1, 10, 16, 19}, (3.1)

for all adsorption-type reactions, save reaction 5 since S5 = 1 − S1 [4]. S1 and S5 should
always total to one since oxygen must either bond weakly or strongly to the surface, and it
is assumed that all incoming atomic oxygen bonds to the surface.

For pre-exponential factor γ ≤ 1, theoretical bounds hold, and it is assumed to fall
between 0 and 1, inclusive

γj ∼ U [0, 1], j ∈ {4, 8, 9, 13, 14, 18}. (3.2)

When the parameter γ in [6] exceeds one, theoretical bounds do not apply, so the bounds
are assumed to be ± 20% of Prata’s nominal value:

γj ∼ U [80, 120], j ∈ {3, 17}
γ12 ∼ U [1.2, 1.8]

γ15 ∼ U [8× 108, 12× 108]

γ17 ∼ U [80, 120]

γj ∼ U [800, 1200], j ∈ {7, 20}.

(3.3)

The activation energies could be any nonnegative real value, but for the sake of this
work they were given bounds an order of magnitude ± the listed Prata nominal values:

log10Ej ∼ U [3, 5], j ∈ {2, 6, 8, 9, 11, 14, 15}
log10Ej ∼ U [2, 4], j ∈ {3, 7, 10, 12, 13, 16, 17, 19, 20}
log10Ej ∼ U [1, 3], j ∈ {4, 18}.

(3.4)

Activation energies for reactions 1 and 5 are fixed at 0 to reflect the assumption that there
is no activation energy for these reactions to take place.

We can generate random samples of the parameters from these probability distributions
and evaluate the ACA model. This gives us output samples that we can compute statistics
from. In this work we compute the mean of the CO probability and compare it for changes
between the models. We compare the 95% confidence intervals of these sample means
to judge whether we have statistically significant differences. We utilize the central limit
theorem [2] to estimate the shaded region in Fig 4.1. This region is the 95% confidence
interval for our mean. Since our computed mean is still considered a random variable, we
use the central limit theorem to show where we generally expect to find the true mean:

µ̂+ 2
σ̂√
N

UpperBounds

µ̂− 2
σ̂√
N

LowerBounds

(3.5)

where µ̂ is the sample mean, σ̂ is the sample standard deviation, and N is the number of
samples. The mean is calculated over several altitudes, from 20 kms to 40 kms, at mulitple
spatial points along the surface. We want to look at the several altitudes to note the changes
made over the trajectory of the flight.

54 Uncertainty In Reduced Finite-rate Ablation Models For Reentry Vehicles

Fig. 4.1. Plots of modified models comparing the mean CO Probability

4. Results. In this work, we generated samples and use the same set of samples for
each modified model to have consistency when assessing the change that occurred. The
number of samples allows us to distinguish between confidence bounds from both the full
model and the modified models. Since our goal with dropping equations is to see a difference
in the mean, we want to have 95% confidence intervals that are small enough that we can
say with confidence if a model is different. If N is too small, the 95% confidence intervals
would all overlap, and we could not accurately determine the differences. With this in mind,
we decided to generate 1000 samples.

We demonstrate the mean and 95% confidence intervals for the full model and the
reduced models in Figure 4.1. We see that removal of nitrogen impacts the mean CO
probability the least compared to the full model at all altitudes and surface locations. The
results we see are because N only impacts CO through competition with O(s) and O*(s) for
surface sites. It is important to note that the higher the altitude and the further from nose
of the vehicle we are, the more of a difference in CO probability there is.

M. Drayton, R. Bandy, & T. Portone 55

When N-bonded reactions are removed, they are also removed from the total site density.
This allows for other reactions to increase at the site, since the sites that previously had
nitrogen bonds are now replaced with the bonds remaining, O(s) and O*(s). This is why
the CO probability for the N-removal model is higher than that of the full model seen in
Figure 4.1.

The most important bond group is O*, as its removal drastically decreases the prob-
ability of CO occurring. It has the greatest difference in probability in comparison to the
rest of the modified models. Why? A major factor is the ranges applied to γ for O(s) and
O*(s), based on their nominal values. O*(s) has a γ value 10 times larger than O(s) when
comparing reactions 3 and 7, so its reaction rate is 10 time larger. This means O*(s) is
much more important to CO production than O(s) in the full model. With the removal of
O* bonds, it will heavily under-predict the true amount of CO that will be produced and
change the carbon shield’s surface. Since under-predicting CO production leads to under-
predicting the shield recession, a too-thin shield would be applied, which can be detrimental
to the survival of the reentry vehicle.

5. Conclusion. With finite-rate ablation models being expensive to use, we worked to
reduce the number of reactions to calculate by removing what we deemed as the least im-
pactful reaction group. We took into consideration the uncertainties in reaction parameters
arising from the difference in experiment versus flight conditions. By generating random
input samples within given constraints, we propagate them through the model to return the
sample mean. We then compared the modified model output means to the full model. We
summarize confidence in our statistical results using the Central Limit Theorem to compute
95% confidence intervals. When looking at our results, we consider the differences in the
CO probability to determine the impact of dropping reaction groups from our model. Our
results demonstrate that a modified model that removes nitrogen reactions would have the
least impact in the probability of CO occurring during a flight, while removing O* reaction
would under-predict the probability in CO being produced, making it the most impactful
reaction group.

For future work, we want to explore which individual reactions we can remove, rather
than whole groups. We also want to understand how making changes in the parameter
bounds would impact the output distribution.

Acknowledgments. The authors would like to thank Rebekah White and Erin Mus-
soni for their helpful and instructive conversations. This work was supported by the Lab-
oratory Directed Research and Development program at Sandia National Laboratories, a
multimission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
NA0003525. LDRD #233072. This paper describes objective technical results and analysis.
Any subjective views or opinions that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy or the United States Government.

REFERENCES

[1] R. Bandy, Uncertainty Representations in White- and Black-Box Models: Quantifying Model-Form
and Measurement Errors in Computational Science, PhD thesis, University of Colorado, 2024.

[2] D. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers, John wiley &
sons, 2010.

[3] V. J. Murray, P. Recio, A. Caracciolo, C. Miossec, N. Balucani, P. Casavecchia, and T. K.
Minton, Oxidation and nitridation of vitreous carbon at high temperatures, Carbon, 167 (2020),
pp. 388–402.

56 Uncertainty In Reduced Finite-rate Ablation Models For Reentry Vehicles

[4] E. Mussoni, A Quantitative Analysis of Finite-Rate Surface Ablation Models for Hypersonic Flight,
PhD thesis, University of California, Davis, 2024.

[5] S. Poovathingal, T. E. Schwartzentruber, V. J. Murray, T. K. Minton, and G. V. Candler,
Finite-Rate Oxidation Model for Carbon Surfaces from Molecular Beam Experiments, AIAA Jour-
nal, 55 (2017), pp. 1644–1658. Number: 5 Publisher: American Institute of Aeronautics and
Astronautics.

[6] K. S. Prata, T. E. Schwartzentruber, and T. K. Minton, Air–Carbon Ablation Model for Hy-
personic Flight from Molecular-Beam Data, AIAA Journal, 60 (2022), pp. 627–640. Number: 2
Publisher: American Institute of Aeronautics and Astronautics.

M. Drayton, R. Bandy, & T. Portone 57

IMPLICATIONS OF THE TWO INTERACTING BLAST WAVE
VERIFICATION PROBLEM FOR COMPUTATIONAL SHOCK

HYDRODYNAMICS

RAFAEL DE FARIAS∗, MARISSA B. P. ADAMS† , AND WILLIAM J. RIDER‡

Abstract. The Two Interacting Blast Wave problem is a crucial benchmark for assessing the perfor-
mance of hydrodynamic multiphysics codes [1, 2]. This problem is relevant for various applications, from
astrophysical systems [3] to experiments on the Z Machine at Sandia National Laboratories [4]. We utilize
this problem to evaluate the code credibility of the Sandia Multi-physics/Architecture Adaptive Shock Hy-
drodynamics (SMASH) code. After implementing the problem in SMASH, we conduct a resolution scan for
a self-convergence test, demonstrating convergence with the L1-norm on the order of unity. Additionally,
we vary the ratio of specific heats to investigate the impact of equations of state in preparation for future
work.

1. Introduction. In a 1984 paper by Paul Woodward and Phillip Colella, the Two
Interacting Blast Wave (TIBW) problem was introduced as a one-dimensional shock physics
problem designed to test methods for handling strong shocks [1, 2]. Today, this problem
serves as a well-known benchmark for verifying the credibility of hydrodynamics codes [5–
7]. The development of verification problems or toy models of hydrodynamical flows, such
as the TIBW, was particularly timely in the early 1980s due to the advent of vectorized
computers [1]. In 1984, Woodward and Colella focused on simulating fluid flows that gen-
erate strong shocks, where substantial entropy is produced. They evaluated the advantages
and disadvantages of treating such discontinuities in numerical fluid flows by analyzing the
results of such test problems [2].

Today, developers of multiphysics codes, inclusive of hydrodynamics, find themselves
in a similar position with the advent of next-generation computational resources, such as
graphical processing units (GPUs). To ensure that these codes are capable and trustworthy
on new machines, they are expected to undergo processes of Verification, Validation, and
Uncertainty Quantification (VVUQ) [8, 9]. In any computational simulation, the credibility
of the results is paramount: how can we trust what the computer tells us? VVUQ techniques
are essential for ensuring that the models being used are reliable. Without VVUQ, disasters
can occur in systems that rely on computational models, as evidenced by the recent Boeing
737 MAX crashes [10].

Verification assesses whether a computational model accurately represents the under-
lying mathematical model. Within this overarching concept are two components: (1) code
verification and (2) solution verification. Both are crucial for establishing credibility, espe-
cially for the TIBW problem. Code verification is achieved by comparing simulation results
to analytical solutions or established benchmarks. Solution verification involves ensuring
that convergence rates and discretization errors are sufficiently accurate [8, 9]. In contrast,
validation concerns the underlying physics of the simulations. It assesses whether a compu-
tational model accurately represents reality by comparing results to experimental data [8].
Finally, Uncertainty Quantification (UQ) involves identifying and reducing uncertainties in
the model. When running an ensemble of simulations, UQ is critical for understanding
confidence in the models [8].

For any multiphysics code, these assessments are vital for building trust in the produced
models. In this article, we assess methods for verifying a next-generation multiphysics

∗University of Rochester, rdefaria@u.rochester.edu,
†Sandia National Laboratories, mbadams@sandia.gov,
‡Sandia National Laboratories, wjrider@sandia.gov

58 CSRI Summer Proceedings 2024

Fig. 2.1: A visualization of the initial pressure conditions for TIBW in ParaView.

Table 2.1: TIBW initial conditions for each region of material over one spatial direction (x), density,
corresponding velocity component (ux), and pressure.

Left Middle Right
x 0 - 0.1 0.1 - 0.9 0.9 - 1
ρ 1.0 1.0 1.0
ux 0 0 0
p 1000 0.01 100

code: the Sandia Multi-physics/Architecture Adaptive Shock Hydrodynamics (SMASH),
for problems like the TIBW, which have no known analytic solution. We present a self-
convergence analysis, where high-resolution runs provide a benchmark for comparison. We
choose to investigate the TIBW because it is a unique and valuable problem for multiphysics
codes, featuring complex shock interactions, rarefaction waves, and contact discontinuities
all in one simulation. This problem will help us determine (1) whether there are difficulties
in capturing strong shocks and multiple interactions, (2) when solvers fail, and (3) how the
sharpness of the contact discontinuity at the final time reveals differences between Eulerian
and Lagrangian schemes. These physics and numerical considerations are crucial for any
multiphysics code, including hydrodynamics, to test and capture. The major features of
this problem are observed in astrophysics, high-energy density physics, computational fluid
dynamics, and aerodynamics [3, 4].

The problem is initialized (Section 2) with “two diaphragms” that at time t = 0 are
removed, initiating two blast waves that propagate towards the center of the tube and
interact. Meanwhile, rarefactions propagate towards the ends of the simulation domain.
The boundary conditions stipulate that the waves reflect at both ends of the tube. The
simulation is run to a time of t = 0.038 s. This problem is difficult to solve and analyze for
a couple reasons: (1) the problem lacks any symmetry due to the pressure initial conditions,
and (2) there is no known analytic solution. This makes solution verification utilizing this
problem a challenge as typically such practices involve convergence studies that compare to
a known analytic solution.

2. Initial Conditions for the Two Interacting Blast Wave Problem (TIBW).
The TIBW problem conceptualizes a 1-D shock tube of length 1 cm partitioned by two
diaphragms at x = 0.1 cm and x = 0.9 cm [2]. Initially, the mass density of all three regions

R. de Farias, M.B.P. Adams, & W.J. Rider 59

Fig. 4.1: TIBW SMASH results at t = 0.038 s for density, energy, and pressure using 800 cells.

is ρ = 1.0 g/cm3 and the velocity is u = 0.0 cm/s. The leftmost, center, and rightmost region
have initial pressures of pL = 103 dyn/cm2, pM = 10−2 dyn/cm2, and pR = 102 dyn/cm2,
respectively [2]. We detail these initial conditions in Table 2.1. Furthermore, we can visualize
a variation on these initial conditions, as illustrated in Figure 2.1. Note that in Figure 2.1
on the left the higher pressure region in red, and the lower pressure region on the very right.

3. Governing Equations. This problem is governed by the 1-D Euler equations,

∂ρ

∂t
+
∂(ρu)

∂x
= 0 (3.1)

∂(ρu)

∂t
+
∂(ρu2 + p)

∂x
= 0 (3.2)

∂(ρE)

∂t
+
∂([ρE + p)u]

∂x
= 0 (3.3)

with total energy per unit mass, E, equal to

E = e+
u2

2
(3.4)

and e being the internal energy. Here eq. (3.1), eq. (3.2), and eq. (3.3) state conservation of
mass, momentum, and energy, respectively. These three equations are closed by the ideal
gas law, our chosen equation of state (EOS), such that pressure, p, is equal to

p = (γ − 1)ρe. (3.5)

Here, γ in eq. (3.5) is defined as the adiabatic index. The material described in the original
paper is diatomic (assumed to be air) therefore, γ = 1.4.

4. The Sandia Multi-physics/architecture Adaptive Shock Hydrodynamics
(SMASH) Code. All simulated results of the TIBW were performed on the Sandia Multi-
physics/architecture Adaptive Shock Hydrodynamics (SMASH) code. SMASH is a next-
generation shock physics code developed at Sandia National Laboratories (SNL) at present,
in 2024. Using SMASH, TIBW was simulated on a Lagrangian mesh, advancing eq. (3.1) -
eq. (3.3). SMASH solves these governing equations to solve for all unknown variables at time

60Implications Of The Two Interacting Blast Wave Verification Problem For Computational Shock Hydrodynamics

Algorithm 1 “smashed result” method

ratio of resolutions = higher resolution / lower resolution
for each higher resolution data entry
if the data entry index / ratio of resolutions = whole number then
smashed result = sum of that entry and the next (ratio of resolution - 1) entries / ratio

end if
return all smashed results

Fig. 5.1: Illustration of order unity convergence in density for the TIBW problem in SMASH using
the self convergence methodology for solution verification.

realizations in accordance with some timestep. SMASH uses density, velocity, and internal
energy for initial conditions for the hydrodynamic state. Therefore we utilized (eq. (3.5))
to determine the internal energy for a given pressure presented by Woodward and Colella
(Table 2.1). A development goal for SMASH is to include pressure as an initial condition
to forego this process in the future.

At the final simulation time, the following plots were created (Figure 4.1), computing
the EOS variables such as density, energy, and pressure over their respective centroid value
on the 1-D computational domain. These results were computed using three “materials”
for each spatial region using 800 cells within a domain of length equal to unity. We note
comparable features to the original Woodward and Colella paper at appropriate locations.
However, we also note the anomalous peak before x ∼ 0.8 in both the density and energy
plots in Figure 4.1. This is likely due to the resolution being quite large compared to the
what is presented by Woodward and Colella.

5. Application of self convergence to TIBW. An exact analytic solution for this
problem does not exist as of now. Therefore we use a method for comparing lower resolution
results to higher resolution results in order to assess accuracy of SMASH’s computation.
Typically, with an exact solution, the following can be used to calculate the L1-error (and
then comparably L2, L∞ errors if desired by raising the norm to some power):

R. de Farias, M.B.P. Adams, & W.J. Rider 61

L1 =

∑
Vi(|ρSMASH − ρexact|)∑

Vi
, (5.1)

where ρSMASH would be the computed density from SMASH, and ρexact would be the analytic
formulation of the density. Note that one can replace any other unknown variable aside from
density in eq. (5.1).

We adopt an alternative approach to compute our L1-error:

L1 =

∑
Vi(|ρlower − ρhigher|)∑

Vi
(5.2)

where ρlower is the solution in density (replace with any other unknown variable) at a
subsequent lower resolution in comparison to a simulation that computed ρhigher.

In order to utilize this version of our L1-error (eq. (5.2)), a dimensional issue must
be resolved. Since the sizes of the data arrays are equal to the resolutions, comparing a
higher resolution result to a lower resolution result requires mapping the data from the
higher dimension to the lower dimension. The routine described by algorithm 1, coined
the “smashed result” (SR) method, was adopted in order to map the results to a lower
dimension.

The SR method would allow for finding the L1 error if there was no error in the solution
for the higher resolution; it would be comparing to itself. Recall, the higher resolution
solution is not an exact solution. The following theory relating an exact solution, S∞, and
the solution at a particular cell size, Sh, is introduced [9]:

S∞ = Sh +Ahα (5.3)

Equation (5.3) states that with a particular cell size (h = 1/∆x, where ∆x is the resolution
in x), the exact solution is equal to the sum of the solution at that cell and an estimate of
the discrete error. For the discrete error estimate term, A and α are unknown constants
that are problem dependent. Given this theory, we can also say that

S∞ = Sh/2 +A

(
h

2

)α

. (5.4)

Then, setting both eq. (5.3) and eq. (5.4) equal to one another yields,

Sh/2 +A

(
h

2

)α

= Sh +Ahα. (5.5)

In order to solve for unknown constants, A and α, we need to introduce a second equation
where x ̸= h:

Sx/2 +A
(x
2

)α
= Sx +Axα. (5.6)

Solving for the systems of equations yields discrete error estimate terms A and α. Inserting
these constants into eq. (5.3) yields an exact solution for which an L1 error may be found.
When comparing L1 norm for all of the resolutions computed for the TIBW using SMASH
using this method, we demonstrate convergence to first order accuracy (Figure 5.1).

62Implications Of The Two Interacting Blast Wave Verification Problem For Computational Shock Hydrodynamics

Table 5.1: The initial conditions for the Sod shock tube, for each region of material over one spatial
direction (x), density, corresponding velocity component (ux), and pressure.

Left Right
x 0 - 0.5 0.5 - 1.0
ρ 1.0 0.125
ux 0 0
p 1.0 0.1

Fig. 5.2: Simulated mass density of the Sod problem using 800 cells, compared with the ExactPack
exact solution.

Fig. 5.3: Convergence plots for Sod’s mass density using ExactPack and SMASH’s self convergence
routine.

5.1. Verifying the self convergence implementation. In order to assess whether
or not our SR method and the self convergence routine is complaint, we apply it to a
problem with a known exact analytic solution. In essense, we are verifying our verification
tools. We use ExactPack1, a code developed by Los Alamos National Laboratory (LANL)
[11], features a method for calculating the analytic solution for Riemann problems (among
many other hydrodynamic problems with “exact” solutions), a set of shock physics problems

1https://github.com/lanl/ExactPack

R. de Farias, M.B.P. Adams, & W.J. Rider 63

Fig. 6.1: For the same resolution, density is plotting after varying the ratio of specific heats such
that the gas is (1) monatomic, (2) diatomic, and finally (3) triatomic.

Fig. 6.2: Varying the ratio of specific heats across the three regions of the TIBW problem where
(left) is monatomic-diatomic-monatomic, and (right) diatomic-monatomic-diatomic.

governed by the same governing equations as the two interacting blast wave problem. We
choose Sod, a comparable problem to the TIBW, but only featuring a single diaphragm and
hence only one blast wave [12].

The Sod problem [12] is a Riemann problem with an adiabatic index of γ = 1.4 simulated
for t = 0.25 s with the initial conditions tabulated in Table 5.1. The Sod problem is a
simple problem that features a single blast wave moving to the right, making contact with
the boundary, and a rarefaction then moving to the left. By running Sod both with the
ExactPack routine, and the SMASH self-convergence routine, a comparison of the solvers
was made in Figure 5.2 and Figure 5.3. In Figure 5.2 on the right, the ‘Exact Solution’ is
effectively the SMASH result using the SR method for self convergence studies. We note that
in Figure 5.3 that convergence is achieved by comparing to the analytic solution to order
unity (left image). However, the self convergence method, despite being approximately
order unity, will begin estimating higher order accuracy at higher resolutions. The self
convergence method also is not as close to order one as in the case of using the exact
solution. Despite this, the self convergence methodology is identified as the only way we
can achieve solution verification for problems with no known solution. Since the ExactPack
solution and the solution developed on SMASH both converge to first order, confidence in
the SMASH developed solution solver for solution verification is established as acceptable.

6. Exploration by varying the ratio of specific heats. After the problem outlined
by the original paper was simulated and verified (see prior discussions: sections 5 and 5.1),
an investigation of SMASH’s capabilities beyond the domain of the original problem was

64Implications Of The Two Interacting Blast Wave Verification Problem For Computational Shock Hydrodynamics

taken. The first thing to explore would be how altering the ratio of specific heats, γ, impacts
the results at the final time. Based on the classical equipartition theorem, for an ideal gas,
γ is defined by

γ = 1 +
2

f
(6.1)

where f is equal to the number of degrees of freedom accessible to the particle. Since the
problem assumes a diatomic gas, γ was set to be 1.4 for the problem for all three regions.
We find exploration of varying γ to be an interesting case study, as we can eventually
build up and understanding of how to confront the problem of the vacuum-gas interface in
hydrodynamics codes; eventually aiming to consider the LeBlanc problem [12]. To start we
begin by varying the degrees of freedom to see how it alters the density calculations. For a
monatomic gas, like the noble gasses, γ = 5/3, whereas for a triatomic gas, γ = 8/6.

After modifications to the input file were made to allow this investigation, (Figure 6.1
were produced for comparison of two interacting blast waves in a medium filled by a
monatomic, diatomic, and triatomic gasses. We observe with increasing degrees of free-
dom, the shock interaction region at the final time decreases; the problem appears to be
shrinking. However, between the diatomic and triatomic cases, the sharp contact discon-
tinuity remains at x = 0.6. However, the monotonic case moves this feature closer to the
origin, at approximately x ∼ 0.5.

The original problem assumes that the gas in all three mediums are identical, however,
a modification to the problem investigates if the center region was filled with a different
ideal gas than the left and right regions. We choose to specify which region will have which
flavor of gas, such as a monatomic-diatomic-monatomic (MDM) or a diatomic-monatomic-
diatomic (DMD) arrangement. We implement this in the input deck for the SMASH code,
and problem produces Figure 6.2. We see for the MDM case that the densities achieved for
the whole shock interaction region are higher than the DMD case, almost an order higher
(order one versus order ten). We find this interesting in contrast to what is presented in
fig. 6.1 where the pure monotonic case yields smaller densities (peaks of approximately five)
versus the cases of larger degrees of freedom. It appears that the more degrees of freedom the
gas contains between the diaphragms impacts the resulting peak densities; they are slightly
larger. This may be due to the energy distribution for such ideal gases, as gases with larger
degrees of freedom can store more energy. This allows them to absorb and redistribute the
energy more effectively during shock interactions; it may yield a more efficient compression
mechanism.

7. Conclusion. We investigated the Two Interacting Blast Wave (TIBW) problem us-
ing the Sandia Multi-physics/Architecture Adaptive Shock Hydrodynamics (SMASH) code.
Given the absence of an exact analytic solution, we employed a self-convergence method
to assess the accuracy of our simulations by comparing lower-resolution results to higher-
resolution ones. We also aimed to verify our approach by applying it to the Sod problem
using ExactPack, which has a known analytic solution. Our findings demonstrated first-
order convergence for the TIBW in density, verifying the effectiveness of the SMASH code
for this complex problem. This approach not only enhances our confidence in the code’s
performance but also establishes a framework for future verification efforts in similar com-
putational scenarios, e.g. where exact solutions are difficult to obtain for toy verification
problems.

We explored the impact of varying the ratio of specific heats on the shock interaction
dynamics, revealing that gases with more degrees of freedom can store and redistribute

R. de Farias, M.B.P. Adams, & W.J. Rider 65

energy more effectively, leading to higher peak densities. We also modified the problem
to investigate different gas compositions in the shock tube, finding significant differences
in density profiles based on the arrangement of gases. These insights highlight the im-
portance of considering molecular characteristics in hydrodynamic simulations, which can
have profound implications for modeling real-world phenomena. Our results not only con-
firm the reliability of the SMASH code for simulating shock physics but also pave the way
for future investigations into more complex scenarios, such as the vacuum-gas interface in
hydrodynamics.

For future work, we aim to provide a more complete study by considering all permuta-
tions of the degrees of freedom for the gases in this problem. We also plan to apply adaptive
mesh refinement, and observe the impact of such algorithmic choices on such problems.
We also hope to progress, or push, the TIBW to situations where the initial density val-
ues are even more disparate; converging to a LeBlanc-like problem. Ultimately, this work
contributes to a deeper understanding of shock interactions and enhances the capabilities
of multiphysics codes in addressing real-world applications in astrophysics and high-energy
density physics.

References.
[1] P. R. Woodward. Trade-Offs in Designing Explicit Hydrodynamical Schemes for Vector

Computers. In G. Rodrigue, editor, Parallel Computations, pages 153 – 171. Academic
Press, 1982.

[2] P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow
with strong shocks. Journal of Computational Physics, 54(1):115 – 173, 1984.

[3] R. N. Markwick, A. Frank, J. Carroll-Nellenback, B. Liu, E. G. Blackman, S. V. Lebe-
dev, and P. M. Hartigan. Cooling and instabilities in colliding flows. Monthly Notices
of the Royal Astronomical Society, 508(2):2266–2278, September 2021.

[4] J. L. Brown, C. S. Alexander, J. R. Asay, T. J. Vogler, and J. L. Ding. Extracting
strength from high pressure ramp-release experiments. Journal of Applied Physics,
114(22):223518, 12 2013.

[5] J. M. Stone, T. A. Gardiner, P. Teuben, J. F. Hawley, and J. B. Simon. Athena: A
New Code for Astrophysical MHD. 178(1):137, September 2008.

[6] J. M. Stone, K. Tomida, C. J. White, and K. G. Felker. The Athena++ Adaptive Mesh
Refinement Framework: Design and Magnetohydrodynamic Solvers. The Astrophysical
Journal Supplement Series, 249(1):4, June 2020.

[7] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice,
R. Rosner, J. W. Truran, and H. Tufo. FLASH: An Adaptive Mesh Hydrodynamics
Code for Modeling Astrophysical Thermonuclear Flashes. The Astrophysical Journal
Supplement Series, 131(1):273, November 2000.

[8] W. L. Oberkampf and T. G. Trucano. Verification and validation in computational
fluid dynamics. Progress in Aerospace Sciences, 38(3):209 – 272, 2002.

[9] W. L. Oberkampf and C. J. Roy. Verification and Validation in Scientific Computing.
Cambridge University Press, 2010.

[10] W. W. George and A. Migdal. What Went Wrong with Boeing’s 737 MAX. Harvard
Business Review, 2020. Harvard Business School Case 320-104.

[11] J. Thrussell and J. M. Ferguson. ExactPack: A python library of exact analytic solu-
tions. SoftwareX, 24:101560, 2023.

[12] J. R. Kamm, J. S. Brock, S. T. Brandon, D. L. Cotrell, B. Johnson, P. Knupp, W. J.
Rider, T. G. Trucano, and V. G. Weirs. Enhanced verification test suite for physics
simulation codes. LLNL-TR-411291, September 2008.

66Implications Of The Two Interacting Blast Wave Verification Problem For Computational Shock Hydrodynamics

DISCRETE EXTERIOR CALCULUS FOR HODGE-HELMHOLTZ
PROBLEM

DOMINIQUE HUGHES∗, CHRIS ELDRED† , AND ERIC C. CYR‡

Abstract.
We explore the use of discrete exterior calculus (DEC) as a structure-preserving method for numerically

solving PDEs. We briefly explain the DEC forms and operators we will be using. We focus on the Hodge-
Helmholtz problem to test the use of DEC. We test examples for all possible forms in the 2-D space; we
test double periodic, Dirichlet and Neumann boundary conditions for different forms as well. We also test
the addition of a coefficient in the Hodge-Helmholtz problem (often referred to as the Darcy flow problem).
We find that most examples successfully converge to the correct solution, however, the implementation of
Neumann boundary conditions here leads to some errors.

1. Introduction. Exterior calculus is a system of writing mathematics that has been
used recently in structure-preserving numerical methods for partial differential equations
(PDEs) (1). Exterior calculus relies on the construction of ”forms”. These forms are written
as ak, where k represents the type of form in question. You have as many types of forms as
you do dimensions in the space you are working in (i.e., a 3-D space has a 0-form, 1-form,
2-form, and 3-form) (1). Because of their construction, these forms and the exterior calculus
operators associated with them are particularly useful at capturing the underlying physics
and mathematics of a system (1).

The main exterior calculus operators we are using are the exterior derivative, d, and
the Hodge-star, ⋆. The exterior derivative takes a form and transforms it to the next higher
dimension:

dak = bk+1. (1.1)

The Hodge-star takes a form and produces a form in the reflected dimension:

⋆ak = bN−k, (1.2)

where N is the dimension of the space you are working in. Rather than fully exploring
the meaning of these exterior calculus operators here, we will instead define their discrete
counterparts, as that is what we will be using in this paper to solve PDE systems.

1.1. Discrete Exterior Calculus (DEC). Using DEC first involves an understand-
ing of grids that we use to model the problem. For DEC, we use a pair of grids that
correspond to each other based on some sort of topology and/or geometry rules. The spe-
cific rules can change, but the way that they correspond to each other may affect the way
you formulate some operators (specifically in this case, the Hodge-star) (2). This pair of
grids are often referred to as the primary and dual, or straight and twisted grids (2); we
will use straight and twisted terminology. An example of what this mesh might look like is
included in figure 1.1.

We can now define the discrete exterior terms we will be using in the context of the
mesh. First, the construction of discrete forms: a 0-form is the value of a point on the mesh
(a blue or green dot), a 1-form is the value of the line integral for a mesh edge, and a 2-form
would be the value of the area integrals for the mesh squares (in the example in figure 1.1
they are squares, but the shape can be different based on grid construction) (1). Some forms

∗Sandia National Laboratory, dchughe@sandia.gov
†Sandia National Laboratory, celdred@sandia.gov
‡Sandia National Laboratory, eccyr@sandia.gov

CSRI Summer Proceedings 2024 67

Fig. 1.1: An example of a straight and twisted mesh. The straight mesh is portrayed in blue
and black, with the twisted mesh portrayed in orange and green.

have vectors associated with them. The 0-form is always scalar, and the largest dimension
form will also be scalar; the forms in between will have associated vectors. This works well
for solving PDEs, because some phyical properties are better represented by vectors (like
velocity, for example) (1). For more information on this, please refer to (1).

As seen in equation 1.1, the exterior derivative takes a form and produces the next
highest form. The discrete exterior derivative produces a k-form by summing the surround-
ing (k − 1)-forms (this is done with weights represented by -1 or 1 to help determine and
maintain orientation) (1; 2). For example, a 1-form can be computed through the difference
between two 0-form values (1).

The Hodge-star, as seen in equation 1.2, takes a k-form on a straight mesh and produces
(N − k)-form on the twisted mesh (or it can go from twisted to straight). The creation of
the Hodge-star is dependent on the way that the grids topology/geometry is determined
(2). In this paper, we use the Voronoi Hodge-star, which translates between forms by using
the ratio of the volumes between the k-cells associated with the k-forms in question (i.e. a
ratio between the k-cell and the (N − k)-cell) (2).

Both the discrete exterior derivative and the discrete Hodge-star are represented by
sparse matrices (2). We will represent the discrete exterior derivative as D and the discrete
Hodge-star as H. To indicate that we are operating on the twisted mesh, we will add a
tilde: D̃ or H̃.

1.2. Hodge-Helmholtz Problem. We introduce the Hodge-Helmholtz problem in
vector calculus notation. Often referred to as the Poisson problem, it is written as:

∇2ϕ = ∇ · ∇ϕ = f, (1.3)

where we know the function f and we would like to solve for ϕ (3). The general form of the
Poisson problem in exterior calculus notation is given as

(δd+ dδ)ϕk = fk, (1.4)

where d represents the exterior derivative, and δ represents the codifferential operator, ⋆d⋆.
We can solve the system for any k-form allowed in the space, as we will demonstrate through
this paper.

68 Discrete Exterior Calculus For Hodge-Helmholtz Problem

In practice, the Poisson problem involves additional boundary conditions. These are
often Neumann or Dirichlet boundary conditions. Neumann boundary conditions set the
first derivative at the boundary equal to a constant and Dirichlet boundary conditions
set the value of the function at the boundary equal to a constant. In exterior calculus
notation, Neumann conditions would be represented by setting the value of δϕk or dϕk at
the boundary, and Dirichlet conditions would be represented by setting the value of ϕk or
⋆ϕk at the boundary.

Additionally, there can be an additional element added to the Hodge-Helmholtz prob-
lem: a coefficient K. The addition of K to the Poisson problem is often referred to as the
Darcy flow problem (3), and it is represented as

∇ ·K∇ϕ = f ⇔ dKδϕk = fk. (1.5)

K might represent material coefficients for a fluid dynamics problem, for example (3).

2. 2-D Results. In each of the following cases, we solve the system numerically on a
mesh going from 0 to 1 in both the x and y direction, with the center at (0.5, 0.5). Boundary
conditions will be specified for each case. We solve our discrete system numerically at
different mesh resolutions, starting with 20x20, and doubling our previous mesh size until
640x640. We compute both the L2-norm and the L∞-norm on the difference between the
numerical and real solution as a measure of error at each grid resolution.

2.1. 0-forms. In the straight 0-form case, the Hodge-Helmholtz problem reduces to:

δdϕ0 = f0. (2.1)

Written discretely, we have

H̃D̃HDϕ0 = f0. (2.2)

We look at the case of Neumann boundaries in a cylinder, meaning that we maintain periodic
boundary conditions in one direction and add Neumann boundary conditions in the other
direction. In this case, we will look at an example that is periodic in the x-direction, with
Neumann conditions at the y-boundary. In order to add Neumann boundary conditions,
we split the discrete exterior derivative on the twisted mesh into the interior and boundary
components, and include a term to set the boundary conditions, B̃n−1:

H̃D̃IHDϕ
0 + H̃D̃BB̃

n−1 = f0. (2.3)

We move the term H̃D̃BB̃
n−1 to the right hand side and solve for ϕ0. In this case, we try

two potential functions that are periodic in the x-direction:

f0 = −4π2 sin(2πx), (2.4)

f0 = −4π2y2 sin(2πx) + 2 sin(2πx), (2.5)

which gives the respective analytical solutions

ϕ0 = sin(2πx), (2.6)

ϕ0 = y2 sin(2πx). (2.7)

D. Hughes, C. Eldred, & E.C. Cyr 69

(a)

(b)

Fig. 2.1: (a) Plots comparing numerical solution at the lowest and highest resolution grid
size, as well as providing the analytical solution as reference, for the 2.4/2.6 equations. (b)
Plot depicting the log of the error with respect to the log of the total number of grid points.

We look at the results of equations 2.4/2.6 in figure 2.1. We can see in figure 2.1b that
we converge to the correct solution linearly in the log scale, with a slope of ≈ −1 for the
L∞-norm, and a slope of ≈ −1.5 for the L2-norm. This is reflected in figure 2.1a, where we
see that even at the 20x20 grid we are getting a fairly good approximation of the solutions.

For equations 2.5/2.7, however, we see in figure 2.2 that we do not achieve the same
convergence. Despite the error going down in 2.2b, we can see because it is not linear that
it is not decreasing due to a better approximation of the solution. This is confirmed in 2.2a,
where we can see that the solution on the 20x20 and 640x640 grid are completely different
in shape and scale, and neither match the analytical solution.

70 Discrete Exterior Calculus For Hodge-Helmholtz Problem

(a)

(b)

Fig. 2.2: (a) Plots comparing numerical solution at the lowest and highest resolution grid
size, as well as providing the analytical solution as reference, for the 2.5/2.7 equations. (b)
Plot depicting the log of the error with respect to the log of the total number of grid points.
Plotting the points in red and blue respectively represents no convergence for that grid mesh
size.

We see similar results in the case of a cylinder with y-periodic/x-Neumann conditions,
and we see no convergence in the case of Neumann boundaries on both x and y. This demon-
strates that there is some error going on in our computation of the boundary conditions.
We are investigating where this error is being introduced into our problem.

2.2. 1-forms. In the straight 1-form case, the Hodge-Helmholtz problem is

(δd+ dδ)ϕ1 = f1. (2.8)

D. Hughes, C. Eldred, & E.C. Cyr 71

Written discretely, we have

(H̃D̃HD +DH̃D̃H)ϕ1 = f1. (2.9)

We use double periodic boundary conditions in this case. Because 1-forms in the 2-D space
are vectors with two components, we chose the function f to be

f1 =

[
−20π2 sin(2πx) sin(4πy)
−20π2 cos(2πx) cos(4πy)

]
(2.10)

so that our analytical solution must be

ϕ1 =

[
sin(2πx) sin(4πy)
cos(2πx) cos(4πy)

]
. (2.11)

We see in figure 2.3b that we converge to the correct solution linearly on a log scale, with a
slope of ≈ −1.3 for the L2-norm, and ≈ −0.4 for the L∞-norm. We can see in 2.3a that we
have an extremely close approximation of our analytical solution for each vector component.

2.3. (n-1)-forms. In the twisted (n − 1)-form case, we write the Hodge-Helmholtz
problem as

(δd+ dδ)ϕ̃n−1 = f̃n−1. (2.12)

Because we are working in the 2-D space, an (n−1) form is also a 1-form, but it is constructed
slightly differently than the 1-form of the previous section. In this case, a 1-form represents
a circulation along an edge, whereas an (n − 1)-form represents a flux along an edge (2).
The 1-form is constructed through the tangent vector along an edge and the (n− 1)-form is
constructed through the normal vector to an edge (2). To maintain clarity, we will continue
to use the (n− 1)-form notation.

We can write this discretely as

(HDH̃D̃ + D̃HDH̃)ϕ̃n−1 = f̃n−1. (2.13)

Once again, we will look at a double periodic boundary conditions case, with our func-
tion f̃n−1 as a vector with two components,

f̃n−1 =

[
−20π2 sin(2πx) cos(4πy)
−20π2 sin(2πy) cos(4πx)

]
(2.14)

so that our analytical solution is

ϕ̃n−1 =

[
sin(2πx) cos(4πy)
sin(2πy) cos(4πx)

]
. (2.15)

We see in figure 2.4b that we converge to the solution linearly on a log scale, with slopes
that are very close to those in the 1-form case (≈ −1.3 for L2 and ≈ −0.4 for L∞). We see
again in 2.4a that we have an extremely good approximation of our analytical solution at
the 640x640 mesh grid.

72 Discrete Exterior Calculus For Hodge-Helmholtz Problem

(a)

(b)

Fig. 2.3: (a) Plots comparing each vector component in the 1-form at the highest grid
resolution to the analytical as well as providing the analytical solution as reference. (b)
Plot depicting the log of the error with respect to the log of the total number of grid points.

D. Hughes, C. Eldred, & E.C. Cyr 73

(a)

(b)

Fig. 2.4: (a) Plots comparing each vector component in the (n− 1)-form at the highest grid
resolution to the analytical as well as providing the analytical solution as reference. (b) Plot
depicting the log of the error with respect to the log of the total number of grid points.

74 Discrete Exterior Calculus For Hodge-Helmholtz Problem

2.4. n-forms. In the straight n-form, or straight volume-form case, the Hodge-Helmholtz
problem reduces to

dδϕn = fn. (2.16)

Written discretely, we have

DH̃D̃Hϕn = fn. (2.17)

Given we are working in 2-D, n = 2. We will look at an example with Dirichlet boundary
conditions. In order to set Dirichlet boundary conditions, we add a boundary term B̃0 to the
formation of the problem. To incorporate this boundary term, we split the twisted exterior
derivative D̃ into its boundary and interior components. We rewrite the problem as such:

DH̃D̃IHϕ
n +DH̃D̃BB̃

0 = fn (2.18)

We choose our function

fn = 2y2 + 2x2 − 2 sin(x+ y), (2.19)

so that our analytical solution must be

ϕn = x2y2 + sin(x+ y). (2.20)

We can see in figure 2.5b that the Dirichlet n-form case converges linearly on the log scale
with increasingly fine mesh grids; the slope of the L2-norm is ≈ −2.5 and the slope of the
L∞-norm is ≈ −2. We can see in figure 2.5a that at the 20x20 mesh grid, we have a fairly
good approximation of the solution, but as the mesh grid is refined the boundary more
closely matches the analyical solution.

2.5. Darcy flow. As mentioned in the introduction, a common variation of the Hodge-
Helmholtz problem is the Darcy flow problem, which has the addition of a multiplied coeffi-
cient. We look at a Darcy flow problem listed in (3) for inspiration. We do this on a twisted
volume-form set up:

D̃HDH̃ϕ̃n = f̃n (2.21)

For this example, we use Neumann boundary conditions. To implement Neumann boundary
conditions in the n-form case, we record the boundary conditions in a twisted (n-1)-form,
B̃n−1. We incorporate these terms into the problem formulation by splitting the twisted
exterior derivative into its boundary and interior components:

D̃IHDH̃ϕ̃
n + D̃BB̃

n−1 = f̃n. (2.22)

We rewrite the problem including the added coefficient, α:

D̃IαHDH̃ϕ̃
n + D̃BB̃

n−1 = f̃n, (2.23)

and it is understood from this formulation that our B̃n−1 term must reflect the gradient of
ϕ̃n multiplied by the coefficient α in order to accurately represent the Neumann boundary
conditions. Following the example from (3), we choose our analytical solution to be

ϕ̃n = x3y4 + x2 + sin(xy) cos(y). (2.24)

We choose α = sin(xy) as our coefficient. We can see in figure 2.6b that we only have
convergence to the solution for our final three mesh grids, 160x160, 320x320 and 640x640.
The coarser grids do not converge correctly. However, when we visualize the numerical
solution for the 640x640 mesh grid in figure 2.6a, we see that though it seems to capture the
dynamics correctly, the magnitude of the solution is incorrect. We are investigating what
might be the cause of this type of error.

D. Hughes, C. Eldred, & E.C. Cyr 75

(a)

(b)

Fig. 2.5: (a) Plots comparing numerical solution at the lowest and highest resolution grid
size, as well as providing the analytical solution as reference. (b) Plot depicting the log of
the error with respect to the log of the total number of grid points.

3. Conclusion. In this paper, we explored the use of DEC to numerically solve PDEs,
specifically the Hodge-Helmholtz equation. We looked at solving the Hodge-Helmholtz
equation for different types of forms, as well as with different boundary conditions. We also
looked a Darcy flow case, with an added coefficient. We saw that our double periodic and
Dirichlet boundary examples were successful, with the numerical solution closely matching
the analytical solution; this is confirmed by both L∞-norm and L2-norm calculations, as
well as visual displays of both the analytical and numerical solution. However, we notice
that the addition of Neumann boundary conditions in particular seems to cause an error.

76 Discrete Exterior Calculus For Hodge-Helmholtz Problem

(a)

(b)

Fig. 2.6: (a) Plots comparing numerical solution at the lowest and highest resolution grid
size, as well as providing the analytical solution as reference. (b) Plot depicting the log of
the error with respect to the log of the total number of grid points. Plotting the points in
red and blue respectively represents no convergence for that grid mesh size.

D. Hughes, C. Eldred, & E.C. Cyr 77

In the 0-form case, we saw a successful solution in the case of 2.4/2.6, but the addition
of the y2 term in the 2.5/2.7 prevented convergence to the solution. In the Darcy flow
case, we saw that our solution converged only for certain grids. Additionally, though the
numerical solution appeared to be very similar to the analytic solution, we can see that the
magnitude of the values is incorrect. As such, we will be investigating why we receive these
errors with the Neumann boundaries in particular.

Once the Neumann boundary implementation has been fixed, we plan to explore other
Darcy flow problems. Specifically, we will look at cases where the coefficient α is discon-
tinuous. These are good test problems for DEC, because discontinuity in the coefficient is
a good measure to ensure that a method is structure-preserving. Additionally, all of these
examples occur on the same square mesh set up. In the future, we would like to try using
DEC to solve PDE systems on more complex shapes.

References.
[1] J. Blair Perot and C. J. Zusi, Differential forms for scientists and engineers, Journal

of Computational Physics, 257 (2014), pp. 1373–1393. Physics-compatible numerical
methods.

[2] C. Eldred and W. Bauer, An interpretation of trisk-type schemes from a discrete
exterior calculus perspective, 2022.

[3] J. J. Kreeft, Chapter 8: Hodge-Laplace problems, s.n., 2013, p. 143–176.

78 Discrete Exterior Calculus For Hodge-Helmholtz Problem

A DMD-BASED PARTITIONED SCHEME FOR TIME-DEPENDENT
COUPLED PARAMETRIC PDES

EDWARD HUYNH∗, PAVEL BOCHEV† , AND PAUL KUBERRY‡

Abstract.
Partitioned methods for coupled problems rely on data transfers between subdomains to synchronize

the subdomain equations and enable their independent solution. These methods enable code reuse, increase
concurrency, and provide a convenient framework for plug-and- play multiphysics simulations. However, ac-
curacy and stability of partitioned methods depends crucially on the type of information exchanged between
the subproblems. These transfer mechanisms are separated by accuracy, performance and intrusiveness gaps
that tend to limit the scope of the resulting partitioned methods to specific simulation scenarios. Data-driven
system identification methods allow the construction of accurate, computationally efficient and minimally
intrusive data transfer surrogates. Moreover, they also serve as a way to evolve the individual subproblems
in time. This approach leaves the main computational burden to an offline phase and consequently the
application of this approach as the sole additional cost during the online simulation phase. In this paper we
formulate and demonstrate a fully data-driven approach for the subdomain solvers which are together cou-
pled with a dynamic flux surrogate-based partitioned method for a model advection-diffusion transmission
problem by using Dynamic Mode Decomposition (DMD) and Dynamic Mode Decomposition wth Control
(DMD with Control) to learn the dynamics of both the subdomain states and the interface flux from data.

1. Introduction. In general, there are two approaches to solving coupled multiphysics
problems [4]. Monolithic methods treat the coupled system as a a single entity and advance
all of its constituent physics components in time simultaneously [4]. Typically this is ac-
complished by forming and solving a well-posed monolithic problem in which the coupling
conditions are enforced by, e.g., Lagrange multipliers, or by using shared basis functions that
are continuous across the interface [2]. Consequently, monolithic methods inherently pos-
sess excellent stability and accuracy properties but suffer from being more computationally
intensive.

On the other hand, Partitioned methods treat the sub-problems comprising the multi-
physics system independently and evolve each of them in parallel [4]. Synchronization
between the sub-problems is performed through data transference, as in [2]. Partitioned
schemes, as a consequence, are more flexible than monolithic ones. In particular, this frame-
work enables practitioners to potentially use different solvers that are uniquely optimized
and specialized to the characteristics of each sub-problem.

One way of developing novel partitioned methods is by beginning with a well-posed
monolithic formulation. One then uses techniques such as Schur complements to recover
highly accurate approximations of the interface fluxes which are typically characterized
as the Lagrange multipliers. These fluxes provide boundary conditions that “close” the
equations for the constituent physics components and enable their independent advancement
in time. That is, once the governing equations have been discretized (such as with finite
elements), then the discrete system is advanced using a time integrator. For instance,
partitioned schemes have been employed to solve several types of coupling problems involving
advection-diffusion equations with varying diffusion regimes [7] [3]. In particular, [3] applies
the IVR scheme [7] to reconstruct the interface fluxes to FEM-FEM and ROM-ROM type
couplings which are then advanced forward in time using an explicit time integrator, e.g
forward Euler, RK4, etc.

There are two different aspects that are important in developing partitioned methods:
1. How to obtain the interface fluxes

∗University of Arizona, edhuynh@sandia.gov
†Sandia National Labs, pbboche@sandia.gov
‡Sandia National Labs, pakuber@sandia.gov

CSRI Summer Proceedings 2024 79

2. How to solve each of the coupled problems independently
With respect to the former, there are different methods to obtain the fluxes. One com-

mon way is to construct the Schur complement. The IVR (implicit value recovery) scheme
developed in [7] has been shown to yield accurate and reliable values of the interface fluxes
which may be used to “plug” into the discretized system and then effectively uncouple the
governing equations using an explicit time integrator. The IVR scheme is a representative
example of reconstruction-based schemes which recover the flux – as opposed to remap-
based ones. Other approaches may be based on data driven techiques, such as the Dynamic
Flux Surrogate model as proposed in [1].

However, the accuracy and stability properties that are attained by the more precise
flux estimates in reconstruction-based partitioned methods incur large costs in the form of
additional memory requirements and computational burdens required to form and solve the
resulting linear system. IVR [7] and IFR (Interface Flux Recovery) [9] sometimes involve
lumped mass matrices which lead to manageable costs due to a sparse dual Schur com-
plement. However, in many other cases realization of the full accuracy potential of these
methods requires consistent subdomain mass matrices. The inversion of these matrices re-
sults in a dense Schur complement which results in larger memory capacities. At the same
time, forming the right hand sides of the associated linear systems for the fluxes yields an
additional computational cost. These schemes are also intrusive since they generally require
access to the subdomain equations.

As for the latter point, partitioned methods allow for each sub-problem to be solved
independently using the method of the practitioners choice, while incorporating the transfer
of data within each subdomain through the interface fluxes. While explicit time integrators
are used more readily due to their ease of use and because they uncouple the discretized
system (as in the case of the IVR scheme), one may also use implicit schemes. However,
these are usually too expensive in terms of memory requirements to run, especially for
large-scale simulations as in Earth climate modeling.

One way to circumvent the shortcomings in addressing these two aspects is through
data-driven system identification techniques. These methods provide a way to close these
gaps by enabling the construction of accurate yet computationally efficient and minimally
intrusive surrogates for both the dynamics of the interface flux and the subdomain solvers.
With this approach, the main computational cost is relegated to an offline phase while
leaving the application of the surrogate as the only cost during the online simulation phase.
Using only a few matrix-vector multiplications during each step of the online phase, the cost
is comparable to that of a remap-based flux methods via linear maps [10]. Moreover, these
methods are minimally intrusive because learning the surrogate does not require access to
the discretized equations. Finally, using curated data training sets, the surrogate models
can produce flux approximations and subdomain solvers whose accuracies are comparable to
the ones obtained through, e.g., solution of the dual Schur complements or explicit/implicit
time integrators. Formulation of a fully data-driven partitioned scheme requires three key
ingredients:

1. A time stepping harness comprising a set of synchronization points in time and a
choice of time integration schemes for each subproblem;

2. A model form for performing system identification of the dynamic flux surrogate;
3. A model form for performing system identification of the subdomain solvers.

Even so, this fully data-driven partitioned method is not necessarily intended intended to
simulate a given coupled system with arbitrary choices in the boundary and initial data.
Instead, this approach is meant to solve parameterized problems in which the states of the
system are assumed to have a dependence on a finite dimensional parameter µ ∈ Rm. Thus,
in this manuscript we develop and demonstrate a fully data-driven partitioned method for

80 A DMD-based Partitioned Scheme For Time-dependent Coupled Parametric PDEs

coupled parameterized Partial Differential Equations (µPDEs).
In this manuscript, we provide an initial demonstration for this class of partitioned

methods and restrict our attention to a simple, explicit, synchronous time-stepping frame-
work in which all subproblems are advanced in time using identical times steps and the
same explicit time integrator. One candidate from which this data may be drawn from is
the advection-diffusion equation where the equations are discretized using finite elements
and the states are the coefficient vectors to the finite element basis functions. The model
form for the subdomain solvers will be using a traditional linear dynamical system with
control inputs and then obtain the resulting model using the Dynamic Mode Decomposition
with control inputs (DMD with Control) [6, 8]. Similarly, the model form for the flux surro-
gate is chosen similarly and will be obtained using Dynamic Mode Decomposition (DMD)
[6] to identify this model. In fact, we will use the dynamic flux surrogate model as proposed
by [1] to obtain the interface fluxes.

To begin our preliminary investigation into the viability of such models, we first consider
the case of a coupled µPDE problem with a fixed parameter value and show that, with proper
training data, the DMD flux surrogate (DMD-FS) [1] together with the DMD subdomain
solvers (DMDc) can be constructed offline to accurately represent the dynamics of both the
subdomain states and the interface flux for initial conditions not included in the training
datasets. In this manuscript, we restrict our attention to a single parameter for µ and reserve
extension of this scheme to the fully-parametric setting in future work. To our knowledge,
this work is the first to consider data driven solvers for both the subdomain states and the
interface fluxes as a way to improve the accuracy and efficiency of partitioned schemes.

The rest of this article is organized as follows. Section 2 introduces the relevant notation
and technical background. Here, we will describe the governing model from which we gather
our data. For the convenience of the reader, in subsections 2.2 and 2.3, we also review the
classic DMD approach [6] and the DMDc model [8]. We then seque into a discussion of
recent data-driven techniques in coupling problems in Section 3, including the IVR scheme
and Dynamic Flux Surrogate model in sections 3.1 and 3.2 respectively. Moreover, Section
3.3 will briefly describe the novel model used to approximate the dynamics of the system.
Section 4 will describe the numerical experiments that we used to simulate and validate the
fully data driven approach and it will also analyze and discuss our results. Finally, Section
5 will summarize our findings and offer future directions for research.

2. Notation and Background. We will summarize the notation used in the manuscript.
Section 2.1 describes the model problem from which we extract data. Sections 2.2 and 2.3
introduce the DMD and DMDc models.

2.1. The Model Problem. We will start by introducing the monolithic formulation
from which we develop a partitioned method. Let Ω ⊂ Rν , ν = 2, 3 be a bounded region with
Lipschitz continuous boundary Γ. We assume that Ω is divided into two non-overlapping
subdomains Ω1 and Ω2 which are connected through an interface γ. Consider the advection-
diffusion problem:

∂ui
∂t
−∇ · Fi(ui) = fi, Ωi × [0, T] (2.1)

ui = gi, Γi × [0, T], i = 1, 2

ui = ui,0, Ωi, t = 0

which satisfies the continuity conditions

u̇1(x, t)− u̇2(x, t) = 0 and F1(x, t) · nγ = F2(x, t) · nγ on γ × [0, T].

E. Huynh, P. Bochev, & P. Kuberry 81

Here, Fi(ui) = κi∇ui − aui is called the total flux function, fi = fi(x, t) is a source,
gi = gi(x, t) is prescribed boundary data, ui,0 = ui,0(x) is a prescribed initial condition,
κi = κi(x, t) > 0 is the diffusion coefficient, and a = a(x, t) is the advection field.

The corresponding weak formulation is posed as follows: seek {u1, u2, λ} : (0, T] 7→
H1

D(Ω1)×H1
D(Ω2)×H−1/2(γ) such that for ui = ui,0 for t = 0, i = 1, 2, and for t > 0

(u̇1, v1)0,Ω1 + ⟨λ, v1⟩γ = (f1, v1)0,Ω1 − (F (u1,D),∇v1)0,Ω1 −Q1(ġ1, g1; v1), ∀v1 ∈ H1
Γ(Ω1)

(u̇2, v2)0,Ω2
− ⟨λ, v2⟩γ = (f2, v2)0,Ω2

− (F (u2,D),∇21)0,Ω2
−Q2(ġ2, g2; v2), ∀v2 ∈ H1

Γ(Ω2)

⟨u̇1,D − u̇2,D, µ⟩γ = ⟨ġ1 − ġ2, µ⟩γ ∀µ ∈ H−1/2(γ).

Here, Qi are the bilinear forms which represent the contributions of the boundary data to
the right-hand side. This problem has been proven to be well-posed.

We approximate the solutions u1, u2, λ by finite element spaces Sh
1 × Sh

2 and Gh
k for

k = 1, 2. We will define the following notation for each i = 1, 2. Let uhi = uhi,D + ghi ,

where uhi represents the unknown part of uhi in the interior and interface nodes and ghi is
the finite element interpolant of the boundary data. Let the coefficient vector of uhi be given
by ui = (ui,D, gi), where ui,D contains the unknown coefficient values while gi denotes the
known nodal values of the boundary data gi. We denote Ωh

i to mean a conforming quasi-
uniform partition of Ωi into finite elements Ki,s with vertices xi,r and mesh parameter hi.
Let the total number of nodes in Ωh

i be ni. Each Ωh
i induces a conforming mesh Γh

i on
the Dirichlet boundary Γi with ni,Γ nodes. We will further assume that Ω1 and Ω2 are
meshed independently. As a result, their finite element partitions Ωh

1 and Ωh
2 induce two

independent finite element meshes on the interface γ denoted by γh1 and γh2 , respectively,
with ni,γ nodes each. For simplicity we restrict attention to spatially coincident discrete
interfaces, however, we note that the nodes on γh1 and γh2 are not required to match.

From this, we obtain the matrix system

M1,D 0 GT

1,D

0 M2,D −GT
2,D

G1,D −G2,D 0

u̇1,D

u̇2,D

λ

 =

f1,D − F1,Du1,D −Q1,Γ(ġ1, g1)
f2,D − F2,Du2,D −Q2,Γ(ġ2, g2)

−Qγ,Γ(ġ1, ġ2)

 .

2.2. Dynamic Mode Decomposition. Dynamic Mode Decomposition [6] describes
a method to infer the evolution operator of a dynamical system using collected time series
data x(t) which are also called snapshots. Suppose we have s equally spaced snapshots
xi = x(ti) which satisfies

xi+1 = Dxi

for some dynamical operator D. Note that D can either be linear or nonlinear. Then DMD
finds an operator A such that D ≈ A with

xi+1 ≈ Axi (2.2)

To infer the DMD operator A, we set

X =
[
x0 x1 . . . xs−1

]
and Y =

[
x1 x2 . . . xs

]

so that

Y = AX.

82 A DMD-based Partitioned Scheme For Time-dependent Coupled Parametric PDEs

From this, we have A = Y X+, where X+ is the pseudo-inverse of X. Equivalently, the
operator A is also the least-squares solution to

min ∥Y −AX∥F

where the norm is taken under the Frobenius norm.
In a practical setting, the pseudo-inverse can be approximated by using a truncated

SVD of X. To wit, given X = UΣV T with n singular values, then by retaining the first
k ≤ n left singular vectors corresponding to the leading k singular values, then

X+ = V Σ+UT ≈ VkΣ+
k U

T
k =X+

k .

Using this approximation to the psuedo-inverse, then we have the approximation to A:

A = Y X+ ≈ Y X+
k = Ak.

A commonly accepted standard to measure accuracy of this operator is through the criterion
defined by

1− Ek(X) ≤ ϵ (2.3)

where 0 < ϵ < 1 is a prescribed tolerance, k is the smallest positive integer such that (2.3)
is satisfied and

Ek(X) :=

∑k
i=1 σi∑n
i=1 σi

is the relative snapshot energy where σi is the ith singular value.

2.3. Dynamic Mode Decomposition with Control Inputs. The Control-Input
model was first developed in [8] and is given as

ui+1 = Aui +Bλi.

The model has been used to numerically simulate various physical models, including ones
for photoelectric current [5]. Here, A ∈ Rn×n and B ∈ Rn×p. To solve for A and B, we
treat the problem as a similar one to a DMD one: let

X =

[
u0 u1 . . . unS−1

λ0 λ1 . . . λnS−1

]

and

Y =
[
u1 u2 . . . unS

]

and let Ã =
[
A B

]
. Then the system can be expressed as

Y = ÃX.

Using a similar technique to the previous section and lettingX = UΣV ′, then Ã is obtained
from the formula

Ã = Y V Σ+U.

E. Huynh, P. Bochev, & P. Kuberry 83

Moreover, the operator Ã may be found from solving

min
Ã
∥Y − ÃX∥F

where the norm is taken with respect to the Frobenius norm. The matrices A and B are
obtained from Ã by taking appropriate submatrices.

For the purposes of coupling, the subdomain DMD operators that are used to obtain the
states in u1,D and u2,D are given by ACI

1 and ACI
2 respectively. Thus, the two subdomain

DMD models are given by

{
ui
1 = ACI

1 ui−1
1 +BCI

1 λi−1

ui
2 = ACI

2 ui−1
2 +BCI

2 λi−1 .

3. Fully Data-Driven Model for Coupling Problems. Here, we discuss the method-
ology by which we construct the partitioned scheme for coupled problems.

3.1. IVR Scheme. The IVR scheme was first formulated [7] as a way to accurately
reconstruct the fluxes in a coupled advection-diffusion problem. First, we solve for λ through
the equation

Sλ = G1,DM
−1
1,D[f1,D − F1,Du1,D −Q1,Γ(ġ1, g1)]

−G2,DM
−1
2,D[f2,D − F2,Du2,D −Q2,Γ(ġ2, g2)] +Qγ,Γ(ġ1, ġ2),

where S = G1,DM
−1
1,DG

T
1,D +G2,DM

−1
2,DG

T
2,D is the dual Schur complement of the matrix on

the LHS of the matrix system.
Solving for λ = λ(u1,D,u2,D; ġ1, ġ2) in this equation, we substitute this into the matrix

system above to obtain the coupled system of ODEs

[
M1,D 0
0 M2,D

] [
u̇1,D

u̇2,D

]
=

[
f1,D − F1,Du1,D −GT

1,Dλ(u1,D,u2,D; ġ1, ġ2)−Q1,Γ(ġ1, g1)

f2,D − F2,Du2,D +GT
2,Dλ(u1,D,u2,D; ġ1, ġ2)−Q2,Γ(ġ2, g2)

]
.

We note that if we use an explicit scheme to approximate the time derivative, then the
system effectively decouples and we may solve the problems independently.

3.2. Dynamic Flux Surrogate Model. We note that by solving for λ at each step
in the IVR scheme, this vector may be used to solve for the states at the next time step.
However, depending on the dimension of the system, solving for λ exactly may be compu-
tationally expensive. Instead, one can opt to use a simplified method of obtaining the next
flux values via DMD. This rest of this section is based on the model of [1].

Suppose {ut
1,D,u

t
2,D,λ

t}Tn
t=0 are given. Then let

yi−1 =

λi−1

ui
1,D

ui
2,D

 .

The next set of states yi is obtained through propogation under a DMD operator AF :

yi = AFy
i−1.

Unlike traditional DMD, the state vector is staggered so that the current flux value uses
information of the states in the entire domain as well as the previous flux values.

84 A DMD-based Partitioned Scheme For Time-dependent Coupled Parametric PDEs

Fig. 3.1: The DMD-FS framework figure, obtained from [1], demonstrates the use of stag-
gered states uj,δj = uj,k(δj) ⊂ uj,k = uj,D, j = 1, 2, which include interface patches of
the subdomain solution coefficients. These states at the current time ti are used together
along with the coefficients of the interface flux λi−1 at the previous time ti−1 to form the
DMD-FS operator.

However, using the entire state domain as part of y may still be computationally ex-
pensive, so instead one can opt to use patches around γ. Let δi ∈ N denote the number of
patches used around the interface γ for subdomains i = 1, 2 and define

yi−1 =

λi−1

ui
1,δ1

ui
2,δ2

 ,

where ui
j,δj
⊂ ui

j,D for j = 1, 2, ui
j,D represents the solution coefficients in subdomain j at

time ti, and λ
i−1 are the coefficients of the flux vector at time ti−1. Then the flux-surrogate

model proposed by [1] is given by

yi = AFSy
i−1.

This framework develops a DMD operator based on a staggered approach where the solution
states at the current time in each subdomain are concatenated together with the states of
the flux at the previous time to form the state vectors used in DMD. See Figure 3.1 for a
pictorial representation of this idea.

DenoteXFS =
[
y0 y1 . . . ytFS−1

]
and YFS

[
y1 y2 . . . ytFS

]
. Then AFS solves

YFS = AFSXFS .

SettingX = UFSΣFSV
′
FS where UFS , VFS are orthogonal matrices and ΣFS = diag(σ1, σ2, . . . , σn)

with σi ≥ 0 for all i ≥ 1, then AFS is given by

AFS = Y VFSΣ
−1
FSU

′
FS .

E. Huynh, P. Bochev, & P. Kuberry 85

3.3. Fully Data-Driven DMD Control-Flux-Input Model. Consider a scenario
where λis are not known exactly. We consider the DMD Flux surrogate in lieu of the given
flux data. Then using the previous sections, we define the coupled DMDc − DMDFS
model:

ui+1
1 = A1u

i
1 +B1λ

i

ui+1
2 = A2u

i
2 +B2λ

i

λi =

Ã

λi−1

ui
1

ui
2

∣∣∣
1:nF

γ

,

where Ai, Bi come from the DMDc model and Ã is a DMD operator.

4. Results. In this section, we discuss the implementation of the models.

4.1. Brief Description of Training Data. The data used to train the models arises
from numerically solving the discrete equations. Here, we discretize the governing equations
using a finite element method over a 64× 64 mesh of cells on the domain Ω = [0, 1]2. This
yields 65 nodes in each subdomain. We consider an interface γ = {(x, y) ∈ [0, 1]2 : x = 0.5
and the boundary condition on Γ is Dirichlet, i.e. u|Γ = 0 with a zero source term f = 0. The
aforementioned discretization yields 63 interior degrees of freedom. The diffusion coefficients
are set to be κi = 1 in both subdomains. We assume that the cells are coincident on γ and
the aforementioned discretization yields 63 interior degrees of freedom on γ, i.e. nFγ = 63.
Discretizing with finite elements yields a system of ODEs which are then decoupled between
the subdomains using the IVR scheme of [7]. Afterwards, the ODEs are solved using an
explicit scheme – which we choose to be forward Euler with an appropriate time step that
satisfies the CFL condition. The finite element coefficients at each node {ui} are obtained
from the time integration while the fluxes {λi} are obtained through the IVR scheme via
inversion of the dual Schur complement at each time step.

In the context of µ-PDEs, we consider a set of initial conditions which can potentially
form a basis for initial conditions which are unseen and may be closely approximated as a
linear combination of the trained initial conditions. In view of this, we consider Gaussians
with centers contained in the square [0.15, 0.35]× [0.4, 0.6] and which are uniformly spaced
throughout. Note that these initial conditions are fully contained in the left subdomain Ω1.
In particular, we consider 25 Gaussians with standard deviations σ = 0.05, see Figure 4.1.
The choice of σ comes from considerations of the underlying mesh. For a full justification
of using Gaussian initial conditions with specified means and standard deviations, see [1].
Since we are interested in seeing what happens when each of the Gaussians make a full
revolution in Ω, then we set the time domain to be [0, 2π]. Based on considerations of the
CFL condition, we set a uniform time step ∆t = 2π

1866 ≈ 0.00336719469, i.e. nT = 1866.
Each of the initial conditions are then substituted in the governing equations and the

resulting problem is solved as detailed in the previous paragraph. Afterwards, this yields a
set of trajectory data for the solution coefficients (which we call states) and the fluxes. For
the rest of this section, we will consider data obtained through the the FOM as the “ground
truth” and they will serve as a benchmark to measure against for our experiments. Note
that we may obtain this data for different initial conditions, such as that of the cone and
the slotted cylinder, using this method – which will be important in performing the error
analysis with respect to our numerical solvers.

4.2. Reproducibility. In this section, we demonstrate the reproducibilty results of
the DMD subdomain solvers in two cases: (i) {λi} are known (ii) {λi} are unknown. In

86 A DMD-based Partitioned Scheme For Time-dependent Coupled Parametric PDEs

(a) Set of Initial Conditions (b) Top-Down View

Fig. 4.1: The 25 initial conditions used for training the DMD operator

understanding how much we may expect the data-driven model to accurately simulate the
dynamics of the given model and as a “proof of concept”, we opted to train the DMD models
over the 25 initial conditions with snapshot energy set at relatively high values. In future
work, we hope to evaluate the accuracy of the model at lower energies. We speculate that
the “right” value of the snapshot energy which allows the data-driven scheme to accurately
approximate the dynamics is correlated with the associated Peclet number of (2.1). As
a precaution, we would like to mention that this is still preliminary work and that there
may be potential bugs in the coding implementation of the models. This may affect the
quantities that are reported in this manuscript, for example the error values found in the
following tables. Nevertheless, we believe it important to be transparent in reporting these
values and emphasize that these errors should be taken as “suggestive” at best of the quality
of the models. That being said, future work will be performed in the implementation to
provide fully accurate results of these models.

Using MATLAB, we train two DMDc solvers over each of the subdomains Ω0 and Ω1.
We consider the domain to be divided into 65 by 65 grid, with Ω0 containing the left half
(33 by 65) and Ω1 being the right half (33 by 65). They are coincident on the boundary,
where there are nFγ = 63 λ values.

The training data contains the state and flux values and contains 1866 time points (from
0 to 2π). The number of modes r for each is calculated using the snapshot energy criterion:

∑r
i=1 σ

2
i∑s

i=1 σ
2
i

> ϵ

where ϵ ∈ (0, 1) is a prescribed tolerance and r is the least number of modes needed for
this inequality to hold. Consider the above set of initial conditions indicated in Figure 4.1.
The dataset contains 25 Gaussians with centers uniformly spaced in the square [0.15, 0.35]×
[0.4, 0.5] with standard deviations σ = 0.05. Moreover, it contains time-series data for each
of these Gaussians which evolve according to the PDE model problem. The training of the
DMDc operator is performed with this dataset and with all trajectories simultaneously. For
our results with the DMDc subdomain solvers, we set ϵ = 0.999999999. This yields the
number of retained modes to be r0 = 162, r1 = 109.

E. Huynh, P. Bochev, & P. Kuberry 87

Initial Condition Domain
Gaussian Center Ω1 Ω2

Number of Modes L∞-Error Number of Modes L∞-Error
(0.15, 0.4) 162 0.0002892805964 109 0.0002320102399
(0.35, 0.6) 162 0.0000797235010 109 0.0044511526012

Table 4.1: Table of L∞ Errors when the flux values are known exactly

Initial Condition Domain Interface Flux
Gaussian Center Ω1 Ω2 γ

Number of Modes L∞-Error Number of Modes L∞-Error L∞-Error
(0.15, 0.4) 162 0.2362 109 0.2615 0.0985
(0.35, 0.6) 162 0.1931 109 0.2615 0.0411

Table 4.2: Table of L∞ Errors when the flux values are not known

For the fully data-driven numerical solver, we train the DMD-FS to approximate the
flux using 9 uniformly spaced Gaussians with σ = 0.05. In particular, these Gaussians
are centered at (x, 0.5) with x ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}. Moreover,
we use data from 5 patches around the interface and set the snapshot criterion at ϵ =
0.9999999999999. This yields a flux model which captures the value of the flux at the order
of 1e− 6.

After training the DMD model, we then reproduce several of the initial conditions and
the flux values in the training data {λi} via propagation by the approximate operator Ã.
With the fully data-driven model, we also propagate the flux values which are then fed into
the subdomain solvers as inputs to produce the next states. In particular, we compare the
DMD reproduction of the initial data with centers (0.15, 0.4) and (0.35, 0.6) assuming (i)

the known values of {λi}n
F
γ

i=1 and (ii) the flux values are not known. To characterize the
error, we assume the data given from the full-order model (FOM), i.e. the data obtained
from running a finite element solver, is the “ground truth” and measure it using the L∞

norm. In this manuscript, we opt to measure the absolute errors between the ground truth
data and the data produced by the model. In future work, we intend to report the relative
errors. The list of L∞ errors when the fluxes are known is summarized in Table 4.1 while
the one when the fluxes are unknown is given in Table 4.2.

Figures 4.2, 4.3, 4.4 and 4.7 gives 6 different time points of the predicted numerical
solutions in comparison to the FOM on [0, 2π] in the cases of known and unknown fluxes.
We consider additional diagnostics to analyze the behavior of the DMDc−DMDFS model
for the initial condition (0.15, 0.4) which are given in Figures 4.5 and 4.6. Since there is
possibly an error in the approximated fluxes, we also provide error plots for both the state
and flux values. Figure 4.5 considers the set of trajectories for each state and flux errors as a
function of time and Figure 4.6 uses a “top-down” perspective of the errors as a function of
time. In the latter plot, it is assumed that the flux values are contained in the last nFγ = 63
values.

4.3. Predictability. Using the both the trained DMDc model with known flux values
and the DMDc−DMDFS for unknown fluxes developed in Section 4.2, we then test the
results of the model on several examples which are unseen: a cone and a slotted cylinder.
One way to justify the use of our models to solve these problems is to recall the parametric

88 A DMD-based Partitioned Scheme For Time-dependent Coupled Parametric PDEs

(a) Ground Truth via FOM (b) Reproduction via DMDc

Fig. 4.2: Results with Initial Gaussian Centered at (0.15, 0.4) when fluxes are known

(a) Ground Truth via FOM (b) Reproduction via DMDc

Fig. 4.3: Results with Initial Gaussian Centered at (0.35, 0.6) when fluxes are known

setting. In the framework of µPDEs, one can think of each of these initial conditions as
some sort of linear combination of the 25 initial conditions used to train the DMDc models.
Thus, due to this assumption and the linearity of the models, these initial conditions can
be propagated starting from their initial states.

However in order for this assumption to be valid, these initial conditions are assumed to
be contained within the domain spanned by the initial conditions, which is again [0.15, 0.35]×
[0.4, 0.6]. Thus, we consider a cone and a slotted cylinder centered at (0.25, 0.5) with radius
r = 0.1, see Figures 4.8 and 4.10. Once again, we use L∞ errors in space-time and also
consider the state and flux errors, which are summarized for each model in Tables 4.3 and
4.4.

4.4. Analysis and Discussion. In this section, we will discuss our results in the cases
when (i) the fluxes are known and (ii) when the fluxes are unknown. These each correspond

E. Huynh, P. Bochev, & P. Kuberry 89

(a) Ground Truth via FOM (b) Prediction via DMDc-DMDFS

Fig. 4.4: Results with Initial Gaussian Centered at (0.15, 0.4) when fluxes are unknown

(a) Subdomain 1 Trajectory Errors (b) Subdomain 2 Trajectory errors

Fig. 4.5: Trajectory Errors for Initial Gaussian Centered at (0.15, 0.4) when fluxes are
unknown

Initial Condition Ω1 L
∞-Error Ω2 L

∞-Error
Cone 0.1172318743106 0.0002662479286

Slotted Cylinder 0.5469193774605 0.0088659661582

Table 4.3: L∞ Errors when the fluxes are known

Initial Condition Ω1 L
∞-Error Flux Error Ω2 L

∞-Error
Cone 0.2278 0.0812 0.2429

Cylinder 0.5469 0.0576 2.422

Table 4.4: L∞ Errors when the fluxes are unknown

90 A DMD-based Partitioned Scheme For Time-dependent Coupled Parametric PDEs

(a) Subdomain 1 Contour Plot Errors (b) Subdomain 2 Trajectory errors

Fig. 4.6: Contour Plot Errors for Initial Gaussian Centered at (0.15, 0.4) when fluxes are
unknown

(a) Ground Truth via FOM (b) Prediction via DMD

Fig. 4.7: Results with Initial Gaussian Centered at (0.35, 0.6) when fluxes are unknown

to the DMDc and DMDc-DMDFS solvers.

In the known fluxes regime, the trained model from 25 initial Gaussians reproduces
the dynamics of the data within 10−3 accuracy, as indicated in Table 4.1. These results
seem to hold with both subdomain solvers. Qualitatively, Figures 4.2 and 4.3 show that
the reproduction given by the DMDc subdomain solvers do not differ markedly from the
ground truth as produced by the full-order model. Next, prediction over unseen data with
the cone and slotted cylinder initial conditions yield better errors in the Ω2 relative to
Ω1, although the errors suffer more relative to the reproduction case. Nevertheless, the
qualitative pictures as shown in Figures 4.9 and 4.11 demonstrates that the dynamics are
still well-preserved.

When the fluxes are unknown and must be numerically approximated from the flux

E. Huynh, P. Bochev, & P. Kuberry 91

(a) Cone Initial Condition (b) Top-Down View

Fig. 4.8: The cone initial condition used for predicting with the DMD operator

(a) Ground Truth via FOM (b) Prediction via DMDc

Fig. 4.9: Results with Cone Centered at (0.25, 0.5) when fluxes are known

surrogate model, we then then use these approximations to advance the subdomain solvers.
In terms of reproduction of the initial data, Table 4.2 shows that there is an increase in error
relative to the known case. Here, we notice that the interface flux errors are within the order
of 10−2, however the state errors in Ω1 and Ω2 are only at the order of 10−1. These errors
affect the qualitative behavior, where we see in Figures 4.4 and 4.7 that the dynamics develop
numerical artifacts closer to the boundary. These artifacts persist over time and lead to a
loss in accuracy. To further analyze where these errors occur, we provided trajectory error
plots for both Ω1 and Ω2 as well as a top-down view via contour plots. Figure 4.5 shows
that the errors in Ω1 remain small and bounded up until the Gaussian crosses the boundary.
Upon reaching the boundary, the subdomain state errors increase significantly and slowly
decay. On the other hand, the errors in Ω2 remain larger at the beginning and slowly decay
over time. These are also corroborated from Figure 4.6 which shows the propagation of

92 A DMD-based Partitioned Scheme For Time-dependent Coupled Parametric PDEs

(a) Cylinder Initial Condition (b) Top-Down View

Fig. 4.10: The cylinder initial condition used for predicting with the DMD operator

(a) Ground Truth via FOM (b) Prediction via DMDc

Fig. 4.11: Results with Slotted Cylinder Centered at (0.25, 0.5) when fluxes are known

errors in time over Ω1 and the evolution of errors in Ω2.

Next, in terms of prediction with unseen data, Table 4.4 yield similar-to-worse accuracy
compared to the reproductive case and to the analogous known flux regime. Here, both the
errors in Ω1 are at the order of 10−1 while the error in Ω2 is much higher in the case of the
slotted cylinder. Figures 4.12 and 4.15 demonstrate a clear loss in accuracy compared to the
data produced by the full-order model, thereby showing the model fails to accurately capture
the dynamics. We provide a similar analysis as in the reproductive case by showcasing the
trajectory error plots and contour plots. In the case of the cone, Figures 4.5 and 4.6 are
similar to the reproductive case. However, the trajectory error plot for the slotted cylinder in
Figure 4.16 shows that while the errors in Ω1 remain relatively stable, the errors in Ω2 seem
to exponentially increase by later times. The corresponding contour plot of the cylinder
errors in Figure 4.17 shows that these errors relatively larger closer to the boundary.

E. Huynh, P. Bochev, & P. Kuberry 93

(a) Ground Truth via FOM (b) Prediction via DMDc-DMDFS

Fig. 4.12: Results with Cone when fluxes are unknown

(a) Subdomain 1 Trajectory Errors (b) Subdomain 2 Trajectory errors

Fig. 4.13: Trajectory Errors for Cone when fluxes are unknown

In summary, when the Lagrange multipliers are known and the DMDc models are used
to approximate the subdomain states, the model can be trained well enough to obtain
accurate representations. However, when the fully data-driven model is implemented with
the flux values numerically approximated via the DMDFS, we find that there is a sharp
increase in errors that lead to massive departures from the original dynamics – even when
the initial DMDFS solver was trained to an order of 10−6 in error. This suggests two things:
(1) the implementation of the model was incorrect or (2) the inherent dynamics of the flux
and subdomain states is unstable. While we do not report it in detail here, we tested (2) out
by perturbing the original flux data by adding a vector with values randomly sampled from
[−10−6, 10−6] and evolved the initial conditions with these perturbed flux values. We found
that this did not yield significantly different errors from the ones produced and reported in
this manuscript. This suggests that the implementation may be incorrect and will require

94 A DMD-based Partitioned Scheme For Time-dependent Coupled Parametric PDEs

(a) Subdomain 1 Contour Plot Errors (b) Subdomain 2 Trajectory errors

Fig. 4.14: Contour Plot Errors for Cone when fluxes are unknown

(a) Ground Truth via FOM (b) Prediction via DMDc-DMDFS

Fig. 4.15: Results with Slotted Cylinder when fluxes are unknown

further debugging. Once this is done, we expect that the errors from the DMDc-DMDFS
models will be better.

5. Conclusion. We introduced a new model to numerically simulate the dynamics of
a coupled problem, which have potential applications to parametric problems. Our model
is fully data-driven and based on the dynamic mode decomposition and its control variant.
Our simulations in two cases where either the fluxes are known or unknown, we find that
the model performs better when the fluxes are known exactly and accurately capture the
underlying dynamics. In contrast, the fully data-driven model struggled to give similar
results, even with an accurate flux surrogate. Our post-investigation revealed that there
may be a programming issue and requires further debugging. Once debugged, we hope to
redo the simulations and expect to obtain better numerical results.

E. Huynh, P. Bochev, & P. Kuberry 95

(a) Subdomain 1 Trajectory Errors (b) Subdomain 2 Trajectory errors

Fig. 4.16: Trajectory Errors for Slotted Cylinder when fluxes are unknown

(a) Subdomain 1 Contour Plot Errors (b) Subdomain 2 Trajectory errors

Fig. 4.17: Contour Plot Errors for Cylinder when fluxes are unknown

REFERENCES

[1] P. Bochev, J. Owen, P. Kuberry, and J. Connors, Dynamic flux surrogate-based partitioned meth-
ods for interface problems, Computer Methods in Applied Mechanics and Engineering, 429 (2024),
p. 117115.

[2] J. M. Connors and K. C. Sockwell, A multirate discontinuous-galerkin-in-time framework for
interface-coupled problems, SIAM Journal on Numerical Analysis, 60 (2022), pp. 2373–2404.

[3] A. de Castro, P. Bochev, P. Kuberry, and I. Tezaur, Explicit synchronous partitioned scheme
for coupled reduced order models based on composite reduced bases, Computer Methods in Applied
Mechanics and Engineering, 417 (2023), p. 116398.

[4] C. A. Felippa, K.-C. Park, and C. Farhat, Partitioned analysis of coupled mechanical systems,
Computer methods in applied mechanics and engineering, 190 (2001), pp. 3247–3270.

[5] J. Hanson, P. Bochev, and B. Paskaleva, Learning compact physics-aware delayed photocurrent
models using dynamic mode decomposition, Statistical Analysis and Data Mining: The ASA Data
Science Journal, 14 (2021), pp. 521–535.

96 A DMD-based Partitioned Scheme For Time-dependent Coupled Parametric PDEs

[6] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor, Dynamic mode decomposition:
data-driven modeling of complex systems, SIAM, 2016.

[7] K. Peterson, P. Bochev, and P. Kuberry, Explicit synchronous partitioned algorithms for interface
problems based on lagrange multipliers, Computers & Mathematics with Applications, 78 (2019),
pp. 459–482.

[8] J. L. Proctor, S. L. Brunton, and J. N. Kutz, Dynamic mode decomposition with control, SIAM
Journal on Applied Dynamical Systems, 15 (2016), pp. 142–161.

[9] K. C. Sockwell, K. Peterson, P. Kuberry, P. Bochev, and N. Trask, Interface flux recovery
coupling method for the ocean–atmosphere system, Results in Applied Mathematics, 8 (2020),
p. 100110.

[10] P. A. Ullrich and M. A. Taylor, Arbitrary-order conservative and consistent remapping and a
theory of linear maps: Part i, Monthly Weather Review, 143 (2015), pp. 2419 – 2440.

E. Huynh, P. Bochev, & P. Kuberry 97

AN INEXACT WEIGHTED PROXIMAL TRUST-REGION METHOD

LEANDRO FARIAS MAIA∗, ROBERT BARALDI† , AND DREW P. KOURI‡

Abstract. In [R. J. Baraldi and D. P. Kouri, Math. Program., 201:1 (2023), pp. 559-598], the authors
introduced a trust-region method for minimizing the sum of a smooth nonconvex and a nonsmooth convex
function, the latter of which has an analytical proximity operator. While many functions satisfy this
criterion, e.g., the ℓ1-norm defined on ℓ2, many others are precluded by either the topology or the nature of
the nonsmooth term. Using the δ-Fréchet subdifferential, we extend the definition of the inexact proximity
operator and enable its use within the aforementioned trust-region algorithm. Moreover, we augment the
analysis for the standard trust-region convergence theory to handle proximity operator inexactness with
weighted inner products. We first introduce an algorithm to generate a point in the inexact proximity
operator and then apply the algorithm within the trust-region method to solve an optimal control problem
constrained by Burgers’ equation.

1. Introduction. Our goal is the efficient numerical solution to the nonsmooth, nonconvex
optimization problem

min
x∈X

{f(x) + ϕ(x)} , (1.1)

where X is a real Hilbert space, f : X → R is a smooth nonconvex function and ϕ : X →
(−∞,+∞] is a proper, closed and convex function. The method developed in [1] solves (1.1)
via a trust-region method that permits inexact evaluations of the smooth objective function
f and its gradient. The convergence analysis for the trust-region method is contingent on the
proximity operator of ϕ being exact, i.e. analytically computable. In this paper, we extend
the inexact proximal trust-region algorithm in [1] to leverage certain inexact evaluations of
the proximity operator of ϕ. The proximity operator of ϕ at x with stepsize r is defined as
the unique solution to the minimization problem

Proxrϕ(x) := argmin
y∈X

{
1

2r
∥y − x∥2 + ϕ(y)

}
(1.2)

and is a powerful tool to deal with composite nonsmooth optimization problems like (1.1).
Algorithms that leverage the proximity operator, like ISTA and FISTA [5], are typically first-
order and only apply to convex optimization problems. Like [1], these methods require that
the proximity operator be computed exactly—a requirement that is often computationally
expensive or even impossible to satisfy. For instance, if X is finite dimensional with dot
product defined by a diagonal matrix D and ϕ is the ℓ1 norm, then the proximity operator
has an analytical expression. In contrast, if the dot product is defined by a non-diagonal
symmetric positive definite (spd) matrixM , then evaluating the proximity operator requires
a specialized iterative method to obtain an approximate solution. Although preliminary
studies on optimization with inexact proximity operators exist [8, 9, 10, 11, 14, 15], these
works only apply to convex problems and often exhibit slow convergence rates. Using these
methods as motivation, we develop a proximal Newton method—tailored to the case of
diagonal and non-diagonal dot products—that can handle inexact proximity operators. We
define our inexact proximity operator as

Proxrϕ(x, δ) :=
{
p ∈ X

∣∣∣ 1

2r
∥p− x∥2 + ϕ(p)

≤ 1

2r
∥z − x∥2 + ϕ(z) + δ∥z − p∥ ∀ z ∈ X

}
(1.3)

∗Department of Industrial and Systems Engineering, Texas A&M University, leandro.maia@tamu.edu
†Optimization and Uncertainty Quantification, Sandia National Laboratories, rjbaral@sandia.gov
‡Optimization and Uncertainty Quantification, Sandia National Laboratories, dpkouri@sandia.gov

98 CSRI Summer Proceedings 2024

The inclusion of the term δ∥z − u∥ ≥ 0 on the right-hand side of (1.3) allows the proximity
operator to be computed inexactly.

The remainder of the article is structured as follows. In Section 3, we review the inexact
trust-region method introduced in [1], presenting the main components of the algorithm.
We also include a lemma that enables the use of our inexact proximal map. In Section 4,
we lay out our definition of inexact proximity operator based on the Fréchet subdifferential.
In Section 4, we present the main technical results of this work, where we establish the
relationship between the δ-Fréchet subdifferential [13] and the δ-proximal map. We conclude
with Section 5, where we present numerical results for the optimal control of Burgers’
equation.

2. Notation and Problem Assumptions. Throughout, X denotes a real Hilbert
space with inner product ⟨x, y⟩ and norm ∥x∥ = ⟨x, x⟩1/2. To simplify the presentation, we
associate the topological dual space X∗ with X through Riesz representation. We assume
that ϕ : X → (−∞,+∞] is proper, closed and convex with effective domain

domϕ := {x ∈ X |ϕ(x) < +∞}.
We further assume that f : X → R is Fréchet differentiable on an open set containing
domϕ and its derivative is Lipschitz continuous on that set. We denote the derivative of f
at x ∈ X by f ′(x) ∈ X∗ and its gradient (i.e., Riesz representer) by ∇f(x) ∈ X. Finally,
we assume that the total objective function F (x) := f(x) + ϕ(x) is bounded from below.

The main focus of this paper is the use of inexact proximity operators arising from
weighted inner products. To this end, we define a : X ×X → R to be a symmetric, coercive
and continuous bilinear form, i.e., there exists 0 < α1 ≤ α2 <∞ such that

a(x, y) = a(y, x), α1∥x∥2 ≤ a(x, x), and a(x, y) ≤ α2∥x∥∥y∥ ∀x, y ∈ X.
We associate a with the invertible (cf. the Lax-Milgram lemma), self-adjoint, positive and
continuous linear operator A : X → X defined by its action:

⟨Ax, y⟩ = a(x, y) ∀x, y ∈ X.
Recall that a(·, ·) defines an inner product on X and its associated norm ∥ · ∥a =

√
a(·, ·) is

equivalent to ∥ · ∥. We denote the (inexact) proximity operator associate with a by Proxarϕ.
For our numerical results, we will work with X = Rn endowed with the dot product

⟨x, y⟩ = ⟨x, y⟩M := x⊤My =

n∑

i=1

n∑

j=1

mi,jxiyj ,

whereM ∈ Rn×n is a non-diagonal spd matrix. In many common choices of ϕ, the proximity
operator associated with theM -weighted dot product lacks an analytical form. In this case,
we replace ⟨·, ·⟩ with the equivalent dot product

a(x, y) = ⟨x, y⟩D := x⊤Dy =

n∑

i=1

dixiyi,

where D = diag(d) ∈ Rn×n is a positive diagonal matrix. In this setting, the linear operator
A is given by

A =M−1D.

For clarity, we denote Rn endowed with theM -weighted dot product byXM and analogously
for XD. We further denote the proximity operator defined on XM by ProxMrϕ and similarly

on XD by ProxDrϕ.

L.F. Maia, R. Baraldi, & D.P Kouri 99

3. A Proximal Trust-Region Method. Trust-regions are iterative methods for
computing approximate solutions to general nonconvex optimization problems [7] and are
ideal for leveraging inexact computations [1, 12]. In the recent work [1], the authors
developed a proximal trust-region method for nonsmooth optimization problems with the
form (1.1) that exploits inexact function and gradient evaluations with guaranteed convergence.
At the k-th iteration of [1, Algorithm 1], we compute a trial iterate x+k that approximately
solves the trust-region subproblem

min
x∈X
{mk(x) := fk(x) + ϕ(x)} subject to ∥x− xk∥ ≤ ∆k, (3.1)

where xk ∈ domϕ is the current iterate, fk is a smooth local model of f around xk, and
∆k > 0 is the trust-region radius. In particular, we require that the trial iterate x+k satisfies
the fraction of Cauchy decrease condition: there exist positive constants κrad and κfcd,
independent of k, such that

∥x+k − xk∥ ≤ κrad∆k (3.2a)

mk(xk)−mk(x
+
k) ≥ κfcdhk min

{
hk

1 + ωk
,∆k

}
, (3.2b)

where ωk is a measure of the curvature of fk given by

ωk := sup{|ω(fk, xk, s)| | 0 < ∥s∥ ≤ κrad∆k},

ω(g, x, s) is the curvature of the Fréchet differentiable function g : X → R at x ∈ X in the
direction s ∈ X, i.e.,

ω(g, x, s) :=
2

∥s∥2 [g(x+ s)− g(x)− ⟨∇g(x), s⟩],

and hk is our stationarity metric given by

hk :=
1

r0
∥Proxr0ϕ(xk − r0∇f(xk))− xk∥. (3.3)

Given a trial iterate x+k that satisfies (3.2), we decide whether to accept or reject x+k
using the ratio of computed (credk) and predicted (predk) reductions,

ρk :=
credk
predk

. (3.4)

The computed reduction credk is an approximation of the actual reduction

aredk := F (xk)− F (x+k) (3.5)

and the predicted reduction predk is the decrease predicted by the model mk,

predk := mk(xk)−mk(x
+
k). (3.6)

If ρk ≥ η1, we accept x+k , i.e., xk+1 = x+k . Otherwise, we reject it, setting xk+1 = xk. We
furthermore use ρk to increase or decrease the trust-region radius ∆k. Here, η1 ∈ (0, 1) is a
user-specified parameter.

Algorithm 1 states the inexact proximal trust-region method from [1, Algorithm 1].
To ensure convergence, Algorithm 1 requires the following assumptions on the inexact

100 An Inexact Weighted Proximal Trust-region Method

evaluations f and its gradient. The first assumption ensures that the computed reduction
credk is a sufficiently accurate approximation of the actual reduction aredk.

Assumption 3.1 (Inexact Objective). There exists a positive constant κobj, independent
of k, such that

|aredk − credk| ≤ κobj [ηmin{predk, θk}]ζ (3.7)

where

ζ > 1, 0 < η < min{η1, (1− η2)} and lim
k→+∞

θk = 0

are used provided parameters.
Note that all quantities on the right-hand side of (3.7) are available when computing

credk, enabling one to avoid the computation of the actual reduction aredk and hence the
objective function F . Similarly, the following assumption enables approximations of the
gradient of f within a prescribed tolerance that depends on the state of the algorithm.

Assumption 3.2 (Inexact Gradient). The model fk : X → R has Lipschitz continuous
derivatives on an open set containing domϕ and there exists a positive constant κgrad,
independent of k, such that

∥gk −∇f(xk)∥ ≤ κgrad min{hk,∆k},
where gk := ∇fk(xk).

Algorithm 1 Nonsmooth Trust-Region Algorithm

Require: x1 ∈ domψ, ∆1 > 0, 0 < η1 < η2 < 1, and 0 < γ1 ≤ γ2 ≤ γ3
1: for k = 1, 2, . . . do
2: Model Selection: Choose mk that satisfies Assumption 3.2
3: Step Computation: Compute x+k ∈ X satisfying equation (3.2)
4: Computed Reduction: Compute credk satisfying Assumption 3.1
5: Step Acceptance and Radius Update: Compute ρk as in (3.4)
6: if ρk < η1 then
7: xk+1 ← xk
8: ∆k+1 ∈ [γ1∆k, γ2∆k]
9: else

10: xk+1 ← x+k
11: if ρk ∈ [η1, η2) then
12: ∆k+1 ∈ [γ2∆k,∆k]
13: else
14: ∆k+1 ∈ [∆k, γ3∆k]
15: end if
16: end if
17: end for

A critical component of the convergence theory for Algorithm 1 is that the trial iterate
satisfies (3.2). In the smooth case (i.e., ϕ ≡ 0), this condition is satisfied if x+k produces
at least a fraction of the decrease achieved by the steepest descent step. In the nonsmooth
case, [1] instead defines sufficient decrease using the proximal gradient step. In particular,
[1, Lemma 7] illustrates the relationship between the proximal gradient stepsize, r, and the
required model decrease. Before stating this important lemma, we first define the proximal
gradient path

pk(r) := Proxrϕ(xk − rgk)− xk and xk(r) := xk + pk(r). (3.8)

L.F. Maia, R. Baraldi, & D.P Kouri 101

We also define the quantity

Qk(r) := ⟨gk, pk(r)⟩+ (ϕ(xk(r))− ϕ(xk)) , (3.9)

which is used to measure the model decrease of the iterate xk(r).
The main descent lemma derived in [1] plays the same role in our analysis, and we

defer the proof of this lemma to maintain the focus of our exposition. We directly quote [1,
Lemma 7] below.

Lemma 3.1. The function r 7→ Qk(r) is continuous and nonincreasing. In fact, if
r > t > 0 then Qk(t) > Qk(r) whenever xk(t) ̸= xk(r). Moreover, if hk > 0 then

Qk(r) = ⟨gk, pk(r)⟩+ (ϕ(xk(r))− ϕ(xk)) ≤ −
1

r
∥pk(r)∥2 < 0

Lemma 3.1 is an inherent property of the proximal gradient map, which is used in [1]
to verify the conditions defining the Cauchy point [1, Eq. (25)]. In the subsequent sections,
we extend Algorithm 1 and Lemma 3.1 to handle the case of inexact proximity operators.

4. Inexact Proximity Operator. We first present a general definition of inexact
proximity operators, which is motivated by the δ-Fréchet subgradient. We will later demonstrate
how to compute a δ-proximity operator for the case of weighted inner products.

Definition 4.1 (δ-Proximity Operator). Let x ∈ domϕ, r > 0, and δ > 0 be given.
We define the δ-proximity operator at x as the following set-valued map

Proxrϕ(x, δ) :=
{
p ∈ X

∣∣∣ 1

2r
∥p− x∥2 + ϕ(p)

≤ 1

2r
∥z − x∥2 + ϕ(z) + δ∥z − p∥ ∀ z ∈ X

}
. (4.1)

As claimed, the notion of δ-proximity operator introduced in Definition 4.1 is closely
related the the δ-Fréchet subdifferential, which we define next.

Definition 4.2 (δ-Subgradient). Let x ∈ domϕ and δ > 0 be given. We say that
s ∈ X is a δ-Fréchet subgradient, or simply a δ-subgradient, of ϕ at x if

ϕ(y) ≥ ϕ(x) + ⟨s, y − x⟩ − δ∥y − x∥

for all y ∈ X. The set ∂ϕδ(x) consists of all δ-subgradient of ϕ at x.
It is straightforward to observe that by setting δ = 0 we recover the standard definitions

of subgradient and proximity operator. By replacing the proximity operator with the inexact
version defined in Definition 4.1, we redefine the proximal gradient path (3.8), and hence
the Cauchy point, as

p̃k(u, r) := u− xk and x̃k(u, r) := xk + p̃k(u, r), (4.2)

where u ∈ Proxrϕ(xk − rgk, δ). Analogously, we update the quantity Qk in (3.9) to

Q̃k(u, r) := ⟨gk, p̃k(u, r)⟩+ (ϕ(x̃k(u, r))− ϕ(xk)) (4.3)

We derive the close relationship between the δ-subdifferntial and the δ-proximity operator
in Theorem 4.4, but we first require the following technical lemma.

Lemma 4.3. Let g : X → R be a continuously Fréchet differentiable convex function,

H(x) := g(x) + ϕ(x),

102 An Inexact Weighted Proximal Trust-region Method

and δ ≥ 0, then

∂δH(x) = ∇g(x) + ∂δϕ(x).

Moreover, x∗ is a δ-minimizer of H, i.e., H(x∗) ≤ H(x) + δ∥x− x∗∥ for all x ∈ X, if and
only if

−∇g(x∗) ∈ ∂δϕ(x∗).

Proof. This is a direct consequence of [6, Corollary 17.3].
We now state and prove the main result of this section.
Theorem 4.4. Let x ∈ X and δ ≥ 0. Then,

u ∈ Proxrϕ(x, δ) ⇐⇒ x ∈ (I + r∂δϕ)(u).

Proof. Let φ(·) = 1
2r∥ · −x∥2 + ϕ(·), and recall Definition 4.1 implies u ∈ Proxrϕ(x, δ)

satisfies

φ(u) ≤ φ(z) + δ∥z − u∥ ∀ z ∈ X (4.4)

i.e., u is a δ-minimizer of φ. Applying Lemma 4.3, expression (4.4) implies

−∇g(u) = r−1(x− u) ∈ ∂δϕ(u) ⇐⇒ x ∈ u+ r∂δϕ(u) = (I + r∂δϕ)(u),

concluding the proof.
The proximity operator is present in two components of Algorithm 1, through the

stationarity metric hk and in defining the Cauchy point using Qk. To ensure convergence, we
require that δ > 0 and u ∈ Proxrϕ(xk−rgk, δ) are chosen so that the Cauchy point produces
sufficient decrease. When using inexact proximity operators, the stationarity metric (3.3)
becomes

h̃k :=
1

r0
∥p̃k(u, r0)∥ for some u ∈ Proxrϕ(xk − r0gk, δ). (4.5)

To address the accuracy of h̃k, we notice that the reverse triangle inequality ensures that

hk ≤ h̃k + |hk − h̃k|.

Consequently, by choosing δ > 0 so that

|hk − h̃k| ≤ κgrad min{h̃k,∆k}, (4.6)

holds, we ensure that

hk ≤ (1 + κgrad)h̃k.

Hence, if the limit inferior of h̃k is zero, then so is the limit inferior of hk. Given the
computable quantity h̃k, we further modify the trust-region algorithm to ensure that the
trial iterate x+k satisfies

∥x+k − xk∥ ≤ κrad∆k (4.7a)

mk(xk)−mk(x
+
k) ≥ κfcdh̃k min

{
h̃k

1 + ωk
,∆k

}
. (4.7b)

L.F. Maia, R. Baraldi, & D.P Kouri 103

Finally, we modify Assumption 3.2 to account for h̃k as follows.

Assumption 4.1 (Inexact Gradient). The model fk : X → R has Lipschitz continuous
gradient on an open set containing domϕ and there exists a positive constant κgrad, independent
of k, such that

|hk − h̃k| ≤ κgrad min{h̃k,∆k}
∥gk −∇f(xk)∥ ≤ κgrad min{h̃k,∆k}.

With these changes we are able to produce a new version of Algorithm 1 that allows
inexact computation of the proximity operator. In particular, line 2 in Algorithm 1 is
modified to “Choose h̃k and mk that satisfy Assumption 4.1”. Notice that h̃k and gk
must be computed in tandem to satisfy the conditions in Assumption 4.1, which can be
accomplished by a straight forward modification of [1, Algorithm 4]. In order to ensure that
the Cauchy point achieves sufficient decrease, we additionally enforce the proximal gradient
descent condition

Q̃k(u, r) ≤ −
κdec
r
∥p̃k(u, r)∥2, (4.8)

where κdec is a positive constant that is independent of k. Note that if u = Proxrϕ(xk−rgk),
then (4.8) is satisfied with κdec = 1 (cf. Lemma 3.1). To demonstrate how we enforce these
conditions, we restrict our attention to the case of weighted inner products.

5. Weighted Proximal Operators. To motivate this section, consider the finite
dimensional case X = XM . When ϕ is separable, it is typically much easier to compute the
proximity operator defined on XD (recall D is a diagonal matrix), i.e.,

ProxDrϕ(x) = argmin
y∈X

{
1

2r
∥y − x∥2D + ϕ(y)

}
,

because the optimization problem defining ProxDrϕ(x) can be reduced to solving one-dimensional

optimization problems for each component of ProxDrϕ(x). For example, this is the case when
ϕ(·) ≡ ∥ · ∥1 or when the ϕ is the indicator function for bound constraints.

We consider the more general setting of replacing Proxrϕ with Proxarϕ defined using the
inner product induced by the bilinear form a(·, ·) and assume that Proxarϕ has an analytical
form. To this end, we define an algorithm, listed as Algorithm 2 that computes a δ-proximity
operator using Proxarϕ. Algorithm 2 is the usual a-weighted proximal gradient algorithm
applied to compute Proxrϕ(x) and consequently, the iterates {uℓ}, ignoring the stopping
conditions, converge strongly to Proxrϕ(x) [4, Corollary 28.9]. Notice that we employ a
modified stopping condition that helps to ensure that the computed solution is a δ-proximity
operator.

Algorithm 2 Weighted Proximal Gradient

Require: The point x ∈ X, the proximity parameter r > 0, and ε > 0
1: ℓ← 0
2: u0 ← Proxarϕ(x)
3: while ε < ∥uℓ − uℓ+1∥a do
4: uℓ+1 ← Proxarϕ(uℓ −A−1(uℓ − x))
5: ℓ← ℓ+ 1
6: end while

104 An Inexact Weighted Proximal Trust-region Method

To satisfy Assumption 4.1, we must bound |hk − h̃k|, which we can bound in terms of
the error in the δ-proximity operator using the reverse triangle inequality, i.e.,

|hk − h̃k| ≤ r−1
0 ∥Proxrϕ(xk − r0gk)− x̃k(u, r0)∥,

where again u ∈ Proxrϕ(xk − r0gk, δ) for some δ > 0. As we now demonstrate, Algorithm 2
yields an element that approximates the true proximity operator, Proxrϕ(x, δ), to arbitrary
precision. For this result, we recall the definition φ(·) := 1

2r∥ ·−x∥2 +ϕ(·) from the proof of
Theorem 4.4.

Lemma 5.1. Algorithm 2 converges in finitely many iterations. Moreover, if α1 ≤
√
2

and Algorithm 2 exits at iteration ℓ, i.e.,

∥uℓ − uℓ+1∥a ≤ ε, (5.1)

then the following error bound holds

∥uℓ − Proxrϕ(x)∥ ≤ α−1/2
1

(
1− 1

2α
−2
1

)−1
ε.

Proof. By [4, Corollary 28.9], uℓ converges strongly and therefore there exists ℓ for
which (5.1) holds for given ϵ > 0. Denote the proximal gradient operator associated with
the a-inner product by

Ga(y, t) =
1
t

(
y − Proxatϕ

(
y − t

rA
−1(y − x)

))

and note that y 7→ Ga(y, t) is strongly monotone for all t ∈ (0, 2r/α2
1) [3, Lemma 2].

Consequently, y 7→ Ga(y, r) is strongly monotone since α1 ≤
√
2 and

a(Ga(uℓ, r)−Ga(p, r), uℓ − p) ≥ 1
r

(
1− 1

2α
−2
1

)
∥uℓ − p∥a,

where p = Proxrϕ(x). The optimality of p for φ ensures that Ga(p, r) = 0 and so

1
r

(
1− 1

2α
−2
1

)
∥uℓ − p∥a ≤ ∥Ga(uℓ, r)∥a = 1

r∥uℓ+1 − uℓ∥a.

The result then follows from (5.1) and the equivalence of ∥ · ∥a and ∥ · ∥.
In Theorem 5.3, we demonstrate that Algorithm 2 applied to xk − rgk outputs uℓ+1

satisfying the following inequality

⟨gk, uℓ+1 − xk⟩+ 1
2r∥uℓ+1 − xk∥2 + ϕ(uℓ+1)

≤ ⟨gk, z − xk⟩+
1

2r
∥z − xk∥2 + ϕ(z) + δ∥z − uℓ+1∥

for every z ∈ X, or equivalently

uℓ+1 ∈ Proxrϕ(xk − rgk, δ).

Before presenting the main theorem of this section, we prove the following preliminary result,
which we use to facilitate the proof of our main result.

Lemma 5.2. Consider the sequence {uℓ} generated by Algorithm 2. Then,

1

r
(A− I)(uℓ − uℓ+1) ∈ ∂φ(uℓ+1), (5.2)

which by definition is equivalent to

φ(z) ≥ φ(uℓ+1) +
1

r
⟨(A− I)(uℓ − uℓ+1), z − uℓ+1⟩ ∀ z ∈ X. (5.3)

L.F. Maia, R. Baraldi, & D.P Kouri 105

Proof. Recall that uℓ+1 = Proxarϕ(uℓ −A−1(uℓ − x)). By Theorem 4.4, we have that

1

r
(uℓ − uℓ+1 −A−1(uℓ − x)) ∈ ∂Aϕ(uℓ+1) = A−1∂ϕ(uℓ+1)

and by adding (1/r)A−1(uℓ+1 − x) on both sides of the previous set inclusion (in the
Minkowski sense), we obtain

1

r
(uℓ − uℓ+1 −A−1(uℓ − uℓ+1)) ∈

1

r
A−1(uℓ+1 − x) +A−1∂ϕ(uℓ+1)

= A−1∂φ(uℓ+1).

This is equivalent to (5.2), concluding the proof.
Finally, we present our main result, which shows that if uℓ+1 satisfies the stopping

conditions of Algorithm 2, then it is a δ-proximity operator.
Theorem 5.3. If uℓ+1 satisfies the stopping condition (5.1) with

ε ≤ rδ√α1/(1 + α2),

then uℓ+1 ∈ Proxrϕ(x, δ), i.e., for all z ∈ X,

φ(z) + δ∥z − uℓ+1∥ ≥ φ(uℓ+1).

Proof. First note that the existence of α1 and α2 ensure that

1

r
∥(A− I)(uℓ − uℓ+1)∥ ≤

1 + α2

r
∥uℓ − uℓ+1∥ ≤

1 + α2

r
√
α1
∥uℓ − uℓ+1∥a ≤

1 + α2

r
√
α1

ε ≤ δ.

Now, for any z ∈ X, we have that

φ(z) + δ∥z − uℓ+1∥ ≥ φ(z) +
1

r
∥(A− I)(uℓ − uℓ+1)∥∥z − uℓ+1∥

≥ φ(z) + 1

r
⟨(A− I)(−uℓ + uℓ+1), z − uℓ+1⟩

≥ φ(uℓ+1)

where in the first line we applied the bound on δ, in the second line we used the Cauchy-
Schwarz inequality and for the final inequality we applied Lemma 5.2.

6. Numerics. We apply our inexact weighted proximity operator within Algorithm 1
to solve optimal control of Burgers’ equation:

min
z∈L2(Ω)

∫

Ω

([S(z)]− w)2(x)dx+
α

2

∫

Ω

z2(x)dx+ β

∫

Ω

|z|(x)dx (6.1)

where Ω = (0, 1) is the physical domain, α = 10−4 and β = 10−2 are penalty parameters,
w(x) = −x2 is the target state, and S(z) = u ∈ H1(Ω) solves the weak form of Burgers’
equation

−νu′′ + uu′ = z + f in Ω,

u(0) = 0, u(1) = −1,

where f = 2(ν+x3) and ν = 0.08. We discretize the state u and z using continuous piecewise
linear finite elements on a uniform mesh with n = 512 intervals. To compute S(z), we solve

106 An Inexact Weighted Proximal Trust-region Method

the discretized Burgers’ equation using Newton’s method globalized with a backtracking line
search. We exit the Newton iteration when the relative residual falls below 10−4√ϵmach,
where ϵmach is machine epsilon. We will refer to PDE solves using this tolerance as “exact”
PDE solves.

Given that the controls are in L2(Ω), we employ the weighted dot product ⟨·, ·⟩ = ⟨·, ·⟩M ,
where M ∈ Rn×n is the mass matrix and for Algorithm 2, we employ the dot product
a(·, ·) = ⟨·, ·⟩D weighted by the lumped mass matrix D ∈ Rn×n, i.e.,

M =
h

6

4 1 . . . 0 0
1 4 . . . 0 0
...

...
. . .

...
...

0 0 . . . 4 1
0 0 . . . 1 4

∈ Rn×n and D = h

5
6 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 5

6

∈ Rn×n.

Recall that the A operator generated by the bilinear form a(·, ·) isM−1D. For this A, α1 = 1
and α2 = 3. Consequently, the preceding theory applies. Furthermore, we approximate the
L1-norm by the quantity

β

∫

Ω

|z|(x)dx ≈ ϕ(z) = βh(56 |z1|+ |z2|+ . . .+ |zn−1|+ 5
6 |zn|).

We notice that the D-weighted proximity operator of ϕ is the usual soft-thresholding
operator

ProxDrϕ(z) = sign(z)⊙max{|z| − βr, 0}.

In Table 6.1, we summarize the performance of Algorithm 1 for different values of
scaling (κgrad) for the inexact gradient tolerance. To approximately solve the trust-region
subproblem (3.1), we employ the nonlinear conjugate gradient solver introduced in [2,
Algorithm 4]. The table includes the wallclock time in seconds (time (s)), the number
of trust-region iterations (iter), the number of evaluations of f (obj), the number of
evaluations of ∇f (grad), the number of applications of the Hessian ∇2f (hess), the
number of evaluations of the proximity operator (prox), and the average number of iterations
of Algorithm 2 (av-piter). As κgrad decreases, we require additional accuracy from our
approximate proximity operator as computed by Algorithm 2. As seen in Table 6.1, our
implementation of Algorithm 1 is robust to inexact proximity operators.

κgrad time (s) iter obj grad hess prox av-piter

1e2 0.4708 18 37 19 173 347 10.78

1e1 0.4447 16 33 17 141 281 16.63

1e0 0.5229 18 37 19 173 347 28.50

1e-1 0.4247 15 31 16 125 248 47.07

1e-2 0.5815 17 35 19 157 315 60.00

1e-3 0.3498 13 27 15 93 183 53.15

1e-4 0.4034 13 27 17 93 185 69.31
Table 6.1

Results for the Burgers’ equation for κgrad ∈ {100, 10, 0.1, 0.01, 0.001, 0.0001}

To conclude, we incorporate inexact PDE solves with our inexact proximity operator
computations. In particular, we terminate the Newton iteration for solving Burgers’ equation

L.F. Maia, R. Baraldi, & D.P Kouri 107

when the relative residual falls below

min{10−2, τ},

where τ is computed by the trust-region algorithm and corresponds to the right-hand sides
in Assumptions 3.1 and 3.2. We do this fixing to κgrad = 1 and choosing κobj = 103. Since
the dominant cost of Newton’s method is the linear system solves at each iteration, we
compare the average number of linear system solves per iteration between our runs with
exact and inexact PDE solves. In particular, our method averaged 5.3125 linear system
solves per trust-region iteration when using inexact PDE solves, compared with 7.7222
linear system solves when using exact PDE solves. The reduction in linear system solves is
a byproduct of our relaxed tolerances. In particular, many of the PDE solves—the primary
cost in PDE-constrained optimization—only require the relative residual to be smaller than
10−2. Relaxing the PDE solver tolerance has the potential to make previously intractable
problems solvable.

7. Conclusion and Future Work. In this work, we introduced an inexact proximity
operator—motivated by the δ-Fréchet subdifferential—for use within the inexact trust-
region algorithm from [1]. Additionally, we extended the inexact trust-region algorithm,
Algorithm 1, from [1], to leverage our inexact proximity operator. Our numerical results
suggest that our algorithm is robust to inexact proximity operator evaluations. As future
research, we hope to develop similar theory that extends beyond the weighted proximity
operator problem studied here.

REFERENCES

[1] R. Baraldi and D. Kouri, A proximal trust-region method for nonsmooth optimization with inexact
function and gradient evaluations, Math. Program., (2023).

[2] R. J. Baraldi and D. P. Kouri, Efficient proximal subproblem solvers for a nonsmooth trust-region
method, Optimization Online, (2024), pp. 1–29.

[3] , Local convergence analysis of an inexact trust-region method for nonsmooth optimization,
Optimization Letters, 18 (2024), pp. 663–680.

[4] H. H. Bauschke, P. L. Combettes, H. H. Bauschke, and P. L. Combettes, Convex Analysis and
Monotone Operator Theory in Hilbert Spaces, Springer, 2017.

[5] A. Beck, First-order methods in optimization, SIAM, 2017.
[6] C. Clason and T. Valkonen, Introduction to nonsmooth analysis and optimization, 2023.
[7] A. R. Conn, N. I. Gould, and P. L. Toint, Trust region methods, SIAM, 2000.
[8] O. Devolder, F. Glineur, and Y. Nesterov, First-order methods of smooth convex optimization

with inexact oracle, Mathematical Programming, 146 (2014), pp. 37–75.
[9] L. Farias Maia, D. H. Gutman, and R. C. Hughes, The inexact cyclic block proximal

gradient method and properties of inexact proximal maps, Journal of Optimization Theory and
Applications, (2024).

[10] X. Hua and N. Yamashita, An inexact coordinate descent method for the weighted l1-regularized
convex optimization problem, Pacific Journal of Optimization, 9 (2013).

[11] K. Jiang, D. Sun, and K.-C. Toh, An inexact accelerated proximal gradient method for large scale
linearly constrained convex sdp, SIAM Journal on Optimization, 22 (2012), pp. 1042–1064.

[12] D. P. Kouri and D. Ridzal, Inexact trust-region methods for PDE-constrained optimization, Frontiers
in PDE-constrained optimization, (2018), pp. 83–121.

[13] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory, vol. 330,
Springer Science & Business Media, 2006.

[14] S. Salzo, S. Villa, et al., Inexact and accelerated proximal point algorithms, Journal of Convex
analysis, 19 (2012), pp. 1167–1192.

[15] R. Tappenden, P. Richtárik, and J. Gondzio, Inexact coordinate descent: complexity and
preconditioning, Journal of Optimization Theory and Applications, 170 (2016), pp. 144–176.

108 An Inexact Weighted Proximal Trust-region Method

DOMAIN DECOMPOSITION-BASED COUPLING OF OPERATOR
INFERENCE REDUCED ORDER MODELS VIA THE SCHWARZ

ALTERNATING METHOD

IAN MOORE∗, CHRISTOPHER R. WENTLAND† , ANTHONY GRUBER‡ , AND IRINA TEZAUR§

Abstract. This paper presents and evaluates an approach for coupling subdomain-local reduced or-
der models (ROMs) constructed via non-intrusive operator inference (OpInf) with each other and with
subdomain-local full order models (FOMs), following a domain decomposition of the spatial geometry on
which a given partial differential equation (PDE) is posed. Joining subdomain-local models is accomplished
using the overlapping Schwarz alternating method, a minimally-intrusive multiscale coupling technique that
transforms a monolithic problem into a sequence of subdomain-local problems, which communicate through
transmission boundary conditions imposed on the subdomain interfaces. After formulating the overlapping
Schwarz alternating method for OpInf ROMs, we evaluate the method’s accuracy and efficiency on several
test cases involving the heat equation in two spatial dimensions. We demonstrate that the method is ca-
pable of coupling arbitrary combinations of OpInf ROMs and FOMs, and that moderate speed-ups over a
monolithic FOM are possible when performing OpInf ROM coupling.

1. Introduction. Despite advancements in both computer architectures and algo-
rithms, the modeling and simulation of complex physical systems often requires tremen-
dous computational resources. These requirements may preclude many-query analyses such
as engineering design or uncertainty quantification. While projection-based reduced order
models (ROMs) have shown promise to mitigate this difficulty, traditional intrusive ROMs,
e.g., Galerkin [12, 36] and least squares Petrov-Galerkin (LSPG) projection ROMs [4], have
their own shortcomings, including a lack of systematic refinement mechanisms, a lack of
robustness, stability, and accuracy in the predictive regime, and lengthy implementation
time requirements.

This paper presents an approach for mitigating the aforementioned difficulties by en-
abling domain decomposition- (DD-)based coupling of subdomain-local ROMs with each
other and/or with subdomain-local full order models (FOMs). Our approach is based on
the following ingredients: (i) a decomposition of the physical domain of interest into two
or more overlapping subdomains, (ii) the construction of subdomain-local ROMs and/or
FOMs in each of the subdomains, and (iii) the rigorous coupling of the subdomain-local
models via the Schwarz alternating method [33]. The Schwarz alternating method is based
on the simple idea that, if the solution to a partial differential equation (PDE) is known
in two or more regularly shaped domains, these local solutions can be used to iteratively
build a solution for the union of the subdomains, with information propagating between the
subdomains through carefully constructed transmission boundary conditions (BCs). We
choose the Schwarz alternating method since it has a number of advantages over competing
multiscale coupling methods. These advantages include its concurrent nature, its ability to
couple non-conformal meshes with different element topologies and different time integrators
with different time steps for dynamic problems without introducing non-physical artifacts
into the solution, and its non-intrusive implementation into existing codes [24, 25].

Building on our past work in developing the Schwarz alternating method as a means
to couple FOMs [24, 25], intrusive projection-based ROMs [3] and physics-informed neural
networks (PINNs) [37], we focus our attention herein on advancing the method to work
with a non-intrusive model order reduction (MOR) technique known as operator inference

∗Virginia Tech, ianm9123@vt.edu,
†Sandia National Laboratories, crwentl@sandia.gov
‡Sandia National Laboratories, adgrube@sandia.gov
§Sandia National Laboratories, ikalash@sandia.gov

CSRI Summer Proceedings 2024 109

(OpInf) [11, 16, 27]. Unlike traditional intrusive MOR, which requires access to the un-
derlying FOM code in order to project the governing PDE(s) onto a reduced subspace,
OpInf works by assuming a functional form (usually linear or quadratic [10]) for the ROM
in terms of to-be-learned reduced operators, and solving an optimization problem offline for
these operators. This procedure significantly reduces both the development time and the
time-to-impact.

DD-based FOM-ROM and ROM-ROM couplings such as those proposed herein have
the potential of improving the predictive viability of projection-based ROMs, by enabling
the spatial localization of ROMs (via domain decomposition) and the online integration of
high-fidelity information into these models (via FOM coupling). While DD-based couplings
between ROMs and FOMs are not new, the majority of the literature on this topic has
focused on developing intrusive coupling methods (e.g., Lagrange multipliers, optimization-
based coupling) used to couple intrusive ROMs; the interested reader is referred to [3, 5, 7,
8, 13, 20, 28] and the references therein for more details. Related past work on data-driven
couplings using Schwarz-like methods has focused on intrusive ROMs [6, 14, 15, 29], or
on utilizing the coupling to accelerate NN training [18, 19, 37]. The proposed approach is
most similar to the recent work by Farcas et al. [9], which develops a DD-based coupling
of subdomain-local OpInf ROMs by learning appropriate reduced operators responsible for
the coupling, and demonstrates the method on a formidable three-dimensional (3D) com-
bustion problem. In this approach, each subdomain problem is solved once rather than by
performing an iteration to convergence as done within our Schwarz framework. As a result,
the subdomain-local solutions must be extended to the full domain and smoothly combined
to achieve a continuous solution.

The remainder of this paper is organized as follows. In Section 2, we describe the over-
lapping version of the Schwarz alternating method applied to our model problem, the two-
dimensional (2D) unsteady heat equation. In Section 2.2, we present some OpInf preliminar-
ies. In Section 3, we describe our software implementations of the proposed Schwarz-based
coupling approach applied to OpInf ROMs, hereafter called the OpInf-Schwarz method,
which makes use of the open source FEniCSx [2] and OpInf Python libraries. Numerical
results are presented in Section 4. We conclude with a summary and a discussion of future
work in Section 5.

2. The Schwarz Alternating Method Applied to Operator Inference ROMs.
In the following sections and subsections, we consider the specific model problem of the
2D heat equation, towards addressing the challenges that are encountered in this novel
combination of the Schwarz method and operator inference. We stress that neither of these
techniques inherently require an assumption of linearity, noting that the authors of the
original operator inference paper [27] directly contrasted their method with the linearity
assumption of Dynamic Mode Decomposition (DMD) [32]. While non-linearity will likely
present further challenges to overcome for the OpInf-Schwarz coupling method, the heat
equation provides an initial unsteady test problem that can suggest the feasibility of the
method for more complicated problems.

2.1. Schwarz Alternating Method Preliminaries. Consider the heat equation
specified as,

u̇(x, t)−∆u(x, t) = 0, in Ω× [0, T],
u(x, t) = g(x), on ∂Ω× [0, T],
u(x, 0) = v(x), in Ω,

(2.1)

where Ω ∈ Rp is an open bounded domain for p = 1, 2, 3 with boundary ∂Ω, g(x) are is a
given boundary condition function, v(x) defines the initial condition, and T > 0. Suppose we

110Domain Decomposition-based Coupling Of Operator Inference Reduced Order Models Via The Schwarz Alternating Method

Fig. 2.1: Illustration showing an overlapping domain decomposition of a 2D domain Ω for
the application of the Schwarz alternating method. Note Γ1,Γ2 ̸⊂ ∂Ω.

decompose the domain Ω into two overlapping subdomains Ω1 and Ω2, such that Ω1∪Ω2 = Ω
and Ω1 ∩ Ω2 ̸= ∅ and, for later use, define Ω1 as the closure of Ω1 and similarly for Ω2.
Suppose also that we decompose the time interval [0, T] into a set of non-overlapping time
intervals In = [tn, tn+1], where T ≥ tn+1 > tn ≥ 0, so that ∪nIn = [0, T]. For a given time
interval In, the overlapping Schwarz algorithm solves the following sequence of subdomain-
local problems:

u̇
(k+1)
1 −∆u

(k+1)
1 = 0, in Ω1 × [tn, tn+1]

u
(k+1)
1 = g, on (∂Ω ∩ Ω1)× [tn, tn+1]

u
(k+1)
1 = u

(k)
2 , on Γ1 × [tn, tn+1],

(2.2)

and

u̇
(k+1)
2 −∆u

(k+1)
2 = 0, in Ω2 × [tn, tn+1]

u
(k+1)
2 = g, on (∂Ω ∩ Ω2)× [tn, tn+1]

u
(k+1)
2 = u

(k+1)
1 , on Γ2 × [tn, tn+1],

(2.3)

for Schwarz iteration k = 0, 1, 2, ..., subject to initial conditions u1(x, 0) = v|Ω1
and u2(x, 0) =

v|Ω2
. In (2.2), ui for i = 1, 2 denotes the solution in subdomain Ωi, and Γi is the so-called

Schwarz boundary (see Figure 2.1). It is common to set u
(0)
1 = v|∂Ω1 on Γ1 and u

(0)
2 = v|∂Ω2

on Γ2 when initializing the Schwarz iteration process, to ensure solution compatibility with
the initial condition. The iterative process in (2.2) and (2.3) continues until a set of pre-
determined criteria are met. In the present work, convergence criteria are based on the
Euclidean norm of the solution differences between consecutive Schwarz iterations; that is,

Schwarz is deemed converged when ϵ
(k)
abs < δabs and ϵ

(k)
rel < δrel for some pre-specified Schwarz

tolerances δabs, δrel > 0, where

ϵ
(k)
abs :=

√
||u(k)1 − u(k−1)

1 ||2 + ||u(k)2 − u(k−1)
2 ||2, (2.4)

and

ϵ
(k)
rel :=

√√√√ ||u
(k)
1 − u(k−1)

1 ||2
||u(k)1 ||2

+
||u(k)2 − u(k−1)

2 ||2
||u(k)2 ||2

, (2.5)

for Schwarz iteration k = 1, 2, ..., until convergence.
A key advantage of the Schwarz alternating method is that it allows for the subdomains

Ω1 and Ω2 to be discretized using different meshes and/or element types [24, 25]. In the

I. Moore, C.R. Wentland, A. Gruber, & I. Tezaur 111

case where Ω1 and Ω2 are discretized using different meshes and do not have a coincident
interface, applying the Schwarz boundary condition on the Schwarz boundaries Γi requires
the construction of a projection operator; this can be done via a simple application of finite
element interpolation functions readily available in most codes [23, 25].

The Schwarz iteration process (2.2)–(2.3) is converged within each time interval [tn, tn+1]
before moving on to the next time interval. A key advantage of this time-stepping approach
is that different time integrators and time steps can be used in different subdomains; for a
detailed discussion of Schwarz time-stepping and related machinery, the reader is referred
to [25, 23]. In the numerical experiments presented herein, we restrict attention to the case
where all subdomains have the same time integrator and time step, as our goal is to assess
the method’s viability when coupling subdomain-local operator inference-based ROMs with
each other and with subdomain-local FOMs while eliminating other confounding factors.

2.1.1. FOM-FOM Schwarz Coupling. Continuing the example of the heat equation
from (2.1), a spatially discretized monolithic FOM for the heat equation typically appears
in the following form after a boundary lift:

ẋ = Kx+Bg, (2.6)

where x ∈ RN is a discretized vector corresponding to the unconstrained state degrees of
freedom (DoFs), and g ∈ Rm discretizes the Dirichlet boundary condition. The matrix
K ∈ RN×N comes from discretizing the continuous Laplace operator ∆, and B ∈ RN×m

deals with effects of the boundary condition. The full state representation u ∈ RN+m for
all DoFs is obtained by augmenting the unconstrained solution x with the known boundary
condition g.

If a domain decomposition such as in Figure 2.1 is imposed, we may consider the
subdomain-local discretized problems:

ẋi = Kixi +Biyi, i = 1, 2, (2.7)

on Ω1 and Ω2. Let Ni andmi denote the number of finite element (FE) nodes on the interior
and boundary of Ωi, respectively. Note that the boundary of Ωi includes Γi, as shown in
Figure 2.1. We introduce the vector yi ∈ Rmi to handle the subdomain-local boundary
by defining yi = [gi γi]

T , where gi discretizes g(x) on (∂Ω ∩ Ωi) and γi discretizes the
subdomain-local boundary condition on Γi.

The remaining quantities in (2.7) follow naturally from the monolithic terms in (2.6),
with subdomain-local state representation xi ∈ RNi as well as stiffness and boundary ma-
trices Ki ∈ RNi×Ni and Bi ∈ RNi×mi . We now use the Schwarz method to set up the
subdomain-local problems as follows:

{
ẋ
(k+1)
1 = K1x

(k+1)
1 +B1y

(k+1)
1

γ
(k+1)
1 = x

(k)
2

∣∣
Γ1
,

(2.8)

and
{

ẋ
(k+1)
2 = K2x

(k+1)
2 +B2y

(k+1)
2

γ
(k+1)
2 = x

(k+1)
1

∣∣
Γ2
,

(2.9)

for Schwarz iteration k = 0, 1, 2, ..., until convergence following (2.4)-(2.5). For work pre-
sented in this paper, we solve equations (2.8)-(2.9) using the finite element method in space
and the finite difference method in time. We take the initial condition to be the interpola-
tion of u(x, 0) = v(x) into the respective finite element spaces. This specific formulation is
valid for conformal spatial meshes only.

112Domain Decomposition-based Coupling Of Operator Inference Reduced Order Models Via The Schwarz Alternating Method

2.2. Operator Inference Preliminaries. Operator Inference is a data-driven, non-
intrusive, projection-based method for model order reduction, developed by Peherstorfer
and Willcox [27] as an alternative to standard Galerkin projection ROMs. Similarly to
other Galerkin projection ROMs, the method begins by constructing a reduced basis from
data. OpInf then diverges from the standard method in the construction of the reduced
operators, which are estimated using data through a regression problem.

2.2.1. Proper Orthogonal Decomposition. To construct a reduced basis, we use
proper orthogonal decomposition (POD) [12, 17, 36], though one might also use other meth-
ods, e.g., the reduced basis method with a greedy algorithm [30]. To perform POD, we
require snapshots from some data source or FOM.

Continuing with the heat equation example, after the monolithic problem (2.6) has
been solved in time for τ separate states inclusively between time t = 0 and t = T (i.e.,
0 = t1 < t2 < · · · < tτ = T), we obtain a collection of unconstrained state snapshots,

X = [x(t1),x(t2), . . . ,x(tτ)] ∈ RN×τ , (2.10)

with rank(X) = d > 0. X yields a singular value decomposition (SVD) X = ΨΣΦ∗, where
Ψ ∈ RN×N is an orthogonal matrix whose first d columns form a basis for the column space
of X. The columns of Ψ, ψi for i = 1, . . . r with r ≤ d form an optimal r-dimensional basis
for the columns of X in an ℓ2 sense. The restriction of Ψ to its first r columns is referred
to as Ψr ∈ RN×r going forwards.

2.2.2. Operator Inference. Operator inference is a non-intrusive, data-driven, project-
ion-based model order reduction technique which learns low-dimensional operators that can
be used to approximate the output of a given FOM, which, in this paper, is the heat equa-
tion described in (2.6). In a classical intrusive Galerkin ROM, the operator Kr ∈ Rr×r

is the operator which best represents the action of K in the reduced space of dimension r
defined by the basis Ψr. That is,

Kr = ΨT
r KΨr. (2.11)

This is intrusive because it requires access to the FOM matrix K, and, practically speaking,
the code that produced K.

The key difference between operator inference and traditional intrusive projection-based
MOR is that, in the former approach, the reduced operators are not created via intrusive
projection, but inferred directly using available snapshot data. OpInf is based on the ob-
servation that a projection-based ROM derived from a FOM with polynomial nonlinearities
will possess the same algebraic structure as the FOM.

For the problem considered herein, the 2D heat equation, it is straightforward to see
that a projection-based ROM preserves the linear algebraic structure of the FOM, (2.6).
With this observation, we now set up the semi-discretized monolithic OpInf ROM problem:

˙̂x = K̂x̂+ B̂g. (2.12)

In order to obtain the reduced operators without access to FOM matrices, one solves a
regression problem for the reduced matrices K̂ ∈ Rr×r and B̂ ∈ Rr×m. In particular, given
j ≤ τ steps of FOM training data xp = x(tp), p = 1, . . . , j, minimize,

min
K̂,B̂

j∑

p=1

∥ ˙̂xp − K̂x̂p − B̂g∥22. (2.13)

I. Moore, C.R. Wentland, A. Gruber, & I. Tezaur 113

Within the training data, we define the ROM representation of the state at time tp to be

x̂p = ΨT
r xp ∈ Rr. The time derivative of the ROM state, ˙̂xp ∈ Rr, may not be explicitly

available and can instead be estimated from available data using a difference method. The
boundary information, g ∈ Rm, is the same as in the monolithic FOM.

We now briefly contextualize this in a classical Galerkin ROM context. A typical
projection-based ROM creates matrices which are in some way representative of those con-
structed for the FOM, but OpInf does not start with the assumption that these FOM
matrices are available. A more natural comparison is between OpInf and the standard
Galerkin ROM for the choice of a particular shared basis Ψr.

It is guaranteed that, under the assumptions that the time-stepping scheme is convergent
as dt→ 0, the approximation ˙̂xj converges to the true time derivative at time tj as dt→ 0,
and linear independence of supplied data (d ≥ τ , the total number of snapshots), then, for
all 0 < ϵ ∈ R there exists a timestep dt for the FOM and a r ≤ d such that,

∥Kr − K̂∥F < ϵ.

The same result holds for B̂ [27]. In the case that a technique known as re-projection is
used for the fully discretized problem, it can be shown that the learned OpInf ROM system
recovers the standard Galerkin projected intrusive ROM [26].

While this overview has focused on the heat equation, we again stress that operator
inference is general to low-order polynomial non-linearity, with results previously shown for
a polynomial non-linearity of degree three in a one-dimensional (1D) nuclear reactor model
in [27], for a 2D single injector combustion model in [21], and for a 3D rotating detonation
rocket engine in [9], among others.

2.3. Opinf-Schwarz Method: FOM-ROM Coupling. We are now in a position
to state the Opinf-Schwarz method for the heat equation specified in (2.1). We state the
problem formulation for the case of two overlapping subdomains Ω1 and Ω2 with Ω1∪Ω2 = Ω
as in Figure 2.1 where we place a FOM on Ω1, an OpInf ROM on Ω2, and couple the
problems via the Schwarz method. The Opinf-Schwarz formulation can be extended easily
to arbitrary numbers of subdomains and combinations of model couplings. For simplicity,
we assume that we have access to monolithic FOM training data across the entire domain
Ω. The dimensional and subdomain notation presented here follows from that defined for
the FOM-FOM coupling in Section 2.1.1.

The OpInf problem on Ω2 requires some details. Given j ≤ τ steps of monolithic data
u(tp) ∈ RN+m, p = 1, . . . , j extract the unconstrained state representation on Ω2, x2(tp) ∈
RN2 as well as the the vector γ2(tp), which is the state information along the Schwarz
boundary Γ2 at time tp. The subdomain local boundary on Ω2 is completed by defining the
vector y2(tp) = [g2 γ2(tp)]

T ∈ Rm2 . We carry out POD on the collection of unconstrained
snapshots on Ω2, x2(tp), p = 1, . . . , j to obtain the Ω2-local basis Ψr,2 ∈ RN2×r for a choice
of basis dimension r. Once the basis is obtained, we solve the regression problem,

min
K̂2,B̂2

j∑

p=1

∥ ˙̂x2(tp)− K̂2x̂2(tp)− B̂2y2(tp)∥22, (2.14)

for the reduced operators K̂2 ∈ Rr×r and B̂2 ∈ Rr×mi as in Section 2.2.
After setting up the FOM on Ω1 exactly as in Section 2.1.1, the problems may be

coupled using the Schwarz method as follows:

{
ẋ
(k+1)
1 = K1x

(k+1)
1 +B1y

(k+1)
1

γ
(k+1)
1 = Ψr,2x̂

(k)
2

∣∣
Γ1
,

(2.15)

114Domain Decomposition-based Coupling Of Operator Inference Reduced Order Models Via The Schwarz Alternating Method

and
{

˙̂x
(k+1)
2 = K̂2x̂

(k+1)
2 + B̂2y

(k+1)
2

γ
(k+1)
2 = x

(k+1)
1

∣∣
Γ2
,

(2.16)

for Schwarz iteration k = 0, 1, 2, . . . until convergence following (2.4)-(2.5). Ψr,2x̂
(k)
2 is the

reconstruction of the ROM state x̂
(k)
2 on the FOM mesh originating from the data source.

The specific formulation described above is valid for conformal meshes only; some in-
terpolation, evaluation or projection scheme would need to be employed for non-conformal
meshes depending on the choice of spatial discretization for non-conformal meshes. Cre-
ating a ROM-ROM coupling in this setting only requires finding the reduced operators on
Ω1 and reconstructing the values found on the Schwarz boundary onto the FOM mesh. We
extend this approach to arbitrary numbers of subdomains by traversing the domains in a
round-robin fashion and use the most up-to-date Schwarz boundary information available
at every Schwarz iteration.

3. Software Implementations. We now discuss specific choices made in the imple-
mentation of the Opinf-Schwarz method for this paper, in particular those which are not
essential to the method itself. Our results include Schwarz coupling implementations for
the FOM-FOM (Section 2.1.1) FOM-ROM (Section 2.3) and ROM-ROM (Adaptation of
Section 2.3) scenarios. In our implementation, the generic FOM now specifically refers to
a finite element simulation, and ROM refers to operator inference. All ordinary differen-
tial equations (ODEs), such as those presented for the Opinf-Schwarz method in equations
(2.15)-(2.16), are discretized in time using backward Euler.

We use the open source FE library FEniCSx in Python for all FE simulations. FEniCSx
is a FE problem solving environment with the ability to define variational forms close to
actual mathematical notation [1], along with various tools [2, 34, 35] to enable the creation
of a FE space on which computations can be performed. Boundary conditions are enforced
strongly through a lifting method leading to FOM systems similar to (2.6).

Operator inference is performed with the Python library OpInf, a PyPI Python package
available at https://pypi.org/project/opinf/. OpInf is a set of tools to facilitate learning
polynomial reduced order models, applied in this paper as described in Section 2.2. The
required data is drawn from a monolithic FE simulation on Ω, also performed in FEniCSx.
When solving the OpInf regression problem (2.14), we estimate the required state derivative
information ˙̂x2 for through a first order backward difference of available state data.

The numerical stability of OpInf models is a significant concern and area of active
research. OpInf models are not guaranteed to be stable, but there are a variety of strategies
that can help improve stability of reduced models – independently of OpInf, data pre-
processing is commonly used in ROMs to create a model for a transformed set of snapshots.
In this paper, we use a centering approach where we build a model for snapshot data x− x̄,
the mean-centered snapshots.

Specific to OpInf, we also employ a regression regularization strategy for equation (2.13).
When solving an OpInf regression problem like (2.13), we add a regularization form which
converts the problem into the following form:

min
K̂,B̂

j∑

p=1

∥ ˙̂xp − K̂x̂p − B̂g∥22 + λ2
(
∥K̂∥2F + ∥B̂∥2F

)
. (3.1)

By adding this regularization, we penalize the large entries of our ROM matrices K̂, B̂.
In our testing, this centering and regularization strategy has been sufficient to produce a

I. Moore, C.R. Wentland, A. Gruber, & I. Tezaur 115

stable ROM ODE. For our results in Section 4, all tables and figures have been produced
with regularization parameter λ = 10−2. Regularization is a common necessity in operator
inference, see for example [21, 31] for related approaches to regularization of OpInf models.

Finally, the Opinf-Schwarz method that couples these problems has been implemented
by the authors of this paper in accordance with Section 2.1.1 and Section 2.3. To simplify
the boundary transmission of the Schwarz process, only conformal meshes are used for
the differing domains. The output of the Schwarz methods (FOM-FOM, ROM-ROM) as
presented in Section 2 are unconstrained state vectors on the interiors of Ω1 and Ω2, when
what is desired is a single approximation of the monolithic state across Ω. We have made
the choice to reconcile the solutions in the following manner.

Taking the FOM-FOM coupling from Section 2.1.1 as an example, the Opinf-Schwarz
method produces {x1(tp)}τp=1 and {x2(tp)}τp=1. We define the merged solution vector

u(tp)SCHWARZ ∈ RN to be equal to the DoFs of xi(tp) on those entries associated with
the interior of Ωi \Ω1 ∩Ω2 and equal to the known boundary condition g on entries associ-
ated with ∂Ω. For those entries associated with the overlap region Ω1 ∩ Ω2, we assign the
value of either the entry belonging to x1(tp) or x2(tp) depending on whether the physical
node for that entry is closer to the center of Ω1 or Ω2.

4. Results. For the purposes of an initial test of OpInf-Schwarz, we are most interested
if the model matches the standard behavior of ROMs and the Schwarz method. We expect
that, as the ROM dimension r and the data allowance increases, the error should approach
0, and that as we increase the size of the Schwarz overlap, the number of Schwarz iterations
to converge per timestep will decrease. Lastly, as for any ROM, we expect a significant
speed-up in computation time for the price we pay in accuracy.

Ω1 Ω2

(a) Vertical configuration

Ω1

Ω2

(b) Horizontal configuration

Ω1 Ω2

Ω3 Ω4

(c) Four Squares configuration

Fig. 4.1: Overlapping domain decomposition configurations

We investigate each of these points in several different domain decomposition scenarios
as shown to Figure 4.1. For a global domain, we choose the square Ω = [−1, 1]× [−1, 1] ∈ R2

on which a monolithic FE simulation is carried out. The monolithic boundaries are referred
to as ∂ΩL for the left, ∂ΩR for the right, and ∂ΩT and ∂ΩB for the top and bottom of
the domain respectively. We divide the domain into either two rectangles or four squares,
each with an equal Schwarz overlap measured in the number of elements overlapping each
neighboring subdomain. For these Schwarz overlaps, explicit communication is only between
neighbors which share at least one complete edge –hence, in the Four Squares configuration,
boundary information can be communicated to a horizontal or vertical neighbor, but not
a diagonal neighbor (e.g. Ω1 communicates directly with Ω2 and Ω3 but not Ω4 in Figure
4.1c). The Schwarz subdomains are updated in ascending numerical order.

116Domain Decomposition-based Coupling Of Operator Inference Reduced Order Models Via The Schwarz Alternating Method

The specific problem we test the Opinf-Schwarz method on is the heat equation as
specified in (2.1), so we fix the following quantities for the sake of comparison. Our time
domain is [0, 1], partitioned with a constant time step of dt = 0.01 leading to 101 steps,
inclusively, from the initial condition at t1 = 0 to the final evaluation at tT = 1. The
monolithic domain is be split into a 50× 50 grid, and then triangular Lagrangian elements
of degree 1 is formed by splitting the grid diagonally. These choices lead to 2601 FE
nodes on the monolithic mesh, inclusive of the boundary. Within the Schwarz method, our
relative (2.5) and absolute (2.4) tolerances for convergence are both be fixed at 10−10.

Errors. Our typical measure of error for OpInf-Schwarz is the average pointwise relative
error, i.e.,

Eavg
ℓ2 =

1

τ − 1

τ∑

p=2

∥u(tp)MONO − u(tp)SCHWARZ∥2
∥u(tp)MONO∥2

,

As in Section 3, u(tp)SCHWARZ refers to the solution via the Schwarz method merged from
the component subdomains at time tp, and u(tp)MONO refers to the monolithic finite element
simulation on Ω at time tp. The error determination excludes the given initial condition,
but includes the boundary condition for computational convenience.

The projection error of the snapshots onto the POD basis in subdomain Ωi (dependent
on basis dimension r) is here defined as,

EΩi

proj =
∥Xi −Ψr,iΨ

T
r,iXi∥F

∥Xi∥F
,

where Xj (chosen to recall the unconstrained state variable x, which the POD basis is built
for) are the snapshots associated with all solved for DoFs in Ωi over the entire time domain,
and Ψr,i is the r-dimensional basis associated with the solved for DoFs of Ωi. This gives a
measure of the approximation quality of the POD basis in each subdomain. When averaged
across all subdomains, this is reported using the symbol, Eavg

proj.
Lastly, we also use the maximum error in Section 4.2, defined as

Emax
ℓ2 = max

p

∥u(tp)MONO − u(tp)SCHWARZ∥2
∥u(tp)MONO∥2

.

Quantities Reported in Tables. In addition to errors, we report the following quantities.
1. “Avg S.I.” is the mean number of Schwarz iterations required to reach convergence

across all time steps.
2. “Overlap” is the amount by which the 50 × 50 grid is shared by neighboring sub-

domains before being broken up into triangular elements. For example, in the Four
Squares configuration of Figure 4.1c, if Overlap = 5, then the subdomain-specific
grid for Ω1 shares five rows of the original grid with Ω3 and five columns with Ω2.
The overlap with Ω4 is incidental.

3. “Time” is the average wall clock time taken to run the online model on identical
hardware, measured in seconds. The number of runs averaged are mentioned in
each table. This does not include any time spent setting up matrices, generating
data, or similar offline tasks.

4. “r” is the integer dimension of the OpInf basis generated through POD. This is
uniform across multiple subdomains.

5. “Data” is the number of training steps taken, with a value of 1 only including the
initial condition. There are a maximum of 101 steps possible across the time interval
[0, 1], and any value of “Data” less than 101 results in prediction outside of training
data. “Data” is uniform across all subdomains.

I. Moore, C.R. Wentland, A. Gruber, & I. Tezaur 117

Lastly, computational speed-up is measured as the wall clock time to run the online portion
of the OpInf-Schwarz coupled ROM models relative to that of the fully FE coupled Schwarz
method and the monolithic FE solution over the same domain configuration and on the
same hardware.

4.1. Static Boundary Conditions. For a first test, we consider the case where
u(∂ΩT , t) = u(∂ΩB , t) = 0, u(∂ΩL, t) = 2 and u(∂ΩR, t) = 5 ∀ t ∈ (0, 1]. The discon-
tinuity at some of the corners is resolved in favor of the top and bottom boundaries. We
establish a baseline in Table 4.1 by coupling solely FE models in each of the 3 configurations
of Figure 4.1. The wall time, in seconds, was averaged over 5 separate runs. Each subdo-
main has an overlap of 10 with its non-diagonal neighbors. The full monolithic simulation,
averaged over 5 runs, takes 0.94 seconds to run the online portion.

Eavg
ℓ2 1.27× 10−14

Avg S.I. 4.41
Time (s) 3.03

(a) Vertical, Fig 4.1a

Eavg
ℓ2 1.57× 10−14

Avg S.I. 4.32
Time (s) 3.59

(b) Horizontal, Fig 4.1b

Eavg
ℓ2 1.94× 10−14

Avg S.I. 5.9
Time (s) 7.05

(c) Four Squares, Fig 4.1c

Table 4.1: Baseline for all-FE coupled models, Overlap = 10

Vertical Configuration. In Figure 4.2 and Table 4.2, we examine the behavior of the
OpInf-Schwarz method with respect to r, the subdomain overlap, and data by coupling two
OpInf models in the vertical orientation of Figure 4.1a. Wall clock time results, in seconds,
are averaged over 2 individual runs.

(a) 2 coupled OpInf models in vertical con-
figuration, t = 0

(b) Error between OpInf-Schwarz and mono-
lithic FE simulation over time.

Fig. 4.2: OpInf-Schwarz vs. monolithic simulation. OpInf parameters: r = 6, Overlap =
10, Data = 30.

From a ROM perspective, Table 4.2c has several interesting results which deserve ex-
planation. First, Eavg

ℓ2 only decreases up to r = 6, then increases before stalling out for
higher values of r. This is despite the fact that the projection error of the snapshots onto
the basis drops consistently with the basis size. A basis size of r = 3 and r = 4 is necessary
to capture 99.9% of the total energy of the snapshots Ω1 and Ω2 respectively.

118Domain Decomposition-based Coupling Of Operator Inference Reduced Order Models Via The Schwarz Alternating Method

Data Eavg
ℓ2 Avg S.I. Time

10 1.16× 10−01 4.0 0.30
20 5.41× 10−03 4.57 0.30
30 6.02× 10−04 4.11 0.27
50 1.56× 10−04 4.52 0.31
80 9.16× 10−05 4.39 0.28
100 8.62× 10−05 4.49 0.31

(a) Fixed parameters: Overlap = 10 a r = 6.

Overlap Eavg
ℓ2 Avg S.I. Time

1 8.68× 10−03 6.4 0.35
2 5.33× 10−03 6.34 0.34
5 2.36× 10−03 5.7 0.31
10 6.02× 10−04 4.11 0.22
20 5.96× 10−04 4.7 0.25
40 8.18× 10−04 4.26 0.24

(b) Fixed parameters: Data = 30, r = 6.

r Eavg
ℓ2 Avg S.I. Eavg

proj Time

2 2.34× 10−02 8.04 8.98× 10−02 0.31
4 4.24× 10−03 5.0 1.02× 10−02 0.25
6 6.02× 10−04 4.11 6.14× 10−04 0.19
8 1.74× 10−03 5.0 5.85× 10−05 0.24
10 1.85× 10−03 5.0 6.02× 10−06 0.23
30 1.85× 10−03 5.0 3.54× 10−10 0.25

(c) Fixed parameters: Data = 30, Overlap = 10.

Table 4.2: Comparison of OpInf-OpInf coupled models in vertical orientation (Fig 4.1a).

In the row r = 6, Eavg
ℓ2 and Eavg

proj have the same order of accuracy, while Eavg
proj is

lower for all further values of r. This suggests that the accuracy of the OpInf-Schwarz
method is limited by the basis quality up until r = 6, and afterwards is most limited by
error in the inferred operators. This could be due to several reasons, such as data quality,
our regularization strategy affecting accuracy, or perhaps the Schwarz coupling method
interacting with the ROM in an unexpected way.

Another item of note in Table 4.2c is that the average run time decreases by about
a factor of three as we increase r from 2 to 6, even though we are increasing the size of
the linear systems we are solving. This is due to the coupling of poor quality solutions
when r = 2, which requires additional Schwarz iterations to converge as shown by the mean
Schwarz iterations. A similar phenomenon is observed in [3] when coupling subdomain-local
intrusive ROMs via the Schwarz alternating method.

The remaining subtables of Table 4.2 reveal that OpInf-Schwarz performs as anticipated.
In Table 4.2b, increasing the size of the overlap decreases the number of Schwarz iterations,
and in Table 4.2a, increasing the training data decreases the approximation error. Since
we are using the same data for both the POD basis and the OpInf training, it is fair to
ask whether increasing the data allowance also allows POD to extract useful data for larger
values of r—that is, further decreases to Eavg

proj . In our testing, increasing training data

had a minor effect on Eavg
proj compared to increasing r, though this would likely become

more relevant in more challenging problems. The minimal error we were able to recover was
Eavg

ℓ2 = 2.5×10−05 with the choices of r = 10, Overlap = 10, and 100 steps of training data.

While the times recorded are certainly not deterministic, a comparison between the
FE-FE coupling of Table 4.1a and the minimum and maximum values of Table 4.2 suggest a
speed-up of 8.6 to 15.2 times for fully OpInf-OpInf coupled models as compared to a FOM-
FOM coupling on the same spatio-temporal grid, and 2.7 to 4.9 times speed-up for fully

I. Moore, C.R. Wentland, A. Gruber, & I. Tezaur 119

OpInf-OpInf coupled models as compared to the monolithic FE simulation. Further speed-
ups may be possible by introducing the “additive” Schwarz method [39], which computes
subdomain solutions in parallel.

Comparison With Other Configurations. We now investigate whether interactions be-
tween the subdomain geometry and boundary conditions have an effect on the performance
of OpInf-Schwarz. Because the non-zero boundary conditions in this simple case are on the
left and right, a vertical overlap splitting the middle has a less complicated gradient than a
horizontal overlap. In the scenario of r = 6, Overlap = 10, and 30 steps of training data, Ta-
ble 4.3 shows that the error and Schwarz iterations are mildly worse for those configurations
that impose a more complicated Schwarz boundary.

Model Configuration Eavg
ℓ2 Avg S.I. Time (s)

Vertical 6.02 ×10−04 4.11 0.26
Horizontal 8.91 ×10−04 4.17 0.26

Four Squares 7.10 ×10−04 5.81 0.61

Table 4.3: Vertical, horizontal, and square configurations for simple boundaries

All of the results in the simple case of Section 4.1 are in line with prior expectations for
Schwarz performance in a ROM setting.

4.2. Time-Varying Boundary Conditions. We now consider a more challenging
scenario for the 2D heat equation. Instead of solely constant boundary conditions, define

q(t, µ) = 1 + 0.5 sin(2πµt), (4.1)

to be a time varying boundary condition parameterized by the frequency µ. We consider the
monolithic heat equation of (2.1) on Ω specified by u(∂ΩL, t) = q(t, 2), u(∂ΩT , t) = q(t, 4),
u(∂ΩB , t) = 5, u(∂ΩR, t) = 1 ∀t ∈ (0, 1] and u(Ω, 0) = 0.

The offset frequencies of the boundary conditions on the left and top boundaries create
dynamics which evolve through a significant portion of the time domain, especially in the
top left quadrant. These types of problems can be challenging for ROMs to resolve when
given insufficient data, though they can usually be fixed by increasing the training data.
This is one of the essential choices in ROMs – increasing the training range can often greatly
improve accuracy, but data generation in realistic problems can be enormously expensive,
especially if it must be generated from a monolithic simulation. Domain decomposition
frameworks provide options beyond increasing the training range, and we now consider a
comparison between purely OpInf-Schwarz with a FE-OpInf-Schwarz coupled problem.

Four Squares Configuration. Figure 4.3 shows two OpInf-Schwarz solutions at the final
time step of t = 1 in the four square configuration of Figure 4.1c. For the OpInf portions,
each solution has the same ROM basis dimension r = 6, 40 steps of training data (out of a
possible 101), and a mean centering strategy performed on the snapshots. They additionally
share the same boundary and initial conditions as described above. The only difference in
their setup is that Figure 4.3a couples four OpInf models, while Figure 4.3b has replaced
one of the OpInf models with a FE model in Ω3, the top-left subdomain.

The FE assimilation in Figure 4.3b is not perfect if one looks closely along x = 0 or
y = 0, but it shows a cohesive solution very similar to the monolithic solution in Figure 4.3d,
while the solution in Figure 4.3a is clearly failing and is in fact about to diverge entirely. The
All OpInf model with a higher data allowance in Figure 4.3c is comparable to Figure 4.3b.

One interesting feature of Figure 4.3a is that the Schwarz communication pattern is
clearly evident. The solution is completely incorrect in the top left subdomain, Ω3. The

120Domain Decomposition-based Coupling Of Operator Inference Reduced Order Models Via The Schwarz Alternating Method

(a) OpInf solution in all 4 subdomains, 40
steps of training data in all subdomains.

(b) FE solution in top left Ω3 only, 40 steps
of training data for OpInf portions.

(c) OpInf solution in all 4 subdomains, 65
steps of training data in all subdomains.

(d) Monolithic FOM (Finite Element Simu-
lation).

Fig. 4.3: OpInf-Schwarz solutions and Monolithic FOM at t = 1.

error in Ω3 subsequently propagates to neighboring Ω1 and Ω4, while the bottom right
subdomain Ω2 remains closest to an accurate solution.

From Table 4.4, it can be inferred that a purely OpInf coupled Schwarz model would
require 65 total timesteps (an additional 25 steps of training data) to exceed the average
relative accuracy of the OpInf-Schwarz with one FE subdomain and 40 steps of training
data (as is displayed in Figure 4.3b). However, over two separate runs, the average time
taken for the 4 coupled OpInf models in Table 4.4a was 0.73 seconds, while the average for
the substitution of one FE model in Ω3 in Table 4.4b is 3.15 seconds, a 4.3 times slowdown
over a purely OpInf coupled model. The relative ease of model switching in the Schwarz
framework lets one choose between data generation costs and monolithic FOM costs.

In comparison, a completely FE coupled model with the same settings has Eavg
ℓ2 =

O(10−14), but, over three runs, takes an average of 7.9 seconds. A monolithic FE sim takes
approximately 0.8 seconds. The “All OpInf” model is therefore about 9 times faster, and
the 3 OpInf 1 FE model about 2.4 times faster than the fully FE coupled model. Comparing
against the monolithic FOM, the “All OpInf” model is 1.1 times faster and the 3 OpInf 1
FE is 3.9 times slower.

I. Moore, C.R. Wentland, A. Gruber, & I. Tezaur 121

Data Eavg
ℓ2 Emax

ℓ2

30 1.97× 10−01 1.22× 1000

35 5.41× 10−01 4.07×10−01

40 1.07× 10−01 6.40× 10−01

50 3.62× 10−02 2.12× 10−01

60 9.15× 10−03 3.13× 10−02

65 6.48× 10−03 1.91× 10−02

(a) All OpInf, 4 Coupled OpInf Models

Data Eavg
ℓ2 Emax

ℓ2

30 3.33× 10−02 7.06× 10−02

35 9.47× 10−03 2.75× 10−02

40 7.14× 10−03 1.89× 10−02

50 4.76× 10−03 1.11× 10−02

60 1.86× 10−03 1.4× 10−02

65 1.77× 10−03 1.40× 10−02

(b) 3 OpInf 1 FE, FE model in top left sub-
domain Ω3 only.

Table 4.4: OpInf-Schwarz errors for various training data ranges with r = 6 and Overlap =
10.

Fig. 4.4: Pareto plot for time-varying BCs, Eavg
ℓ2 vs Time (s). Fixed parameters: r = 6,

Overlap = 10. Plotted points are “Data” as it ranges over 30, 40, 50, and 60 marked by ×,
♦, +, and • respectively as in Table 4.4. Values in bottom left are preferred.

Efficiency Comparison With Other Configurations. We summarize our timing results for
the time-varying boundary problem in the Pareto plot of Figure 4.4 using data from Table 4.4
for the “Four Squares” labelled results, and additional results for the “Vertical” labelled
results produced in the vertical configuration from Figure 4.1a. In particular, “Vertical FE-
OpInf” was produced with the FE model in the left subdomain, and “Horizontal FE-OpInf”
was produced with the FE subdomain as the top subdomain, both advantageous DDs for
resolving the more complicated dynamics in the top left portion of Ω. Fixed parameters are
r = 6 and Overlap = 10. This chart demonstrates the significant impact that subdomain
geometry can have when interacting with more complicated boundary issues or solution
features. The vertical OpInf-OpInf is more accurate for smaller data allowances, but it is

122Domain Decomposition-based Coupling Of Operator Inference Reduced Order Models Via The Schwarz Alternating Method

overtaken in accuracy by the 3 OpInf 1 FE model for higher data allowances. All of the
models with a FE component have similar time costs, but the horizontal and four square
configurations make better use of additional data than the vertical configuration does.

While none of the models incorporating a FE subdomain exhibit lower runtimes than
that of the monolithic FOM, we reiterate that it is possible to improve the performance of
the Schwarz iteration process via the additive Schwarz formulation.

5. Conclusions and Future Work. The major impetus driving the development of
the OpInf-Schwarz method is to achieve a minimally intrusive methodology for constructing
ROMs that can interface modularly with existing high performance codes. A truly data-
driven and modular domain decomposition-based ROM has the potential to greatly reduce
computational expenses incurred by meshing and re-meshing complicated 3D objects, and
therefore in performing long run-time and/or multi-query simulations.

The preliminary investigation presented herein has assessed various characteristics of
the OpInf-Schwarz framework in the context of a 2D heat equation. Our results have
shown that the OpInf-Schwarz method is capable of coupling OpInf and FOM subdomains
to recover accurate solutions, and that a purely OpInf formulation can run faster than a
monolithic simulation. We have also demonstrated that OpInf-Schwarz is very flexible, and
can be tuned in several ways to the problem at hand (e.g., by choosing a different DD or
ROM/FOM assignment to the subdomains).

At the same time, this work has uncovered several challenges that are worth investigating
in the future. First, the calculated average relative pointwise error presented in Section 4.1
stagnates at around O(10−5) and does not decrease further despite a increase to the POD
basis size and training data. While this level of error is acceptable for many applications, it
would be ideal for the method to be truly convergent to the data source. While it seems likely
that the issue lies with the error of the inferred operators from the regression problem (2.14)
given that the projection errors reported in Table 4.2c continue to decrease, a comparison
with a standard intrusive projection ROM would confirm whether the cause is error in the
inferred operators or errors induced by the coupling process. It may be possible to reduce
optimization errors by employing a technique called re-projection [26].

There are also potential improvements to the implementation of OpInf presented in
this paper, as the stability of the learned operators is not enforced at the inference step.
At present, this is resolved with a simple Tikhonov-based regularization strategy, but a
more rigorous approach may be needed in more complicated problems, e.g., by using a
more sophisticated regularization strategy such as those presented in [21, 31]. There are
additional opportunities to improve the implementation of the Schwarz boundary conditions
within our OpInf-Schwarz formulation in a way that both reduces computational cost and
improves accuracy.

Currently, the size of the learned boundary operator B̂ scales with the size of the
boundary in our formulation, but considering that even in this simple 2D case the num-
ber of boundary nodes is already 20 or more times larger than the ROM dimension, it is
worth questioning whether all of this boundary information is being used in a meaningful
way. Reducing the computational complexity of our method requires reducing the number
of columns of B̂, which can be large for multi-dimensional problems with many boundary
nodes. To mitigate the cost associated with evaluating B̂g, it may be possible to perform
a separate dimension reduction of this term. Finally, as noted earlier, the overall compu-
tational complexity of OpInf-Schwarz can be improved by introducing “additive” Schwarz,
characterized by parallel subdomain solves with asynchronous boundary condition commu-
nication [39].

The last major point is on extending the Opinf-Schwarz method to more challenging

I. Moore, C.R. Wentland, A. Gruber, & I. Tezaur 123

and realistic problems, as we expect the greatest utility and time savings of this model to be
shown in more complicated situations. The heat equation is a standard prototype for model
reduction methods, but extending the model to 3D, non-linear, convection dominated, and
parametric problems [22, 38, 40] is a priority, as are implementing strategies to choose opti-
mal domain decomposition and model assignment to enable on-the-fly ROM-FOM switching
for maximal performance.

Acknowledgements. This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, Office of Advanced Scientific Computing Research,
Mathematical Multifaceted Integrated Capability Centers (MMICCs) program, under Field
Work Proposal 22-025291 (Multifaceted Mathematics for Predictive Digital Twins (M2dt)),
Field Work Proposal 20-020467, and the Laboratory Directed Research and Development
program at Sandia National Laboratories. The writing of this manuscript was funded in
part by the fourth author’s (Irina Tezaur’s) Presidential Early Career Award for Scien-
tists and Engineers (PECASE). This article has been authored by an employee of National
Technology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525
with the U.S. Department of Energy (DOE). The employee owns all right, title and interest
in and to the article and is solely responsible for its contents. The United States Gov-
ernment retains and the publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this article or allow others to do
so, for United States Government purposes. The DOE will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access Plan
https://www.energy.gov/downloads/doe-public-access-plan.

The authors would like to thank Dr. Shane McQuarrie for numerous helpful technical
discussions in the area of operator inference, and for providing support on the OpInf library.

REFERENCES

[1] M. S. Alnaes, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, Unified form lan-
guage: A domain-specific language for weak formulations of partial differential equations, ACM
Transactions on Mathematical Software, 40 (2014).

[2] I. A. Baratta, J. P. Dean, J. S. Dokken, M. Habera, J. S. Hale, C. N. Richardson, M. E.
Rognes, M. W. Scroggs, N. Sime, and G. N. Wells, DOLFINx: the next generation FEniCS
problem solving environment. Pre-print, 2023. https://zenodo.org/records/10447666.

[3] J. Barnett, I. Tezaur, and A. Mota, The Schwarz alternating method for the seamless coupling of
nonlinear reduced order models and full order models. ArXiv pre-print, 2022.

[4] K. Carlberg, C. Bou-Mosleh, and C. Farhat, Efficient non-linear model reduction via a least-
squares Petrov–Galerkin projection and compressive tensor approximations, International Journal
for Numerical Methods in Engineering, 86 (2011), pp. 155–181.

[5] D. Cinquegrana, A. Viviani, and R. Donelli, A hybrid method based on POD and domain decompo-
sition to compute the 2-D aerodynamic flow field - incompressible validation, 2011, pp. AIMETA
2011– XX Congresso dell’Associazione Italiana di Meccanica Teorica e Applicata, Bologna, ITA.

[6] A. Corigliano, M. Dossi, and S. Mariani, Model order reduction and domain decomposition strate-
gies for the solution of the dynamic elastic–plastic structural problem, Computer Methods in
Applied Mechanics and Engineering, 290 (2015), pp. 127–155.

[7] A. de Castro, P. Bochev, P. Kuberry, and I. Tezaur, Explicit synchronous partitioned scheme
for coupled reduced order models based on composite reduced bases, Computer Methods in Applied
Mechanics and Engineering, (2023), p. 116398.

[8] A. de Castro, P. Kuberry, I. Tezaur, and P. Bochev, A novel partitioned approach for reduced
order model – finite element model (ROM-FEM) and ROM-ROM coupling. ArXiv pre-print.

[9] I.-G. Farcas, R. P. Gundevia, R. Munipalli, and K. E. Willcox, Improving the accuracy and
scalability of large-scale physics-based data-driven reduced modeling via domain decomposition.
ArXiv pre-print, 2023.

124Domain Decomposition-based Coupling Of Operator Inference Reduced Order Models Via The Schwarz Alternating Method

[10] R. Geelen, S. Wright, and K. Willcox, Operator inference for non-intrusive model reduction
with quadratic manifolds, Computer Methods in Applied Mechanics and Engineering, 403 (2023),
p. 115717.

[11] O. Ghattas and K. Willcox, Learning physics-based models from data: perspectives from inverse
problems and model reduction, Acta Numerica, 30 (2021), p. 445–554.

[12] P. Holmes, J. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and
Symmetry, Cambridge University Press, 1996.

[13] A. Iollo, G. Sambataro, and T. Taddei, A one-shot overlapping Schwarz method for component-
based model reduction: application to nonlinear elasticity, Computer Methods in Applied Mechan-
ics and Engineering, 404 (2023), p. 115786.

[14] P. Kerfriden, O. Goury, T. Rabczuk, and S. Bordas, A partitioned model order reduction approach
to rationalise computational expenses in nonlinear fracture mechanics, Computer Methods in
Applied Mechanics and Engineering, 256 (2013), pp. 169–188.

[15] P. Kerfriden, J. C. Passieux, and S. P. A. Bordas, Local/global model order reduction strategy for
the simulation of quasi-brittle fracture, International Journal for Numerical Methods in Engineer-
ing, 89 (2012), pp. 154–179.

[16] B. Kramer, B. Peherstorfer, and K. E. Willcox, Learning nonlinear reduced models from data
with operator inference, Annual Review of Fluid Mechanics, 56 (2024), pp. 521–548.

[17] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic prob-
lems, Numerische Mathematik, 90 (2001), pp. 117–148.

[18] K. Li, K. Tang, T. Wu, and Q. Liao, D3m: A deep domain decomposition method for partial
differential equations, IEEE Access, 8 (2020), pp. 5283–5294.

[19] W. Li, X. Xiang, and Y. Xu, Deep domain decomposition method: Elliptic problems, Proceedings of
Machine Learning Research, 107 (2020), pp. 269–286.

[20] I. Maier and B. Haasdonk, A Dirichlet-Neumann reduced basis method for homogeneous domain
decomposition problems, Applied Numerical Mathematics, 78 (2014), pp. 31–48.

[21] S. A. McQuarrie, C. Huang, and K. E. Willcox, Data-driven reduced-order models via regularised
operator inference for a single-injector combustion process, Journal of the Royal Society of New
Zealand, 51 (2021), pp. 194–211.

[22] S. A. McQuarrie, P. Khodabakhshi, and K. E. Willcox, Nonintrusive reduced-order models for
parametric partial differential equations via data-driven operator inference, SIAM Journal on
Scientific Computing, 45 (2023), pp. A1917–A1946.

[23] A. Mota, D. Koliesnikova, I. Tezaur, and J. Hoy, A fundamentally new coupled approach to
contact mechanics via the Dirichlet-Neumann Schwarz alternating method, 11 2023.

[24] A. Mota, I. Tezaur, and C. Alleman, The Schwarz alternating method in solid mechanics, Computer
Methods in Applied Mechanics and Engineering, 319 (2017), pp. 19–51.

[25] A. Mota, I. Tezaur, and G. Phlipot, The Schwarz alternating method for dynamic solid mechanics,
Int. J. Numer. Meth. Engng, (2022), pp. 1–36.

[26] B. Peherstorfer, Sampling low-dimensional Markovian dynamics for preasymptotically recovering
reduced models from data with operator inference, SIAM Journal on Scientific Computing, 42
(2020), pp. A3489–A3515.

[27] B. Peherstorfer and K. Willcox, Data-driven operator inference for nonintrusive projection-based
model reduction, Computer Methods in Applied Mechanics and Engineering, 306 (2016), pp. 196–
215.

[28] I. Prusak, M. Nonino, D. Torlo, F. Ballarin, and G. Rozza, An optimisation–based do-
main–decomposition reduced order model for the incompressible Navier-Stokes equations, Com-
puters & Mathematics with Applications, 151 (2023), pp. 172–189.

[29] A. Radermacher and S. Reese, Model reduction in elastoplasticity: proper orthogonal decomposition
combined with adaptive sub-structuring, Computational Mechanics, 54 (2014), pp. 677–687.

[30] G. Rozza, Fundamentals of reduced basis method for problems governed by parametrized PDEs and
applications, Springer, Vienna, 2014, pp. 153–227.

[31] N. Sawant, B. Kramer, and B. Peherstorfer, Physics-informed regularization and structure
preservation for learning stable reduced models from data with operator inference, Computer
Methods in Applied Mechanics and Engineering, 404 (2023), p. 115836.

[32] P. Schmid, Dynamic mode decomposition of numerical and experimental data, Journal of Fluid Me-
chanics, 656 (2010), p. 5–28.

[33] H. A. Schwarz, Ueber einen Grenzübergang durch alternirendes Verfahren, Zürcher u. Furrer, 1870.
[34] M. W. Scroggs, I. A. Baratta, C. N. Richardson, and G. N. Wells, Basix: a runtime finite

element basis evaluation library, Journal of Open Source Software, 7 (2022), p. 3982.
[35] M. W. Scroggs, J. S. Dokken, C. N. Richardson, and G. N. Wells, Construction of arbitrary order

finite element degree-of-freedom maps on polygonal and polyhedral cell meshes, ACM Transactions
on Mathematical Software, 48 (2022), pp. 18:1–18:23.

[36] L. Sirovich, Turbulence and the dynamics of coherent structures, part iii: dynamics and scaling, Q.

I. Moore, C.R. Wentland, A. Gruber, & I. Tezaur 125

Appl. Math., 45 (1987), pp. 583–590.
[37] W. Snyder, I. Tezaur, and C. Wentland, Domain decomposition-based coupling of physics-informed

neural networks via the Schwarz alternating method. ArXiv pre-print, 2023.
[38] A. Vijaywargiya and A. Gruber, Tensor parametric operator inference with Hamiltonian structure.

Computer Science Research Institute Summer Proceedings 2024, 2024.
[39] C. R. Wentland, F. Rizzi, J. Barnett, and I. Tezaur, The role of interface boundary conditions and

sampling strategies for Schwarz-based coupling of projection-based reduced order models. ArXiv
pre-print, 2024.

[40] S. Yıldız, P. Goyal, P. Benner, and B. Karasözen, Learning reduced-order dynamics for
parametrized shallow water equations from data, International Journal for Numerical Methods
in Fluids, 93 (2021), pp. 2803–2821.

126Domain Decomposition-based Coupling Of Operator Inference Reduced Order Models Via The Schwarz Alternating Method

OPERATOR INFERENCE BASED FLUX SURROGATE ALGORITHM
FOR COUPLED TRANSMISSION PROBLEMS

RISHI PAWAR∗ AND PAVEL BOCHEV†

Abstract.
In this paper we develop and demonstrate a new surrogate-based partitioned scheme for a model

advection-diffusion transmission problem. The work is motivated by the Implicit Value Recovery (IVR)
partitioned method [4] in which the interface flux is approximated by the dual Schur complement of a dis-
crete monolithic formulation of the coupled problem. Unless the discretized equations employ lumped mass
matrices, forming and solving the Schur complement equation for the flux adds nontrivial computational
cost at every time step. To reduce the computational cost we replace the Schur complement equation by
an efficient flux surrogate. The latter is based on the Operator Inference algorithm (OpInf) which learns
the dynamic behavior of the interface flux from a suitable training set during an offline training phase.
The inferred operator is then used during the online stage to provide accurate flux approximations for each
subdomain problem. Numerical examples illustrate the potential of the approach.

1. Introduction. Explicit partition methods for coupled problems enable independent
solution of subdomain equations by codes that can be optimized for each specific physics
model. Such schemes improve computational efficiency and enable reuse of existing simula-
tion codes.

Loosely coupled partitioned schemes exchange interface states and/or fluxes to define
suitable boundary conditions for the subdomain equations, thereby enabling their indepen-
dent solution. Such schemes are minimally intrusive and computationally efficient. However,
loosely coupled schemes are equivalent to a single step of an iterative solution procedure
for the underlying coupled system and, as a result, they can experience instabilities and
loss of accuracy. An alternative approach is to develop a partitioned scheme starting from
a monolithic formulation of the coupled problem in which the continuity of the states is
enforced by a Lagrange multiplier. The interface flux is then estimated by solving a dual
Schur complement system. This approach leads to provably stable and accurate solutions
[4] and is second order accurate provided the monolithic problem employs consistent mass
matrices. However, in this case forming the Schur complement involves inversion of the
subdomain mass matrices and leads to a small but dense linear system. As a result, such
an approach can incur significant computational costs, especially in three dimensions.

The main goal of this work is to demonstrate that a data-driven surrogate flux approach
can potentially combine the computational efficiency of loosely coupled schemes with the
accuracy of methods based on monolithic formulations. Specifically, we replace the Schur
complement step of the IVR algorithm by a flux surrogate based on the Operator Inference
algorithm (OpInf). We choose OpInf because it provides an effective mechanism to learn
the dynamics of the interface flux from time series data. In so doing we shift the main
computational burden to an offline training phase where the OpInf flux surrogate is inferred
from a suitable training set. During the online phase, the trained OpInf surrogate is used
to compute interface fluxes at a fraction of the cost of solving the Schur complement.

We have organized this paper as follows. In Section 2 we review the Implicit Value
Recovery Algorithm, which provides the basis for the OpInf surrogate-based partitioned
scheme. Section 3 summarizes the basics of OpInf and formulates the OpInf flux surrogate.
This section also describes the modified IVR scheme in which the Schur complement solve
is replaced by the OpInf flux surrogate. Section 4 describes the offline training stage for the
OpInf flux surrogate. In Section 5 we present numerical results with the OpInf surrogate-

∗University of Arizona, rpawar@arizona.edu
†Sandia National Laboratories, pbboche@sandia.gov

CSRI Summer Proceedings 2024 127

based scheme for a model advection-diffusion transmission problem. Finally, in Section 6 we
offer some conclusions and comment on the efficacy of the OpInf surrogate-based partitioned
scheme.

2. Implicit Value Recovery. In this paper we restrict attention to a rectangular
region Ω ∈ R2 partitioned into two non-intersecting subdomains Ω1 and Ω2 by an interface
γ; see Fig. 2.1. We orient the interface by a unit normal vector nγ and set Γi = ∂Ωi \ γ.

Ω1 Ω2

γ

Ω

Fig. 2.1: The domain Ω is divided into subdomains Ω1 and Ω2.

We assume that each subdomain is endowed by an independently defined finite-element
partition Ωh

i with mesh parameter hi, vertices xi,r, and elements Ki,s. The subdomain
partitions induce finite element partitions γh1 and γh2 of the interface that are spatially
coincident but not required to have matching nodes.

The model advection-diffusion transmission problem is defined by a pair of governing
equations on each subdomain

{
φ̇i −∇ · Fi(φi) = fi in Ωi × [0, T]

φi = gi in Γi × [0, T]
(2.1)

augmented with initial conditions,

φi(x, 0) = φi,0(x) in Ωi i = 1, 2; (2.2)

and interface conditions,

0 = φ1(x, t)− φ2(x, t),

0 = F1(x, t) · nγ − F2(x, t) · nγ

(2.3)

on γ × [0, T]. The total flux Fi is assumed to have the form

Fi(φi) = ϵi∇(φi)− uφi (2.4)

where ϵi > 0 is a diffusion coefficient in Ωi and u is a given velocity field that can be zero.
Partitioned solution of (2.1), (2.2), and (2.3) is based on the observation that the

transmission problem can be written in an equivalent form as

φ̇i −∇ · Fi(φi) = fi in Ωi × [0, T]

φi = gi in Γi × [0, T]

Fi(φi) · ni = (−1)iλ on γ × [0, T]

i = 1, 2 , (2.5)

128 Operator Inference Based Flux Surrogate Algorithm For Coupled Transmission Problems

where λ denotes the interface flux. Formally, each equation in (2.5) is a mixed boundary
value problem on its respective domain with Neumann data provided by the interface flux.
These equations remain coupled because λ is one of the unknowns in this system. However,
if one can obtain an approximation of the interface flux these equations can be solved
independently, thereby decoupling the problem.

The IVR scheme [4] computes an approximation of the interface flux by forming and
solving the Schur complement of a discrete monolithic system obtained by enforcing the
alternative coupling condition

φ̇1(x, t)− φ̇2(x, t) = 0 (2.6)

by a Lagrange multiplier. Assuming that that the initial data is continuous along the
interface, i.e. φ0(x

−) = φ0(x
+) ∀x ∈ γ condition (2.6) is equivalent to the original one.

The resulting semi-discrete monolithic system is equivalent to the following system of
differential algebraic equations (DAEs); see [4]:

M1 0 GT

1

0 M2 −GT
2

G1 −G2 0

φ̇1

φ̇2

λ

 =

f1(φ1)
f2(φ2)

0

 , (2.7)

for finite element coefficient vectors φ1,φ2, and λ. Here, M1,M2 are mass matrices, and
G1, G2 are matrices of inner products between the finite element bases functions and the
test functions along boundary γ; full definitions for these matrices can be found in [4].

The IVR scheme then proceeds to eliminate the interface flux from (2.7) by solving the
system:

Sλ = G1M
−1
1 f1(φ1) +G2M

−1
2 f2(φ2), (2.8)

where

S = G1M
−1
1 GT

1 +G2M
−1
2 GT

2 (2.9)

is the Schur complement of (2.7). It is straightforward to see that application of explicit
time integration to the resulting coupled system of ODEs decouples this system and enables
the independent solution of each subdomain ODE problem for φ1 and φ2. Algorithm 1
summarizes the IVR scheme.

Algorithm 1 Implicit Value Recovery (IVR) Algorithm Summary

Require: Evaluation of G1M
−1
1 GT

1 +G2M
−1
2 GT

2 , φ
1
1, and φ

1
2

while k < Nmax do
1. Compute fi(φ

k
i) for i = 1, 2,

2. Solve:

(
G1M

−1
1 GT

1 +G2M
−1
2 GT

2

)
λk = G1M

−1
1 f1(φ

k
1) +G2M

−1
2 f2(φ

k
2) (2.10)

for λk.
3. Solve

MiD
k+1φi = fi(φ

k
i) + (−1)iGT

i λk i = 1, 2 , (2.11)

for φk+1
i , where Dk+1 denotes an explicit approximation of the time derivative at

tk+1.
end while

R. Pawar & P. Bochev 129

Although the IVR scheme can be implemented using lumped mass matrices, in order to
achieve optimal accuracy one has to employ consistent mass matrices. In this case, forming
the Schur complement in Step 2 involves inversion of the sparse matricesMi, which results in
a dense Schur complement matrix. In principle, one could precompute and store the Schur
complement in factored form, however, the storage burden may be unacceptable in three
dimensions and even in some two-dimensional configurations employing very fine meshes.

In this paper we investigate a data-driven alternative in which the Schur complement
system for the interface flux is replaced by a data-driven surrogate for the dynamics of this
variable. To that end we shall use Operator Inference which can be used to infer systems
of ODEs comprised of polynomial terms. The operators are inferred offline from a suitable
time series data of the solutions of the transmission problem. Once the OpInf surrogate is
trained we propose to use it in Step 2 of the IVR algorithm as a cost and storage effective
replacement for the Schur complement.

3. Operator Inference Surrogate. Operator Inference attempts to use trajectory
data sampled from a system of ODEs, parametrized by µ ∈ Rd, to infer a lower dimensional
representation of the system by fitting operators of polynomial terms in the least squares
sense. Once these inferred operators are learned, one can simulate the system in the reduced
space for one time step, then project the reduced state into the full state to forecast state
data. The lower dimensional representation of the system will come from the SVD of
snapshot matrix X, i.e. X = UΣV T . We extract matrices U and Σ, where U will be used
to generate our projection matrix Ur from dimension n into lower dimension r, and Σ will
be used to determine the rank r based off a desired energy percentage. By taking the SVD
of these simulated trajectories X in phase space, we attempt to recover a statistical lower
dimensional representation of the manifold that our data is generated from.

Consider a dynamical system with the following form:

ẋ = A(µ)x+H(µ)x2 + c(µ), (3.1)

where A ∈ Rn×n, H ∈ Rn×s, with s =
(
n
2

)
+ n = n(n+1)

2 , c ∈ Rn, x ∈ Rn, and x2 refers
to quadratic terms generated by x, e.g. if x = (x1, x2), then x

2 = (x21, x1x2, x
2
2). The

term x2 can be obtained from Kronecker tensor product x⊗x. Operator H is then written
as H = QI1, where I1 is a reduced row identity matrix that removes redundant elements
from x ⊗ x, since some elements will be repeated in the Kronecker tensor product, e.g.
x1x2 = x2x1. Matrix Q represents the linear operator that acts on the quadratic terms,
now uniquely represented.

A uniform time discretization of time domain [0, T] intoK time steps of size δK , δK = T
K ,

is chosen. Let x1, . . . ,xK be discrete states of the system of ODEs at times t1, . . . , tK
computed with some time stepping scheme.

Including, x0 at t0, assemble the K + 1 snapshot vectors into the following matrix X:

X = [x0, . . . ,xK] ∈ Rn×(K+1). (3.2)

Take the SVD of matrix X

X = UΣV T , (3.3)

and collect matrices U and Σ.
Extract the first r columns of matrix U for desired rank r such that,

130 Operator Inference Based Flux Surrogate Algorithm For Coupled Transmission Problems

Ur = [u1, . . . ,ur] ∈ Rn×r. (3.4)

The rank r is chosen as some function of the singular values of matrix Σ.
The data-driven reduced order operators will approximate Galerkin projections, i.e. for

Galerkin projections:
• Ã(µ) = UT

r A(µ)Ur ∈ Rr×r

• H̃(µ) = UT
r H(µ)(Ur ⊗ Ur) ∈ Rr×r2

• c̃(µ) = UT
r c⃗(µ) ∈ Rr,

where for H̃(µ), a vector x ∈ Rn is projected into xr ∈ Rr and its Kronecker product

is taken with itself, i.e. xr ⊗ xr ∈ Rr2 , we have a reduced order system with the following
dynamics:

ẋr(t,µ) = Ã(µ)xr(t;µ) + H̃(µ)(xr ⊗ xr) + c̃(µ)

xr,0(µ) = UT
r x0(µ) ∈ Rr

(3.5)

The OpInf algorithm will attempt to approximate the Galerkin projections Ã, H̃, c̃ with
learned operators Â, Ĥ, ĉ respectively.

The projected vectors are calculated in the following manner

x̂j = UT
r xj j = 0, . . . ,K (3.6)

The following reduced order data matrices are calculated:

X̂ = [x̂1, . . . , x̂K]T ∈ RK×r

X̂2 = [I2(x̂1 ⊗ x̂1), . . . , I2(x̂K ⊗ x̂K)]T ∈ RK×r′ ,
(3.7)

where r′ =
(
r
2

)
+ r = r(r+1)/2 and I2 is another reduced identity matrix that removes

repeated elements from the Kronecker tensor product.
For j = 1, . . . ,K, let ˙̂xj ∈ Rn be an approximation to the derivative d

dt x̂(tj) of the

projected state x̂(tj) at time tj that converges to d
dt x̂(tj) in the L2 norm as δt → 0.

One can use any discrete derivative approximation scheme to calculate the corresponding
derivatives at each corresponding x̂j , e.g. forward/backward Euler methods, RK-4 methods,
etc. In this report, a forward Euler difference scheme is used to calculate the derivatives at
corresponding points x̂j .

The matrices Â, Ĥ, ĉ are the solution to the optimization problem

min
Â,Ĥ,ĉ

K∑

j=1

∥∥∥ ˙̂xj − Âx̂j − Ĥ(x̂j ⊗ x̂j)− ĉ
∥∥∥
2

2
, (3.8)

which implies that

˙̂xj = Âx̂j + Ĥ(x̂j ⊗ x̂j) + ĉ j = 1, . . . ,K. (3.9)

R. Pawar & P. Bochev 131

We now construct data matrix D defined in the following manner

D = [X̂, X̂2,1] ∈ RK×(r+r′+1), (3.10)

where 1 is a vector of ones. We also define derivative matrix R as

R = [˙̂x1, . . . , ˙̂xK]T ∈ RK×r. (3.11)

The optimization problem of interest becomes:

min
Â,Ĥ,ĉ

∥∥∥R− X̂ÂT − X̂2ĤT − ĉ
∥∥∥
2

F
, (3.12)

with respect to the Frobenius norm. Problem (3.12) can be written equivalently as

min
O∈Rr×(r+r′+1)

∥∥DOT −R
∥∥2
F
, (3.13)

where operator matrix O = [Â, Ĥ, ĉ] ∈ Rr×(r+r′+1) is of interest. Iteratively, line (3.13) can
be expressed as

min
oi∈Rr+r′+1

∥∥∥Doi − ˙̂xi

∥∥∥
2

2
i = 1, . . . , r (3.14)

which yield n least squares problems that solve each row of OT .

3.0.1. Convergence Guarantees. If the time stepping scheme used in the full model
has the following properties:

1. is convergent as δt → 0, i.e. ˙̂xj converges in the L2 norm to d
dt x̂(tj) as δt → 0 for

j = 1, . . . ,K,
2. has data matrices D̃ and D that have full column rank r+ r′ + 1 for all δt > 0 and

for all r ≤ n,
then there exists for ϵ > 0 and r ≤ n, a time step δt such that the Frobenius norm of the
difference of the inferred Â and the intrusive reduced operator Ã is below ϵ, i.e.

∥Â− Ã∥F < ϵ.

Similar results hold for Ĥ and ĉ [3].

3.1. OpInf Surrogate-Based Partition Scheme. To develop the OpInf flux surro-
gate we consider inputs defined by the concatenation of a patch of states and the flux:

xk =

λk−1

u1,k

u2,k

 , (3.15)

where interface patches u1,k and u2,k refer to patches sampled left and right of the interface
respectively, Figure 3.1 shows the sampling scheme. This patch scheme is used because the
interface flux λ should maintain solution continuity across γ, i.e. state data is needed from
both subdomains to enforce continuity, and the solution dynamics should not be strongly

132 Operator Inference Based Flux Surrogate Algorithm For Coupled Transmission Problems

Fig. 3.1: Interface patches of width 2 for each side, image from [1].

influenced by solution values away from the interface, explaining why patches around the
interface are used [1].

We provide details about the training of the OpInf surrogate in the next section. As-
suming that such a surrogate is available, we use it to compute an approximation of the
interface flux at tk by forming the state xk and solving numerically the OpInf surrogate
for one time step. The flux component λk is then extracted from the integrated state
and used to decouple the equations for φi. Algorithm 2 summarizes the resulting OpInf
surrogate-based partitioned scheme.

Algorithm 2 OpInf Surrogate-based partitioned scheme

Require: Â, Ur, x0, ∆t
while k < Nmax do
1. Compute fi(φ

k
i) for i = 1, 2,

2. Assemble xk from λk−1, u1,k, and u2,k.
3. Project into Rr

x̂k = UT
r xk (3.16)

4. Calculate

x̂k+1 = x̂k +∆tÂx̂k (3.17)

5. Project into Rn

x̃k+1 = Urx̂k+1 (3.18)

6. Extract λk from x̃k+1.
7. Solve

MiD
k+1φi = fi(φ

k
i) + (−1)iGT

i λk , i = 1, 2 (3.19)

for φk+1
i .

end while

3.2. FLOP Analysis. To quantify the computational benefit of the OpInf approach,
FLOP counts are taken for the implementation of the OpInf flux surrogate into the IVR

R. Pawar & P. Bochev 133

scheme. We recall that Ur ∈ Rn×r,xk ∈ Rn, x̂k ∈ Rr, Â ∈ Rr×r. The approach written in
Algorithm 2 consists of the following calculations:

x̂k = UT
r xk,

x̂k+1 = x̂k +∆tÂx̂k,

x̃k+1 = Urx̂k+1,

(3.20)

which yields a FLOP count of 4nr + 2r2 + 2r. This approach implies usage of a forward
Euler scheme, but can be modified depending on the desired integrator. Combining several
steps together, one can write the following equivalent formulation:

x̃k+1 = UrU
T
r xk +∆t

◦
Axk

= Pxk +∆t
◦
Axk

= (P +∆t
◦
A)xk

=Mxk,

(3.21)

where P = UrU
T
r ∈ Rn×n and

◦
A = UrÂU

T
r ∈ Rn×n, and M ∈ Rn×n. For maximum

efficiency, P,
◦
A, and M are precomputed before running the OpInf modified IVR algorithm.

The FLOP count for the last line of (3.21) is 2n2. Since we are interested in solely the flux
vector λ from x̃k+1, we can focus on the portion of M that outputs λ and evaluate

λk =Mfxk, (3.22)

whereMf =M(1 : fd, :), where fd is the dimension of the interface flux λ, andMf ∈ Rfd×n

for a FLOP count of 2n × fd, with fd ≤ r ≤ n. (Assuming that the dimension of our
flux interface fd is sufficient to accurately model the flux crossing across the interface, we
expect the rank r used in our scheme to be at least fd. If r < fd, then there exists some
degeneracies/redundancies in the data of the flux interface). Approach (3.22) is the cheapest
with regards to the number of FLOPs required for each iteration.

4. Training the Model. We now describe training of the inferred operators for the
OpInf flux surrogate.

4.1. Training Data. To generate training data for the OpInf flux surrogate we use
the IVR scheme to solve the model transmission problem for an initial condition given by a
Gaussian distribution centered at a point (x, y) ∈ Ω and a rotating velocity field; see Figure
4.1 for a sample solution trajectory. To compute the solution we use a uniform mesh with
a total of 2145 = 65× 33 degrees of freedom in each subdomain and 63 degrees of freedom
for the interior interface flux.

The training set comprises time series data for solution trajectories corresponding to 9
Gaussian initial conditions centered along the line y = 0.5. The x-coordinates of the initial
conditions are given by x = {0.05, . . . , 0.45} with increments of 0.05. The transmission
problem is simulated for one full revolution using k=1866 time steps. Figure 4.1 shows a
few snapshots of a representative solution trajectory.

This training set was chosen because the spacing between the centers is on the same
order as the mesh size of the FEM partition. This spacing combined with the choices
of Gaussian sizes allows the interface γ to experience crossings everywhere when the entire

134 Operator Inference Based Flux Surrogate Algorithm For Coupled Transmission Problems

(a) k = 1 (b) k = 220 (c) k = 420 (d) k = 620 (e) k = 820

(f) k = 1020 (g) k = 1220 (h) k = 1420 (i) k = 1620 (j) k = 1820

Fig. 4.1: A representative solution trajectory corresponding to a Gaussian initial condition
centered at (0.3, 0.5).

training set is used; consequently, the training set contains information about the dynamical
response of the interface flux along the entire interface [1].

The raw training data consists of solution states φk
i ∈ R2145 and interface fluxes λk−1

i ∈
R63 for k = {1, . . . , 1866}.

To define the training data of the OpInf surrogate, data patches ui,k of equal depth,
i.e. δ1 = δ2, and λk−1 are stacked on top of each other:

xk =

λk−1

u1,k

u2,k

 ∈ R63+65×2×(δ1+1), (4.1)

where δ1 can vary between 1 to 32. As we are interested in computational speed, we desire
to use small δ1 < 32 while providing sufficient accuracy for various testing conditions. In
this report, we found δ1 = 5 to be satisfactory for our tests.

For each of our 9 initial conditions, we assemble a snapshot matrix Xi for i = 1, . . . , 9
whose columns are the above xk for k = 0, . . . , 1866. We concatenate these 9 trajectories
into matrix X in the following manner

X = [X1,X2, . . . ,X9]. (4.2)

Upon forming X, we take the SVD of this matrix and obtain its constituent factors:

X = UΣV T . (4.3)

We obtain the singular values σi from Σ and use energy tolerance for rank r selection.
If we wish p percentage of the energy of our system, we select the first r such that

p ≤
∑r

i=1 σ
2
i∑

i σ
2
i

. (4.4)

R. Pawar & P. Bochev 135

Once rank r is chosen, we extract the first r columns of U and form Ur. For our
report, the energy percentage used was 99.99999999999%. Despite the high percentage of
energy p, significant dimension reduction is still observed when this amount is used. In
our testing, reduction from 843 dimensions, from padded sampling, to 132 dimensions was
observed; recall that the original dimension of our system was 4353 = 2× 2145 + 63. Since
we are interested in an accurate surrogate, it is beneficial to use as much energy as possible
without trading off low dimensionality. From numerical testing, this is the largest p that
can be used before matrix Ur starts to possess linearly dependent columns. One could use
a lower percentage of energy p, but the trade off would be a larger rank for r in matrix Ur.

Since the advection-diffusion problem is linear, we assume that the ODEs of our dy-
namics have the following form:

ẋk = Axk, (4.5)

where A ∈ Rn×n and xk ∈ Rn.
Therefore, we will be interested in obtaining reduced order operator Â ∈ Rr×r that

satisfies the following reduced order equation:

˙̂xk = Âx̂k, (4.6)

where x̂k = UT
r xk.

First, we form X̂ = UT
r X, where the columns of X̂ are x̂k. Next we construct a matrix

R of reduced order derivative approximations.
Using the framework of (3.10), (3.11), and (3.12), we formulate our problem of interest

with D = X̂ to solve the problem:

min
Â

∥∥∥R− X̂ÂT
∥∥∥
2

F
. (4.7)

We can solve (4.7) for Â using a QR decomposition on matrix X̂ in the following
manner:

X̂ÂT = R

QR2Â
T = R

R2Â
T = QTR

ÂT = R2\(QTR),

(4.8)

where the last line uses Matlab’s \ command. Using MATLAB’s function allows one to
compute operator Â very quickly in comparison to the iterative approach written in (3.14).
This approach can be applied to general operator O to calculate the matrices for polynomial
terms.

5. Results. In this section we provide numerical results illustrating the OpInf flux
surrogate-based partitioned scheme. The experiments were performed using the 9 equally
distributed Gaussians with equal width in both the x and y directions as training data. For
reference, the relative error at timestep tk was calculated using the following formula:

Error(tk) =
∥λtrue(tk)− λapprox(tk)∥2

∥λtrue(tk)∥2
for tk = 0, 1, . . . , 1865, (5.1)

where ∥ · ∥2 refers to the Euclidean 2-norm.

136 Operator Inference Based Flux Surrogate Algorithm For Coupled Transmission Problems

5.1. Reproductive Tests of the OpInf Surrogate. As an initial test, we attempt
to reproduce 1 training trajectory associated with the initial condition position (0.25, 0.5).
The error plot for the approximated λ and IVR generated λ values is shown in Figure 5.1.

Fig. 5.1: The relative error spikes when the Gaussian is crossing the interface.

The associated trajectory is shown in Figure 5.2. As one can see, the trajectory is
visually reproduced without any significant artifacts and the relative error to approximate
λ is at worst on the order of O(10−2).

(a) k=1 (b) k=201 (c) k=401 (d) k=601 (e) k=801

(f) k=1001 (g) k=1201 (h) k=1401 (i) k=1601 (j) k=1801

Fig. 5.2: Advection and diffusion of Gaussian with initial condition position (0.25, 0.5).

R. Pawar & P. Bochev 137

For a secondary test, combinations of the training data Gaussians were tested.
The first combination used all 9 training Gaussians; the plot can be seen in Figure 5.3.

The associated error plot is shown in Figure 5.4.

(a) k=1 (b) k=201 (c) k=401 (d) k=601 (e) k=801

(f) k=1001 (g) k=1201 (h) k=1401 (i) k=1601 (j) k=1801

Fig. 5.3: Advection and diffusion of Gaussian with initial condition positions
([0.05, . . . , 0.45], 0.5).

Fig. 5.4: The relative error spikes when the Gaussians are crossing the interface.

The second combination used Gaussians centered at (0.1, 0.5), (0.15, 0.5), (0.4, 0.5), (0.45, 0.5),
seen in Figure 5.5. The associated error plot can be seen in Figure 5.6.

138 Operator Inference Based Flux Surrogate Algorithm For Coupled Transmission Problems

(a) k=1 (b) k=201 (c) k=401 (d) k=601 (e) k=801

(f) k=1001 (g) k=1201 (h) k=1401 (i) k=1601 (j) k=1801

Fig. 5.5: Advection and diffusion of Gaussian with initial condition positions
([0.1, 0.15, 0.4, 0.45], 0.5).

Fig. 5.6: The relative error spikes when the Gaussians are crossing the interface.

In the reproduction tests, the maximum relative error is on the order of O(10−2). Visu-
ally, the plotted trajectories using the OpInf flux surrogate are indistinguishable from those
generated by the IVR scheme that solves the Schur Complement.

5.2. Generalization to Arbitrary Initial Conditions. One test of interest is a
compound test involving 4 elements: a slotted cylinder, a stepped cylinder, a Gaussian, and
a cone [2]. The initial condition and IVR incorporated trajectory can be seen in Figure 5.7.

R. Pawar & P. Bochev 139

The corresponding error plot for the whole time interval is shown in Figure 5.8.

(a) k=1 (b) k=201 (c) k=401 (d) k=601 (e) k=801

(f) k=1001 (g) k=1201 (h) k=1401 (i) k=1601 (j) k=1801

Fig. 5.7: Advection and diffusion of Gaussian with compound initial condition positions.

Fig. 5.8: The error drops off very quickly after the first few time steps.

Since the behavior of the relative error is distinctly different between the first few time
steps and subsequent time steps, two error plots will be given for analysis. The first error plot
can be considered as the relative error observed when the initial condition is discontinuous
in nature; see Figure 5.9.

140 Operator Inference Based Flux Surrogate Algorithm For Coupled Transmission Problems

Fig. 5.9: The error during the first 100 time steps, when the solution is discontinuous, is
maximal, but reduces as the solution smooths out via diffusion.

The second error plot shows the relative error after the solution has been smoothed via
diffusion over time, see Figure 5.10.

Fig. 5.10: The error after 100 time steps has order O(10−2).

Examining the trajectory plot for the first time steps, an artifact is present that even-
tually smoothens out and disappears as shown in Figure 5.11. This behavior is reflected in
the relative error plot Figure 5.9.

R. Pawar & P. Bochev 141

(a) k=1 (b) k=11 (c) k=21 (d) k=31 (e) k=41

(f) k=51 (g) k=61 (h) k=71 (i) k=81 (j) k=91

Fig. 5.11: During the first few times steps, the relative error spikes, but reduces within a
few time steps. An artifact along the interface, more noticeable near the bottom, can be
observed during these time steps.

6. Conclusion. In this work we developed and demonstrated a surrogate-based parti-
tioned scheme in which the interface flux is approximated by an OpInf flux surrogate trained
on suitable solution data. Reproductive tests with the OpInf surrogate trained on one set
of 9 carefully chosen solution trajectories show acceptable accuracy and potential for the
surrogate flux to serve as a more cost-effective substitute for the Schur complement flux in
the IVR scheme.

The flux dynamics along the interface γ have been learned to a satisfactory degree as
arbitrary initial conditions can be applied to the subdomains, and the dynamics across the
interface transmit data between the two subdomains with acceptably low relative errors
on the order of O(10−2). Additionally, this reduced order operator can be generated very
quickly, which speaks to the efficiency of this approach.

Further investigations on the diffusion smoothing effect observed for the compound
test should be done. The relationship between the learned flux surrogate operator and
smoothness of the initial conditions that reside on the flux boundary should be explored to
better determine if more accurate surrogates can be learned. Recall that the discontinuity of
the compound test yielded high relative error, 400%, for the first 100 time steps. After those
100 time steps, the simulation was sufficiently smoothed through diffusion to a relative error
on order O(10−2). It might be the case that two different surrogates one for pre-smoothing
and one for post-smoothing may need to be trained and combined for the most accurate
surrogate. This could be done by enriching the training data or by using OpInf with higher
order terms.

Additional future work will involve applying the OpInf technique to more challenging
nonlinear problems and changing the advection/diffusion parameters governing each subdo-
main.

142 Operator Inference Based Flux Surrogate Algorithm For Coupled Transmission Problems

REFERENCES

[1] P. Bochev, J. Owen, and P. Kuberry, Dynamic flux surrogate-based partitioned methods for interface
problems, (2024).

[2] R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM
Journal on Numerical Analysis, 33 (1996), pp. 627–665.

[3] B. Peherstorfer and K. Willcox, Data-driven operator inference for nonintrusive projection-based
model reduction, Computer Methods in Applied Mechanics and Engineering, 306 (2016), pp. 196–
215.

[4] K. Peterson, P. Bochev, and P. Kuberry, Explicit synchronous partitioned algorithms for interface
problems based on lagrange multipliers, Computers & Mathematics with Applications, 78 (2019),
pp. 459–482. Proceedings of the Eight International Conference on Numerical Methods for Multi-
Material Fluid Flows (MULTIMAT 2017).

R. Pawar & P. Bochev 143

TUSQH: TOPOLOGICAL CONTROL OF VOLUME-FRACTION MESHES
NEAR SMALL FEATURES AND UGLY GEOMETRY

BRIAN SHAWCROFT∗, KENDRICK M. SHEPHERD† , AND SCOTT A. MITCHELL‡

Abstract. This work develops a framework through which meshes with user-specified homology
can be created from potentially ugly geometry by coupling background grids, persistent homology,
and a generalization of volume fractions. For a mesh with fixed grid size, the topology of the
output mesh changes predictably and monotonically as its volume fraction threshold decreases.
Topological anti-aliasing methods are introduced to resolve pinch points and disconnected regions
that are artifacts of user choice of grid size and orientation, making the output meshes suitable
for downstream processes including analysis. The methodology is demonstrated on geographical
and mechanical models in 2D and 3D using a custom-made software called Tusqh. The work
demonstrates that the proposed framework is viable both for generating meshes on topologically
invalid geometries and for automatic defeaturing of small geometric artifacts. Finally, the work
shows that though subdividing the background grid for volume fraction-based meshing algorithms
frequently improves topological and geometrical fidelity of the output mesh, there are simple 2D
examples for which topology does not converge under refinement.

1. Introduction. Getting geometry that is suitable for mesh generation is often more
difficult and time consuming than creating a mesh from that geometry. “Ugly” geometry
is ubiquitous “in the wild.” Industrial and commercial CAD data are often hand-designed
“blueprints” to guide assembly, and do not represent the as-built part. Data from imaging
and segmentation may have topological inconsistencies. Even in cases with valid geometry
and topology, analysts must defeature models. This is because typical techniques generate
meshes whose topology and geometry matches the input model. Thus the analyst must
carefully review and modify the input based on the intended purpose of the mesh. Common
issues in “ugly” geometry are gaps and overlaps, unneeded features smaller than the desired
mesh size, topological complexities such as small holes, and small angles and thin regions
that would produce poor-quality elements.

However, the mesh is a discrete approximation to the geometry. Why require a higher
fidelity in the input than is aspired to in the output? Indeed, the community is developing
tools to mesh ugly geometry, robustly producing meshes that are topologically correct and
have high-quality elements despite topological and geometrical defects and small features in
the input.

Sculpt [19, 21, 22] is one such tool, achieving a hexahedral mesh of reasonable quality,
but reconstructing an approximation of the input geometry and topology. Inexact recon-
struction is a benefit in the case of gaps, overlaps, and small features. The Sculpt algorithm
starts with a background grid overlaying the input geometry. The fraction of each grid cell
that lies inside the geometry of an input material is its volume fraction. Cells with volume
fractions above a threshold (e.g., one-half) are retained; the rest are discarded. Heuristics
remove undesirable topology such as pinch points and connected components consisting of
only a few cells. Retained cells are then snapped to the geometry, and mesh quality is
achieved through pillowing [15, 25, 26], smoothing [13], and other changes to mesh topology
and node positions. Similarly, Morph [17, 24] is a parallel tet mesher using a background
grid that snaps nodes to geometry based on dimension, proximity, and how other nodes are
snapped. When no suitable node snap is found, Morph adds new nodes at the intersections
with the geometry to produce nodes on the geometry boundary. In both Sculpt and Morph,

∗Brigham Young University and Sandia National Laboratories Center for Computing Research,
bshaw23@byu.edu

†Brigham Young University, kendrick shepherd@byu.edu
‡Sandia National Laboratories Center for Computing Research, samitch@sandia.gov

144 CSRI Summer Proceedings 2024

the size of the background grid indirectly determines the geometric fidelity of the output
to the input. TetWild [8, 9] does not use a background grid, but instead uses a Delaunay
triangulation. The triangles representing the geometry are incrementally inserted and the
mesh is refined. Edge length and geometric proximity parameters control the mesh reso-
lution and geometric fidelity. Even for these tools that always produce meshes with valid
topology, there is no a priori knowledge of what the homology of the output will be, nor
how it will compare to the input topology or the desired topology.

Herein, we explore how to predict and achieve the desired mesh topology algorithms
based on background grids and volume fractions, including Sculpt.

To accomplish this goal, Tusqh–a prototype mesher–was developed in Rhinoceros 3D.
It is a testbed for research and demonstrates that our techniques are effective. It mimics
the initial steps of Sculpt, using a background grid and volume fractions to decide which
grid cells to retain. As with TetWild, it uses generalized winding numbers [1, 10] to define
the “interior” for valid and invalid geometries. Subsequently, we explore the topological
structure of potential meshes under different volume-fraction thresholds using persistent
homology [6, 18]. We make local connectivity decisions based on sub-sampling volume-
fractions, to mitigate the effects of the arbitrary orientation and offset of the background
grid. This enables the analyst to measure and select the desired mesh topology, which then
informs which volume-fraction threshold to select. The user may also visualize any mesh
by adjusting the volume fraction threshold using a sliding scale. These meshes can serve as
input for subsequent steps to improve geometric fidelity, such as Sculpt’s snapping, pillowing,
and smoothing. Finally, concluding theoretical results demonstrate that applications of grid-
based volume fraction methods cannot guarantee consistent topological output.

2. Background Material. The proposed method, which selects which cells of a back-
ground grid to retain, is related to the computer graphics problem of rasterization [12]. Con-
sequently, we first introduce background information about rasterization and anti-aliasing,
after which fundamentals about tools employed in this work are introduced, including ho-
mology, persistent homology, and winding numbers.

Rasterization. Rasterization is the process of converting an arbitrary geometry into a
grid-based representation of the shape. In traditional computer graphics, the background
grid is screen pixels, the objects are represented by vector data or triangles embedded in
floating point R2, and the problem is to select which color and intensity to display in each
pixel. Aliasing [4, 14] is a significant problem in rasterization: pixel values are sensitive to
the offset, rotation, and distance of the grid relative to the objects, as well as which locations
within a pixel are sampled. For example, consider a non axis-aligned edge shared by a blue
and a red triangle. For a given pixel, if we choose red or blue we get increased contrast but
also stair-step patterns called “jaggies.” If we choose a purple mixture the image appears
more smooth but shading can produce Moiré patterns. Both are glaring to human eyes. For
small triangles, the pixel topology may not match the triangle topology; see fig. 2.1. Such
topological errors may be visually insignificant, but they can lead to significant errors in
simulation results.

Topological Anti-aliasing. For volume-fraction meshing, deciding whether to retain a cell
is sensitive to the offset and rotation of the objects (as in graphics), and grid size (analogous
to pixel density in graphics). A parallel axis-aligned gap is closed or open depending on its
size and position relative to the grid; see fig. 2.2. A gap smaller than half the grid size is
always closed. A gap larger than the grid size is always open. Between these, shifting the
grid left will cause the mesh to alternate between closed and open.

In fig. 2.3 we see the aliasing effects of rotations, where the feature is not aligned with
the grid. In fig. 2.3a the gap is a fixed width, but about the size of the grid cells, leading

B. Shawcroft, K.M. Shepherd, & S.A. Mitchell 145

Fig. 2.1: Rasterization of triangles into pixels for computer graphics is shown. Note the
pinches from the two left cyan triangles, the archipelago from the lower right pink trian-
gle, and the multitude of additional topological errors in the lower right. Image courtesy
Wikipedia https://en.wikipedia.org/wiki/Rasterisation

to the gap being inconsistently resolved as open or closed, with separate sides connected
by pinch points. In fig. 2.3b we see a similar inconsistency, but exacerbated because the
gap width varies. The boundary lines meet at a sharp angle, so fewer cells are retained as
the apex is approached, leading to a chain of small disjoint mesh islands which we call an
archipelago.

gap<grid/2
closed

gap>grid
open

gap ∈ [1
2
, 1] grid

depends

Fig. 2.2: Small grid-aligned gaps are closed, large are open, and for intermediates it depends
on their offset.

(a) unaligned gap
(b) sharp angle

Fig. 2.3: In (a) the unaligned gap is resolved inconsistently. In (b) it is deomonstrated that
rotational aliasing may cause stair-step patterns and archipelagos of islands near where two
lines meet at a sharp angle (bold-outlined cells are filled, thin are open).

To address these undesirable local topological features, a topological anti-aliasing method
is defined and coupled with introducing/removing various templated cells, as described in
section 3. The first undesirable feature is pinches, where exactly two grid cells meet at a
vertex with no shared edge, or exactly two 3D grid cells meet at an edge with no shared
faces. These must be removed because the mesh is required to be locally connected face-
to-face or disjoint. (The complement is also connected face-to-face or disjoint.) All other
ways in which a mesh can be non-manifold do not occur, because we form the mesh from
the union of some cells of a structured grid. Pinches are either separated into different
components by removing small elements, or thickened into meeting face-to-face by adding

146TUSQH: Topological Control Of Volume-fraction Meshes Near Small Features And Ugly Geometry

small elements using data from the anti-aliasing framework. These small elements come
from templates that split background grid cells and perform swaps. The second undesirable
feature is archipelagos. Our anti-aliasing technique joins some islands with template ele-
ments around connecting edges and quads, and removes any small islands that remain. For
comparison, Sculpt resolves pinches by adding or removing entire grid cells, and resolves
small components by removing them [20].

For simplicity we only discuss domains with a single material and only discuss the
retained cells. In principle our anti-aliasing could be extended and applied to multi-material
volume-fraction meshing [26, 20].

Homology. The topology of a mesh should contain the significant features of a domain
for its intended computational analysis. Herein, we shall study mesh topology using a
cellular complex: nodes are zero-cells, edges are one-cells, faces are two-cells, and volumes
are three-cells. Specifically, we will make use of simplicial and cubical complexes, in which
two-cells are triangles and quadrilaterals, and three-cells are tetrahedra and hexahedra,
respectively. Homology [7] is a mathematical tool that distinguishes cell complexes using
certain algebraic quotient groups. The Betti numbers Bi count the rank of these groups.
Specifically, B0 equals the number of connected components, B1 is the number of holes, and
B2 is the number of cavities or voids. For planar domains B2 will always be zero.

Persistent homology [6, 18] describes homology changes as objects are added and con-
nections are made. A filtration has a “persistence parameter” which defines when a cell
enters the complex. A filtration is monotonic, so no cell may ever leave the complex after
entering. However, the homology has both additions and removals because adding a cell
could, e.g., create a new connected component, or combine two components into one. The
parameter value at which a group generator is created is called its “birth,” while the value
it disappears is called its “death.” Birth and death coordinates are plotted in a persis-
tence diagram such as fig. 3.2d. This not only counts Betti numbers, but tracks individual
components and holes.

This work studies the persistent homology of cubical background grids using volume
fractions as the persistence parameter. (In other work the signed distance to a domain
boundary was the parameter [16].) Alternatively, zigzag persistence, which does not require
a monotonic filtration [3, 5], could be used, but doing so would increase complexity and
computational expense.

Winding Numbers. Volume fractions may be estimated by sampling points and counting
the fraction of them inside the geometry. However, for “ugly” geometry, what is “inside”
may be poorly defined. The generalized winding number [1, 10] overcomes this obstacle; see
fig. 2.4. It gives answers identical to ray shooting for watertight domains, and gives answers
that humans find both reasonable and intuitive for other domains. In its traditional form,
the winding number at a point with respect to a closed curve describes the net number of
times the curve encircles the point in the counter-clockwise direction, with negative numbers
indicating clockwise encirclement. The winding number is the integral of the angle of the
ray from the point to the curve as it is traversed. The generalized winding number extends
this definition to sets of open curves. It yields a continuous value where 0 indicates outside

choose very specific boundary mesh layout and vertex density, nec-
essary for articulation or faithful representation of important features
while staying on a tight vertex budget. It is therefore highly desirable
to avoid remeshing and subsequent interpolation, and at the same
time obtain a valid and precise representation of the object’s inner
volume.

In this paper, we propose an automatic algorithm for producing vol-
umetric meshes that fully contain the geometry of the input surface
model. Our method robustly handles artifacts common in man-made
meshes while still supporting the full set of quality assurances, as
do existing conforming meshing tools.

Past years have seen many advances in algorithms for generating
high quality simplicial (triangles in R2, tetrahedra in R3) volume
meshes. The popular tools TRIANGLE [Shewchuk 1996] and TET-
GEN [Si 2003] are examples of methods that exactly conform to a
given piecewise-linear boundary description. Such tools support a
wide range of features, in particular concerning element quality, but
they fail when the input boundary descriptions contain geometric
ambiguities or flaws which make the inner volume even remotely
ambiguous. The number of these issues in a common man-made
model may range in the hundreds or thousands (see Figure 1), so
manual clean up is time consuming and deadeningly tedious. An
alternative could be to treat this as a surface repair problem, but
this precludes exactly maintaining the original boundary vertices
and facets during local fixup operations [Attene 2010]. Surface
reconstruction techniques are not quite suitable in our setting either,
because they focus on recovering surfaces from scans of real solids,
where the artifacts should only arise from scanning errors, and hence
partial or complete remeshing and loss of input features may occur.

Our method generally follows the steps of reconstruction based on
constrained Delaunay tessellation (CDT): we compute the (tetrahe-
dral) CDT of the convex hull of the input vertices and facets. We
rely on state-of-the-art CDT tools, which currently require certain
pre-processing of the input, such as subdivision of self-intersecting
facets and discarding degeneracies. The goal is then to segment the
CDT volume into “inside” and “outside” elements, such that the set
of inside elements comprises a valid conforming tet mesh. Our main
contribution is the introduction of a new inside-outside confidence
function by generalizing the winding number. Though similar at
a high level, signed distance functions do not encode segmenta-
tion confidence. They smoothly pass through zero at the surface,
whereas our function has a sharp jump there. Away from the surface
our function is smooth (in fact, harmonic!). It defines a perfect,
piecewise-constant segmentation of space when the input is perfect
(i.e. a watertight surface). When the input contains ambiguities and
missing information, the well-behaved nature of our function makes
it suitable for guiding an energy-minimizing segmentation of the
CDT, which can be efficiently computed using graphcut. We can
constrain the segmentation to exactly contain all input vertices and
facets, as well as ensure surface manifoldness. The final output is
a minimal tetrahedral mesh carved from the CDT which may be
post-processed using existing tools to achieve high-quality elements
or heterogeneous sizing.

We evaluate our algorithm on a wide range of inputs, which are other-
wise unmeshable with existing tools. We demonstrate the usefulness
of the method via applications such as physically-based elasticity
simulation, skinning weight computation for real-time animation,
geometric modeling and volumetric texturing. Our algorithm offers
a step towards a new level of robustness of unstructured volumetric
meshing, which will potentially have a large impact on the standard
computer graphics pipeline, especially as geometry processing turns
toward treating solids as solids rather than operating (often just out
of convenience or obligation) on merely the surface.

1

0
½

-½

2
1½

Figure 3: The winding number intuitively captures self-intersections,
maintaining boundary exactly (cf. Figure (5) in [Shen et al. 2004]).

0

1

Figure 4: Winding number is the signed length of the projection of
a curve onto a circle at a given a point divided by 2⇡. Outside the
curve, the projection cancels itself out. Inside, it measures one.

2 Related work

Surface repair. Artifacts of surface meshes, such as violations of
the connected 2-manifoldness, consistent orientation or watertight-
ness properties, not only disturb conforming volumetric meshing but
also surface-based processing, because the majority of geometric
algorithms assume clean input. Although the problem of mesh re-
pair has been extensively studied, it remains elusive in practice [Ju
2009; Campen et al. 2012]. Most methods for meshing of polygon
soups into surfaces do not robustly deal with self-intersecting input
facets [Hoppe et al. 1993; Kraevoy et al. 2003; Guéziec et al. 2001;
Podolak and Rusinkiewicz 2005] insofar as promising a volume-
meshable, watertight surface. Some methods do offer guarantees;
they work by globally remeshing the output [Ju 2004; Bischoff et al.
2005] or by making local modifications at the cost of not maintaining
the original mesh (geometry and/or connectivity) in troublesome
areas [Yamakawa and Shimada 2009; Attene 2010]. Bischoff and
Kobbelt [2005] repair CAD models while trying to preserve the
original meshing, but they assume the input is divided into mani-
fold patches that do not self-intersect, and their method requires a
spatially-varying threshold for gap filling. [Attene 2010] provide
volume meshing as an application of their watertight output. How-
ever, because their algorithm iterates between removing troublesome
patches and hole filling, large portions of the original mesh may be
deleted (see Figure 18). Holes are filled by locally modifying the
mesh and become hard boundary constraints for volume meshing.
Conversely, our winding number function incorporates global in-
formation to intelligently resolve missing information ambiguities.
A volumetric tool for general surface repair exists [Nooruddin and
Turk 2003], but its voxel-based nature does not scale well for large,
detailed models and complicates interpolation of the input mesh.
Unlike our method, the work of [Murali and Funkhouser 1997] is
not restricted to consistently oriented input. However, their voting-
based approach is prone to mis-assignment in overlap regions and
loss of small details [Attene 2010].

Surface reconstruction can be seen as an alternative way to ob-
tain a clean, watertight surface mesh. However, most reconstruction
algorithms are tuned to noisy point cloud inputs and hence do not
strive to preserve the input mesh structure. Algorithms like the
Zipper of [Turk and Levoy 1994] stitch range images by generally

33:2 • A. Jacobson et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 33, Publication Date: July 2013

1

0

½

-½

Figure 6: Left to right: winding number field with respect to an
open, partial circle converging to a closed circle. Note the ±1 jump
discontinuity across the curve. Otherwise the function is harmonic:
smooth with minimal oscillation.

Let a = ci � p and b = ci+1 � p, then:

tan (✓i(p)) =
det([ab])

a · b =
axby � aybx,

axbx + ayby
(3)

4.1 Generalization to R3

The winding number immediately generalizes to R3 by replacing
angle with solid angle. The solid angle ⌦ of a Lipschitz surface S
with respect to a point p 2 R3 (w.l.o.g. let p = 0) is defined using
spherical coordinates to be:

⌦(p) =

ZZ

S

sin (�) d✓d�. (4)

It is the signed surface area of the projection of S onto the unit
sphere centered at p.

Let the winding number of a closed surface S at point p be defined
as w(p) := ⌦(p)/4⇡. The same classification properties apply
as in R2. The notion of “winding”, now counts the (signed) total
number of times the surface wraps around a point.

vk
vi

p

⌦f

vj

And again, if we have a triangulated,
piecewise-linear surface, there is an
immediate and exact discretization
of Equation (4):

w(p) =

mX

f=1

1

4⇡
⌦f (p), (5)

where ⌦f is the solid angle of the
oriented triangle {vi,vj ,vk} with
respect to p. Let a = vi � p, b =
vj � p, c = vk � p and a =
kak, b = kbk, c = kck; then following [van Oosterom and Strac-
kee 1983]:

tan

✓
⌦(p)

2

◆
=

det([ab c])

abc + (a · b)c + (b · c)a + (c · a)b (6)

4.2 Open, non-manifold and beyond

The simplicity of the discrete formulae in Equations (2) and (5)
begs the question, what will happen if the input is open? Or non-
manifold? Or otherwise ambiguous?

We first consider open curves in R2. Instead of an indicator, step
function, Equation (2) is now an otherwise smooth function that
jumps by ±1 across the curve (see Figure 6). In fact, the smooth-
ness and fairness of this generalized winding number may be well

define Laplacian operator in 2d
Laplacian2 := (f,x,y) -> diff(f,x,x) + diff(f,y,y);
arbitrary position for vi, a := vi - p
a_x := vi_x-px; a_y := vi_y-py;
arbitrary position for vj, b := vj - p
b_x := vj_x-px; b_y := vj_y-py;
determinant of (a,b)
detab := a_x*b_y - b_x*a_y;
a dot b
adotb := a_x*b_x + a_y*b_y;
quotient := detab / adotb;
sab := 2*arctan(simplify(quotient));
simplify(Laplacian2(sab,px,py),symbolic);
result is 0

define Laplacian operator in 3d
Laplacian3 := (f,x,y,z) -> diff(f,x,x) + diff(f,y,y) + diff(f,z,z);
vi := (0,0,0), a := vi - p
a_x := 0-px; a_y := 0-py; a_z := 0-pz;
arbitrary position for vj, b := vj - p
b_x := vj_x-px; b_y := vj_y-py; b_z := vj_z-pz;
arbitrary position for vk, c := vk - p
c_x := vk_x-px; c_y := vk_y-py; c_z := vk_z-pz;
determinant of (a,b,c)
detabc := a_x*b_y*c_z + b_x*c_y*a_z + c_x*a_y*b_z -
 a_x*c_y*b_z - b_x*a_y*c_z - c_x*b_y*a_z;
a := sqrt(a_x*a_x+a_y*a_y+a_z*a_z);
b := sqrt(b_x*b_x+b_y*b_y+b_z*b_z);
c := sqrt(c_x*c_x+c_y*c_y+c_z*c_z);
divisor in atan
divisor := a*b*c + (a_x*b_x+a_y*b_y+a_z*b_z)*c +
 (b_x*c_x+b_y*c_y+b_z*c_z)*a + (c_x*a_x+c_y*a_y+c_z*a_z)*b;
sabc := 2*arctan(detabc / divisor);
simplify(Laplacian3(sabc,px,py,pz),symbolic);
result is 0

Figure 7: MAPLE code proving that signed angle inR2, solid angle
R3, and, by extension, the winding number are harmonic.

1

0
½

-½

2
1½

Figure 8: Winding number gracefully handles holes (in grey curve,
left), non-manifold attachments (middle), and exactly or nearly
duplicate facets (right).

understood. Except on the curve, it is harmonic! This implies C1

smoothness and minimal oscillations – highly desirable properties.

The sum of harmonic functions is harmonic, so it suffices to show
that all ✓i and ⌦i are harmonic. This is easy to do using symbolic
differentiation and simplification using Maple [Char et al. 1983]
(see Figure 7). In R3 treating all triangle vertices vi,vj ,vk as
symbolic variables makes Maple run out of memory, therefore we
take advantage of invariance to translation and fix vi = (0, 0, 0).

The winding number is not simply the unique harmonic function
determined by setting one side of the boundary to 0 and the other to
1, as if by a diffusion curve of [Orzan et al. 2008] (also cf. [Davis
et al. 2002]). This is true if and only if the input is watertight. Rather,
the winding number is the sum of harmonic functions corresponding
to each input facet, setting one side to �1/2 and the other to 1/2
(see Figure 9). We do not explicitly control the boundary conditions
— they are implicitly defined by the boundary winding number itself.
This allows graceful shift from a perfect segmentation function to
a smooth confidence measure as artifacts appear in the boundary.
Unlike [Orzan et al. 2008] who solve a variational problem, we have
a closed-form expression to evaluate the winding number.

Equation (5) may be interpreted as an instance of the boundary
element method (BEM) for evaluating the solution to the Laplace
equation. If we define Dirichlet boundary conditions on each side

33:4 • A. Jacobson et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 33, Publication Date: July 2013

Fig. 2.4: Winding number point and field values, courtesy Figures 4 and 6 from Jacobson
et al. [10].

B. Shawcroft, K.M. Shepherd, & S.A. Mitchell 147

and 1 is inside. For geometry with gaps, the winding number near a gap is typically between
0 and 1. In extreme cases, such as overlapping domain boundaries, invalid geometries may
give values beyond [0, 1]. In 3D, the winding number integrates the solid angles seen from
a point, e.g., for a volume defined by a triangle soup. Which normal direction is outward-
facing determines the sign of the solid-angle contribution.

3. Methodology.

Volume Fractions. Herein we study both 2D and 3D domains. We define a regular
background grid, e.g. by subdividing an axis-aligned bounding box. This grid is a cubical
quadrilateral or hexahedral complex, depending on the domain dimension. The volume
fraction of each maximally-dimensioned cell is computed as the average of the winding
numbers of its sample points. Sample points lie in an sd array, as shown in fig. 3.1. (Recall
we calculate persistent homology based on volume fractions, with the goal that the user
may select the volume fraction that achieves their desired mesh topology.)

Volume-Fraction Persistence Parameter. The persistence parameter used herein is the
volume-fraction threshold, ordered from 1 down to 0 (i.e. by decreasing value). By defining
volume fractions only for cells of maximal dimension, a mesh is defined by including all cells
with volume fraction greater than or equal to an input volume fraction and removing all
others. The order that cells are added to the mesh as a function of the persistence parameter
is demonstrated on a topologically invalid representation of the Chesapeake Bay in fig. 3.2.
The persistent homology diagram is displayed in fig. 3.2d. These images illustrate significant
topological aliasing, which limits the utility of these meshes. In what follows, we aim to
mitigate these rasterization effects.

Sub-cell Volume Fractions. To assist in topological anti-aliasing, we also define volume
fractions for all lower-dimensional grid cells. For any such n-cell, its sample points are those
in a (fictitious) grid cell centered at that n-cell; see fig. 3.1. We use only even numbers
s of sample points because these samples do not lie on cell boundaries. Volume fractions
for these lower-dimensional cells are computed as averages of winding numbers associated
with sample points contained in the fictitious grid cell, in a manner analogous to cells of
maximal dimension. As before, only cells with volume fraction greater than or equal to
a prescribed threshold will remain in the cell complex. All others are omitted. Omitted
cells are called “exterior” cells, while remaining cells are called “interior” cells. We call this
sampling process “subgrid sampling.”

(a) Vertex, even (b) Vertex, odd (c) Edge, even (d) Edge, odd

Fig. 3.1: Sample s × s arrays are shown. Samples contained by th red dashed lines define
vertex and edge volume fractions in 2D. We use only even sample arrays.

Anti-aliasing. To address the undesirable rasterization effects introduced by our back-
ground grid, we employ subgrid sampling as an anti-aliasing method.

In 2D, the only possible pinch is two quads meeting at a pinch vertex, whereas in 3D
there are 11 possible configurations of pinched edges and vertices. These are shown in

148TUSQH: Topological Control Of Volume-fraction Meshes Near Small Features And Ugly Geometry

(a) Vol. Frac.: 50%;
B0 = 4;B1 = 2

(b) Vol. Frac.: 15%;
B0 = 1;B1 = 7

(c) Vol. Frac.: 1%;
B0 = 1;B1 = 12

(d) Persistence Diagram

Fig. 3.2: Chesapeake Bay meshes and their Betti numbers change as the volume fraction
threshold is lowered. The model contains deliberate errors: gaps, overlaps, and offsets.
As a result, the winding numbers of sampled points may be positive in regions that are
clearly inland, as in the lower-left region of (c). Also note the effects of rasterization when
incorporating volume fractions of elements in the background grid without any anti-aliasing.
In (d) the persistence diagram is shown, with parameter 1 minus the volume fraction.

fig. 3.3. To find pinches, we consider each vertex and the neighborhood of cells containing
it, i.e., 2× 2 quads in 2D and 2× 2× 2 hexes in 3D. If the neighborhood corresponds to a
pinch case, the pinch vertices and edges are queued. Each pinch in the queue is processed in
a way that is compatible with processing nearby pinches. The pinches are connected if the
subcells (vertices or edges) are interior, and disconnected if they are exterior. Each pinch
is repaired by splitting cells (either mesh cells or their complement) using predefined splits,
and discarding or adding some of the split cells. The splits are shown in fig. 3.4. In 2D, the
template is a one-to-five split. In 3D, pinch edges are repaired before vertices. The edge-
repair template is a one-to-seven split. For pinch vertices, we follow with a two-to-six split
of any pairs of hexes from two different one-to-seven splits that share a face; see fig. 3.4c.

To separate cells, splits are performed on the cells of the mesh itself, and child cells
that contain pinch vertices or edges are removed, as shown in fig. 3.5. To connect cells,
splits are performed on the complement of the mesh, and child cells that contain pinches
are added to the mesh, as illustrated in fig. 3.6. A single mesh can use both separations
and connections in different regions. However, we require that all adjacent pinches must
be resolved in the same way to ensure validity of the resulting mesh. Two sets of pinches
separated by cells without pinches can be resolved in opposite ways. Our rules occasionally
indicate that adjacent pinches should be resolved in opposite ways. We pre-select whether
we connect or separate these cases.

When separating pinches, the configuration in fig. 3.3d is the only exception to the rule
of removing all the child cells that share the pinch edge. The one-to-seven split is performed
on the hexahedra sharing the pinch edge, and all the child hexahedra that contain that edge
are removed. This turns the central vertex into a pinch. To prevent that, one additional
child hexahedron is removed. In the orientation of fig. 3.3d, the removed hex is the rightmost
child of the top hex, which contains the central vertex; see fig. 3.5d.

For resolving archipelagos, all the connected components of the mesh are identified.
For any pair of connected components, if the edges that connect them are interior to the
geometry, the components are joined using templates along those edges. The remaining
connected components that contain fewer than a user-defined number of highest-dimensional
cells are removed. In fig. 3.7 the utility of the anti-aliasing algorithm is demonstrated on

B. Shawcroft, K.M. Shepherd, & S.A. Mitchell 149

(a) 2D vertex (b) 1 vertex (c) 1 edge (d) 1 edge (e) 3 edges (f) 2 edges

(g) 2 edges (h)2edges,1vertex (i) 1 edge (j) 3 edges (k) 1 edge (l) 1 vertex

Fig. 3.3: All possible pinches in 2D and 3D are shown.

(a) 2D 1–5 split (b) 3D 1–7 split (c) 3D 2–6 split

Fig. 3.4: Templates are displayed for fixing pinches.

the unaligned gap and sharp angle of fig. 2.3.
Transferring Persistent Parameters to Simplices. Having a framework by which topo-

logical anti-aliasing can be performed on the mesh by use of subgrid sampling and templates,
we now turn our attention to ensuring that the topological anti-aliasing defined above is
accurately represented in persistent homology calculations. Because most open-source per-
sistent homology software employs simplicial complexes, we first transform the cubical fil-
tration into a topologically-equivalent simplicial filtration. In what follows, we focus on
consistency with pinch resolution, rather than also on archipelago resolution. As a result,
we make the assumption in 2D that an edge shared by two interior quadrilaterals will also
be interior, and an edge shared by two interior vertices must also be interior. Similarly, in
3D, a face shared by two interior hexahedra will be interior, as will a face bounded by four
interior edges and vertices. We first focus on the 2D framework, then the 3D framework.

In 2D, a primal vertex induces a dual 2-cell, and a primal edge induces a dual edge, and
a primal quad induces a dual vertex. Each dual vertex is assigned a filtration value of its
corresponding primal face’s volume fraction. The dual mesh is then further subdivied into a
simplicial mesh. To create the simplicial mesh, an additional simplicial vertex is introduced
at the centroid of each dual 2-cell. Simplices are then formed as the join of each dual face’s
edge with the simplicial centroid vertex. This simplicial vertex corresponds to a vertex
on the primal mesh, and takes the filtration value of the corresponding primal vertex’s
volume fraction. However, to preclude the introduction of spurious topological artifacts
(and consistent with previous computations), we also require that this volume fraction be
between the maximal and minimal volume fraction of the surrounding four vertices. The
filtration value of this simplicial vertex then informs whether two primal faces connected
with a pinch should be topologically separated or connected. Having thus defined filtration
values for all vertices of the induced simplicial complex, we then use a Vietoris–Rips complex
to calculate persistent homology, meaning that at persistence value k ∈ R, all vertices with
persistence parameter value greater than or equal to k are added to the filtration, then all
edges between already-added vertices, then all triangles formed by already-added edges.

150TUSQH: Topological Control Of Volume-fraction Meshes Near Small Features And Ugly Geometry

(a) 2D vertex (b) 1 vertex (c) 1 edge (d) 1 edge (e) 3 edges (f) 2 edges

(g) 2 edges (h)2edges,1vertex (i) 1 edge (j) 3 edges (k) 1 edge (l) 1 vertex

Fig. 3.5: Templates for shrinking pinches about a central vertex are shown. Pinched vertices
on the boundary of the depicted neighborhoods are resolved when the template window is
shifted onto the pinched vertex.

(a) 2D vertex (b) 1 vertex (c) 1 edge (d) 1 edge (e) 3 edges (f) 2 edges

(g) 2 edges (h)2edges,1vertex (i) 1 edge (j) 3 edges (k) 1 edge (l) 1 vertex

Fig. 3.6: Templates for growing pinches are shown.

(a) unaligned grid

(b) sharp angle

Fig. 3.7: Subgrid sampling and anti-aliasing performed on fig. 2.3.

In 3D, a primal vertex induces a dual volume cell, and a primal edge induces a dual
face, a primal face induces a dual edge, and a primal volume induces a dual vertex. As in
2D, each dual vertex is assigned the filtration value of its primal volume. To generate a
simplicial mesh from the dual mesh, each dual face is subdivided into four triangles with
a new vertex introduced, as in 2D. Here, the additional vertex corresponds to a primal
edge and will take filtration value of the volume fraction of this primal edge, subject to
constraints keeping the filtration value between the maximal and minimal values of the
surrounding four simplices of the dual face. Each dual volume is then subdivided into 24
tetrahedra by introducing a single simplicial vertex at the centroid of the dual volume and

B. Shawcroft, K.M. Shepherd, & S.A. Mitchell 151

(a) Primal volume
fractions

(b) Dual volume frac-
tions

(c) Connected sim-
plices

(d) Disconnected sim-
plices

Fig. 3.8: An example of converting 2D cell volume fractions into a filtration of a simplicial
complex is shown. Numbers indicated are numerators, and are to be divided by six to arrive
at volume fractions. Herein, we consider cells with volume fraction strictly greater than
0.5. The leftmost figure indicates the ordering of grid cells. The next shows the dual grid
with vertex values transferred from grid cells. Finally, the dual complex is subdivided into
a simplicial complex. The choice of volume fraction for the introduced vertices (in bold)
will lead to varying connectivity of non-manifold regions.

taking the join of this vertex with each of the 24 triangles defined on the (subdivided) faces of
the dual volume. Again, this new simplicial vertex will correspond to a vertex on the primal
mesh, and consequently takes a filtration value of the volume fraction of this primal mesh
vertex (again subject to the constraint that the filtration value must be between the maximal
and minimal values of the 26 surrounding vertices). The filtration values of the simplicial
vertices corresponding to primal vertices and primal edges is then locally consistent with the
procedures performed resolving pinch points, and will have identical persistent homology.
This conversion process, from a cubical primal cell complex into a simplicial one with an
identical filtration is illustrated in figs. 3.8 and 3.9.

For the sake of completeness, we also note that similar primal to dual to simplicial
operations could be performed on unstructured background meshes. In the 2D case, each
dual cell of maximal dimension and with k sides would be subdivided into k triangles. In
3D, each dual cell of maximal dimension and with ℓ faces, with the ith face having ki sides,
would subdivide into

∑ℓ
i=1 ki tetrahedra.

Finally, we note that for a truly general framework, a vertex in the above-defined sim-
plicial complexes would need to be defined for each cell in the primal complex. Particularly,
in 2D we currently introduce vertices corresponding to primal faces and vertices, but not for
primal edges. This would require splitting every dual face into 8 simplices, rather than 4.
In 3D, we introduce vertices for all cells except for primal faces, and would require splitting
every dual volume into 48 tetrahedra, rather than 24. Given the challenges of navigating
this topological space in a meaningful way (as well as the additional computational expense
incurred by such a navigation), we leave this for future work.

4. Results.

4.1. Computational Results. Tusqh was developed and evaluated using custom plu-
gins to Rhinoceros 3D and Grasshopper. Winding numbers were computed using libigl [11].
Persistent homology was computed using Aleph [23], which is based on PHAT [2].

The framework is tested on an oriented planar representation of the Chesapeake Bay1

1Model derived from https://vecta.io/symbols/281/ecosystems-maps/93/usa-md-va-chesapeake-bay-line-map

152TUSQH: Topological Control Of Volume-fraction Meshes Near Small Features And Ugly Geometry

Fig. 3.9: All faces of two adjacent 3D hexes are converted into a filtration of a tetrahedral
simplicial complex.

(a) Bearings (b) Vol. Frac.: 25% (c) Vol. Frac.: 50%

(d) Vol. Frac.: 75% (e) Vol. Frac.: 100% (f) Persistence Diagram

Fig. 4.1: Meshes of bearings for various volume fraction thresholds are shown. In (f) the
persistence diagram is shown, with paramerter 1 minus the volume fraction.

and mechanical bearings 2. Snapshots of given computed volume fractions are shown in
fig. 3.2 and fig. 4.1. Model errors include overlapping edges, repeated/offset edges, and
numerous gaps. Despite the “interior” of the bay being ill-defined, the proposed method
still captures the intended geographic domain with respect to both the continent and to
islands. A complete view of the homological structure based on varying the volume fraction
is shown in the persistence diagram of figs. 3.2d and 4.1f. Results demonstrate that a mesh
with the desired homological structure could be extracted from the background grid by
selecting the correct threshold. These figures are primarily for illustrative purposes. We
purposely chose a coarse grid size to generate the topological issues we are addressing. In
practice, a finer grid would better capture local behavior.

Anti-aliasing. Figure 4.2 demonstrates the anti-aliasing technique on a mesh of the
Chesapeake Bay to resolve both pinches and archipelagos. The anti-aliased mesh is analysis
suitable, although in practice a refined mesh would be used as input for analysis.

4.2. Anti-aliasing Guarantees and Limitations. As noted in Section 2, one of the
primary difficulties with volume fraction-based meshing methods is mitigating the effects of
rasterization (i.e. choice of orientation and sample size) through a topological anti-aliasing.
The following theoretical result holds regarding the success of the proposed anti-aliasing

2Model provided at https://ten-thousand-models.appspot.com/detail.html?file_id=1716283

B. Shawcroft, K.M. Shepherd, & S.A. Mitchell 153

Fig. 4.2: Meshes of Chesapeake bay with subcells and anti-aliasing are shown. Interior
vertices and edges are blue outlined circles and purple lines respectively, while removed
faces are shown in black (left). Connecting and separating templates are in red (right).

methods in mitigating topological rasterization. A proof of the result can be found in the
appendix of the preprint version of this document on arXiv.

Theorem 4.1. Given a rectangular lattice in R2 with characteristic length ℓ overlaying
two parallel half-spaces separated by a length of L, topological rasterization may occur when
ℓ(
√
2 − 1) < L ≤ ℓ. For the subgrid sampling scheme proposed in this text, topological

rasterization may only occur when ℓ(
√
2 − 1) < L <

√
2ℓ
2 . Finally, topological rasterization

due to changes in orientation cannot be resolved for L such that ℓ(
√
2− 1) < L < ℓ

2 .

4.3. Topological Effects of Grid Refinement. At the beginning of our project we
conjectured that persistent homology can measure the necessary grid size to achieve a desired
topology, but this turned out not to be true in some cases. When features are isolated or
globally the same scale, grid refinement has intuitive and predictable topological effects.
However, we discovered that this is not true for general inputs. Counterexamples show non-
monotonic filtration behavior by grid size. Discretization by grid cells and their alignment
with input features strongly effects topological behavior. Thus algorithm parameters of
when to refine the background grid may have unexpected effects on mesh topology.

Convergence. For some inputs, as the grid is refined, topological features of the input
are resolved and the output mesh topology becomes stable. However, for some other inputs,
the topology never converges and no filtration is possible. For some inputs it may be possible
to define a filtration, with simplices only appearing, never disappearing. If simplices appear
and disappear, then zig-zag persistence could computationally predict topology.

In fig. 2.3 a feature is inconsistently resolved due to aliasing effects of unaligned grids.
For the constant-width gap in fig. 2.3a, refining or coarsening the grid makes the gap resolved
consistently as open or closed. However, for the variable-sized gap in fig. 2.3b, global uniform
refinement merely moves where the problem occurs. The example is a wedge of material
bounded by two lines meeting at a small angle α at an apex. In locations where the grid
size is about the same as the local width, whether a cell is included or excluded can change
every few grid cells, leading to many separate connected grid components. For any small
grid size, there will be some portion of the wedge where the lines are about that size apart,
specifically in the range [12 , 1] cotα squares away from the apex. The geometry is undesirable

154TUSQH: Topological Control Of Volume-fraction Meshes Near Small Features And Ugly Geometry

10

square to right
of corner is
always closed

closed

closed

gap

gap

Crop to rectangle

closed

2/3

1/3 closed

closed

slo
pe 1

slope -3

1/2 10

square to right
of corner is
always closedclosed

gap

gap

closed

closed

closed

slo
pe 1

slope -3

1/21/3

gap

Fig. 4.3: In these counterexamples to convergence, the grid topology alternates between one
and two connected components ad infinitum under refinement. The alternations of the left
and right examples are opposite.

because the islands move location. The grid topology may be constant over refinement, but
that topology is undesirable.

Non-convergence. In each of the examples in fig. 4.3 the output mesh topology does
not converge under refinement. That is, there is no grid size below which the output mesh
topology does not change. The background grid is uniform, but we only draw some of the
relevant cells at each level of refinement. Blue (closure) cells are mostly material and thus
included in the output mesh. Red (gap) cells are unfilled and excluded. Under refinement,
the meshes alternate between one and two connected components ad infinitum. The grid
squares containing the corner alternate between filled and open, because of the corner’s
relative position inside its square. The descriptions of the geometries are finite, just two
triangular blocks. It is simple, plausible, and without sharp angles. The only unusual feature
is the blocks touch at a single pinch point.

The left and right examples in fig. 4.3 have alternate sizes of when they are open and
closed. If an input has both of these pinch features between two material blocks, then
exactly one of the pinches will be closed, giving a mesh with the homology of a disk. It
is converged in the sense that the homology does not change under refinement, but the
local connectivity does change. Hence, even if we were to use zigzag homology it would not
distinguish between this case and a single solid block of material.

The analytic description of the geometries in fig. 4.3 is two triangular blocks of material
with slopes −3 and 1 meeting at a corner. In the upper example, the corner’s coordinate is
(23 , 0), and in the lower it is (13 , 0). If we start with a unit grid with a vertex at the origin,
then under refinement the grid square containing the corner alternates between having the
corner 2/3 of the way along the bottom edge (blue), and 1/3 of the way (red). Such blue
squares have volume fraction 10/18 and the red squares 7/18. This construction is not tight.
The slopes may be different. The corner may lie at some other coordinate, and a grid
vertex will never lie on it if its x-coordinate is not k/2m for some {k,m} ∈ Z. Thus more
complicated sequences than alternating may be constructed.

5. Conclusion. In this work, a mesh generation framework is developed to facilitate
the creation of meshes on potentially ugly geometry based on user-specified needs through
the use of persistent homology. The framework is built on a volume-fraction based meshing
method, similar to Sculpt; a desired mesh can be selected based on the appropriate homo-
logical structure induced by this volume fraction. The software, Tusqh, demonstrates the
potential of the meshing framework in both two and three dimensions, and is planned for
open source release. As a counterpoint we have theoretical analysis showing that for any
volume-fraction threshold we choose, there are cases where aliasing artifacts will still arise.

B. Shawcroft, K.M. Shepherd, & S.A. Mitchell 155

REFERENCES

[1] G. Barill, N. G. Dickson, R. Schmidt, D. I. Levin, and A. Jacobson, Fast winding numbers for
soups and clouds, ACM Transactions on Graphics (TOG), 37 (2018), pp. 1–12.

[2] U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner, PHAT – persistent homology algorithms
toolbox, Journal of Symbolic Computation, 78 (2017), pp. 76–90. Algorithms and Software for
Computational Topology.

[3] G. Carlsson and V. De Silva, Zigzag persistence, Foundations of Computational Mathematics, 10
(2010), pp. 367–405.

[4] F. C. Crow, The aliasing problem in computer-generated shaded images, Communications of the
ACM, 20 (1977), pp. 799–805.

[5] T. K. Dey and T. Hou, Computing zigzag vineyard efficiently including expansions and contractions,
in 40th International Symposium on Computational Geometry (SoCG 2024), Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2024.

[6] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological persistence and simplification,
Discrete Computational Geometry, 28 (2002), pp. 511–533.

[7] A. Hatcher, Algebraic Topology, Cambridge University Press, 2001.
[8] Y. Hu, T. Schneider, B. Wang, D. Zorin, and D. Panozzo, Fast tetrahedral meshing in the wild,

ACM Trans. Graph., 39 (2020).
[9] Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and D. Panozzo, Tetrahedral meshing in the

wild, ACM Trans. Graph., 37 (2018).
[10] A. Jacobson, L. Kavan, and O. Sorkine-Hornung, Robust inside-outside segmentation using gen-

eralized winding numbers, ACM Trans. Graph., 32 (2013), p. 33.
[11] A. Jacobson, D. Panozzo, et al., libigl: A simple C++ geometry processing library, 2018.

https://libigl.github.io/.
[12] J. Jon Hasselgren, T. Akenine-M oller, and L. Ohlsson, GPU Gems 2: Programming Techniques

for High-Performance Graphics and General-Purpose Computation, Addison-Wesley Professional,
2005, ch. 42, Conservative Rasterization. https://developer.nvidia.com/gpugems/gpugems2/

part-v-image-oriented-computing/chapter-42-conservative-rasterization.
[13] P. Knupp, Introducing the target-matrix paradigm for mesh optimization by node movement, Engr.

with Comptr., 28 (2012), pp. 419–429.
[14] D. P. Mitchell, The antialiasing problem in ray tracing, Advanced Topics in Ray Tracing, SIG-

GRAPH 1990 Course Notes, (1990).
[15] S. A. Mitchell and T. J. Tautges, Pillowing doublets: Refining a mesh to ensure that faces share

at most one edge, Proc. 4th Int. Meshing Roundtable, 1995, (1995). Sandia National Laboratories
technical report SAND-95-2356C.

[16] C. Moon, S. A. Mitchell, J. E. Heath, and M. Andrew, Statistical inference over persistent
homology predicts fluid flow in porous media, Water Resources Research, 55 (2019).

[17] D. Noble, M. Staten, and C. R. Wilson, Using a faceted geometry representation to improve the
performance of overlay grid meshing, Tech. Rep. SAND2024-08942A, Sandia National Laborato-
ries, Albuquerque, NM U.S.A., 2024. Research abstract, SIAM IMR24.

[18] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington, A roadmap for the
computation of persistent homology, EPJ Data Science, 6 (2017), p. 17.

[19] S. J. Owen, Parallel smoothing for grid-based methods, International Meshing Roundtable, Research
Note, (2012), pp. 161–178.

[20] S. J. Owen, J. A. Brown, C. D. Ernst, H. Lim, and K. N. Long, Hexahedral mesh generation for
computational materials modeling, Procedia Engineering, 203 (2017), pp. 167–179.

[21] S. J. Owen and T. R. Shelton, Evaluation of grid-based hex meshes for solid mechanics, Engineering
with Computers, 31 (2015), pp. 529–543.

[22] S. J. Owen, M. L. Staten, and M. C. Sorensen, Parallel hex meshing from volume fractions, in
International Meshing Roundtable, W. R. Quadros, ed., Berlin, Heidelberg, 2012, Springer Berlin
Heidelberg, pp. 161–178.

[23] B. Rieck et al., Aleph — a library for exploring persistent homology, 2016.
https://github.com/Pseudomanifold/Aleph.

[24] M. Staten, D. Noble, and C. R. Wilson, Constructing tetrahedral meshes no matter how ugly the
CAD, Tech. Rep. SAND2024-03643C, Sandia National Laboratories, Albuquerque, NM U.S.A.,
2024. Research abstract, SIAM IMR24.

[25] M. L. Staten, J. F. Shepherd, and K. Shimada, Mesh matching — creating conforming interfaces
between hexahedral meshes, in Proceedings of the 17th International Meshing Roundtable, R. V.
Garimella, ed., Berlin, Heidelberg, 2008, Springer Berlin Heidelberg, pp. 467–484.

[26] Y. Zhang, T. J. Hughes, and C. L. Bajaj, An automatic 3D mesh generation method for domains
with multiple materials, Computer Methods in Applied Mechanics and Engineering, 199 (2010),

156TUSQH: Topological Control Of Volume-fraction Meshes Near Small Features And Ugly Geometry

pp. 405–415. Computational Geometry and Analysis.

B. Shawcroft, K.M. Shepherd, & S.A. Mitchell 157

PARALLEL INCOMPLETE LU FACTORIZATIONS BASED ON
ALTERNATING TRIANGULAR SOLVES

MARC A. TUNNELL∗ AND ERIK G. BOMAN†

Abstract.
Incomplete factorizations are popular preconditioners and are well known to be effective for a wide

range of problems. Additionally, these preconditioners can be used as a “black box” and do not rely on
any a priori knowledge of the problem. However, traditional algorithms for computing these incomplete
factorizations are based on Gaussian elimination and do not parallelize well. Recently, a more parallel
incomplete factorization algorithm was proposed by Chow and Patel [5], where the factors are computed
iteratively. In this paper, we propose a new iterative approach that is based on alternating triangular
solves of L and U . We develop two versions: ATS-ILU for a static sparsity pattern, and ATS-ILUT for a
dynamic pattern (using thresholding). We show that this new method is similar to the fine-grained iterative
ILU method by Chow but has the added advantage that it allows greater reuse of memory and is fully
deterministic in parallel, meaning the results do not depend on scheduling. We evaluate the new method
on several test matrices from the SuiteSparse collection and show that is competitive with current ILU
methods.

Key words. preconditioner, incomplete factorization, ILU, parallel, least squares

1. Introduction. Preconditioning is well known to be essential for improving the speed
of convergence of Krylov methods such as Conjugate Gradient (CG) and Generalized Min-
imal Residual (GMRES) [3, 11, 19, 20]. Incomplete Lower-Upper (ILU) factorizations are
a popular class of preconditioners as they can be used as a “black box” on a wide range of
problems. There are two main types of ILU factorizations, level-based ILU(k) [3, 16, 19]
and threshold-based ILUT [18]. However, these methods are inherently sequential and do
not parallelize well.

There has been interest in the parallelization of these more classical interpretations of
ILU, largely through graph partitioning schemes. These graph partition-based methods,
such as [8, 12, 13, 15], offer a promising approach to parallelizing classical ILU methods.
By decomposing the graph corresponding to the matrix and determining variables that
can be eliminated in parallel, these methods aim to distribute the computational load more
evenly across processors. While these strategies have shown effectiveness for certain types of
problems [3], their implementation can be highly complex. Additionally, their performance
can be problem-dependent, requiring consideration of the underlying graph structure when
choosing a parallelization strategy.

More recently, there have been strides into methods of computing ILU factors iteratively,
potentially giving up some of the robustness of the classical methods for better parallel
properties [5]. Iterative ILU methods, such as those introduced by Chow [5], offer significant
advantages in terms of scalability on modern parallel architectures. For the remainder of
this paper, we refer to the method introduced by Chow as ParILU and its thresholded
counterpart as ParILUT [1, 5]. These methods approximate the ILU factors through a
series of iterative updates, which can be more easily distributed across multiple processors
or offloaded to accelerators.

One of the primary benefits of iterative ILU methods is their ability to handle larger
and more complex systems efficiently and be utilized as a true “black box” preconditioner
by domain scientists. By breaking down each iterative update into smaller approximate
subproblems and solving them independently, different parts of the factorization can be
computed in parallel without the need for complex graph-partitioning algorithms. This

∗Purdue University, mtunnell@purdue.edu
†Sandia National Labs, egboman@sandia.gov

158 CSRI Summer Proceedings 2024

approach allows for the use of iterative ILU methods on a wide range of problems, including
those with complex or irregular graph structures that may preclude high levels of parallelism
in the graph-partitioned classical ILU methods.

Furthermore, iterative ILU methods are adaptable to various hardware accelerators
such as graphics processing units (GPUs) [2], which are increasingly important for high-
performance computing. By leveraging the parallel processing capability of these accelera-
tors, iterative ILU methods can significantly reduce the real-world time required to compute
the ILU factors for large-scale problems, thereby speeding up the overall solution process.

In this paper, we propose a new class of iteratively-computed ILU preconditioners,
which we call Alternating triangular Solves ILU (ATS-ILU). This method builds upon the
strengths of existing iterative ILU approaches while leveraging improved memory reuse and
determinism in parallel. We provide an analysis of the method and evaluate its performance
compared to the state of the art on a variety of test matrices. We show that our method
is competitive with current ILU methods and has the potential to be a powerful tool for
solving large-scale problems on modern parallel architectures. We implement our algorithm
in Julia [4, 17], as well as Kokkos [9, 22], and utilize the Kokkos ecosystem [21] for their
implementations of ParILUT and GMRES.

This paper is organized as follows. First, we gave an introduction to classical ILU meth-
ods as well as their iterative counterparts in section 1. Next, we present needed background
information in section 2, including an introduction of our notation, a review of a classical
ILU method, and the fine-grained ILU method by Chow [5]. In section 3, we introduce
our new class of iteratively computed ILU preconditioners based on alternating triangular
solves and discuss its relation to ParILU. The algorithms for ATS-ILU and ATS-ILUT are
presented in subsection 3.3 and subsection 3.5, respectively. In section 4, we provide im-
plementation details for our new method. In section 5, we discuss the parallelization of
our method. We evaluate the performance of our method on a variety of test matrices in
section 6. Finally, we discuss future work and concluding remarks in section 7.

2. Background Information. We start this section by describing the notation used
in this paper. We use largely standard notation but introduce some new notation for the
sake of clarity. We use A to denote a matrix, AT to denote its transpose, a to denote
a vector, I to refer to the identity matrix where the size is determined based on context,
and L and U to reference sparse matrices that are lower and upper triangular in structure.
We subscript these matrices with the row and column indices separated by a comma. The
notation ai,j refers to a scalar entry in the matrix A at row i and column j, while ai,: refers
to a row vector of A at row i. We utilize MATLAB [14] style slicing notation, where ai,j:k

refers to the elements of ai,: at the column indices j through k. We additionally use non-
contiguous slicing, where ai,idx refers to the elements of ai,: at the column indices in idx.
Non-contiguous submatrices may also be referenced in a similar manner, where Aidx1,idx2

refers to the submatrix of A whose entries correspond to the cartesian product of idx1 and
idx2. We assume that slicing with a set of indices is performed in the natural order of the
indices in the set. In the case of the cartesian product, a topological ordering is used where
it is first ordered by the row index and then by the column index.

We use N to denote the set of natural numbers, which we define to start at 1, and R
to denote the set of real numbers. The notation N2 refers to the set of pairs of natural
numbers, and Rn×m refers to the set of n × m matrices with real entries. We use Ak to
refer to the kth power of the matrix A, whereas L(k) refers to the kth iteration of a method
applied to L. We are consistent with our use of 1-based indexing throughout this paper and
assume all loops are inclusive of their endpoints unless otherwise stated.

We use notation like L to denote a graph of the sparsity pattern of L and are consistent

M. Tunnell & E.G. Boman 159

with our use of S to denote some arbitrary initial sparsity pattern. We use standard notation
to define operations on a graph, where L\U refers to the graph L with the edges that exist
in U removed. Similarly, L ∪ U refers to the graph L with the edges that exist in U added.
We assume that the edges in a graph are uniquely defined by a set and often use set notation
to define the entries of an adjacency matrix that fully describes the edges of a graph.

Next, we review a classical implementation of ILU, the sparse triangular solve algorithm,
and the fine-grained ILU method by Chow [5].

2.1. Classical ILU Method. The classical ILU(k) method is based on Gaussian
elimination, but with entries dropped to avoid or reduce the amount of fill-in, and given a
pattern, S, of non-zero entries in the factorization. These non-zero locations, in the case
of an ILU(0) factorization, are often chosen to be the same as the non-zero pattern of the
matrix, A, but this is not required. For higher levels of fill, a common choice is to use the
sparsity pattern of Ak+1. This can be seen as an approximation to the true LU factors of
A, where the equation LU = A is satisfied exactly on the pattern of A and may be violated
elsewhere.

We show this algorithm given a fixed non-zero pattern, S, in Algorithm 1. This algo-
rithm computes the ILU factors by iterating through the rows and columns of the input
matrix A, updating the non-zero entries according to the sparsity pattern S. For each row
i, the algorithm computes the entries in the kth column of L by scaling the entries in the
kth column of U by the diagonal entry uk,k. This algorithm is inherently sequential as the
updates to the factors are dependent on the previous row or column.

Algorithm 1 Classic ILU

Input: Sparse matrix A, sparsity pattern S.
Output: Sparse ILU factors L and U , where LU = A along the sparsity pattern S.
L← I
U ← A where ui,j = 0 if (i, j) ̸∈ S
for j = 1 to n− 1 do

for i = j + 1 to n and (i, j) ∈ S do
ℓi,j ← ui,j/uj,j
for k = i to n and (i, k) ∈ S do

ui,k ← ui,k − ℓi,j · uj,k
end for

end for
end for

2.2. Fine-Grained Iterative ILU Method by Chow. Like the classical ILU method,
ParILU computes an approximation to the true LU factors ofA but does so iteratively using
a series of smaller, approximate subproblems. Along the given sparsity pattern S, the Par-
ILU method updates the non-zero entries of the factors L and U by relaxing each variable
independently. This independent relaxation is performed in parallel, allowing for better
handling of large-scale and complex systems, with the potential for significant speedup on
modern parallel architectures. This algorithm is given in Algorithm 2.

Each update can be performed in parallel, as the updates to each row or column are
independent. In application, the algorithm can either be implemented in a manner that is de-
terministic in parallel or a non-deterministic manner. In implementing the non-deterministic
version, the updates are performed in an atomic fashion directly to the factors L and U . In
the deterministic version, the updates are performed directly to the matric L but are stored
in a temporary matrix for U .

160 Parallel Incomplete LU Factorizations Based On Alternating Triangular Solves

Algorithm 2 ParILU [5]

1: Input: Sparse matrix A, sparsity pattern S, starting factors L and U
2: Output: Updated factors L and U
3: while not converged do
4: for (i, j) ∈ S do
5: if i > j then
6: ℓij ← aij −

∑j−1
k=1 ℓikukj

7: else
8: uij ←

(
aij −

∑i−1
k=1 ℓikukj

)
/ℓii

9: end if
10: end for
11: end while

3. Alternating Triangular Solves Method. In this section, we introduce our new
method for computing ILU factors, ATS-ILU. This method is based on the idea of alternating
iterative updates to the L and U factors of the matrix A. The basic idea is the same as
before, where we iteratively update the factors L and U until convergence, but where the
updates are performed in an alternating manner. This general process is a common method
for solving bilinear systems and is outlined in Algorithm 3.

Algorithm 3 Alternating ILU

U (0) ← triu(A)
k ← 0
while not converged do

Solve L(k)U (k) ≈ A for L(k)

Solve L(k)U (k+1) ≈ A for U (k+1)

Check convergence
k ← k + 1

end while

One way to perform this procedure would be to perform Algorithm 4 with the entirety
of U (k) and let A be the right-hand side vector to solve for L(k+1), and similar to solve
for U (k+1). This entire process can largely be performed in parallel as each row of L and
column of U can be solved independently. Despite the potential for high levels of parallelism,
it is still extremely computationally expensive and likely suffers from significant levels of
fill-in during intermediate steps. The computational cost could be reduced by using an
approximation. A simple approximation is the Neumann series: (I−L)−1 = I+L+L2+. . .
This has been explored [2] in the context of solving for dense vectors. Sparsity may be
preserved to some degree, but the fill will increase with summing higher powers. Therefore,
we do not consider this option any further.

Additionally, the algorithm as stated above does not guarantee that L and U remain
lower and upper triangular, respectively. One method to address this issue would be to solve
for L only in the lower triangular part of A and for U only in the upper triangular part
of A. This would ensure that the factors remain lower and upper triangular, respectively,
but would still leave the problem of significant levels of fill-in. Instead, we suggest a more
practical approach where we impose a sparsity pattern on L and U , namely L and U ,
respectively. This sparsity pattern can be chosen to be the same as the sparsity pattern of
A, which is the choice we make in this paper.

In order to get around the issue of fill-in, we propose a method where we approximately

M. Tunnell & E.G. Boman 161

solve for L and U along their given sparsity patterns, which we discuss next.

3.1. Sparse Triangular Solve. Because we introduce an approximate triangular solve
in the following section, we provide a brief overview of the classical sparse triangular solve
algorithm for reference in Algorithm 4. This algorithm is used to solve a lower triangular
system of equations, where the solution vector x is updated in a forward sweep. The
algorithm performs an exact inversion of the sparse lower triangular matrix L that has
sparsity pattern L. Although it is accurate, it is computationally expensive and does not
parallelize particularly well. Therefore, it is only suitable for fairly small matrices.

Algorithm 4 Sparse Triangular Solve: Column-by-Column Elimination (Lower Triangular)

1: procedure triangularSolve(L,S, b)
2: Input: Lower triangular matrix L of size n× n, sparsity pattern S, vector b of size
n

3: Output: Solution vector x of size n
4: x← copy(b)
5: for j = 1 to n do
6: xj ← xj/ℓj,j
7: for i = j + 1 to n and (i, j) ∈ S do
8: xi ← xi − xj · ℓi,j
9: end for

10: end for
11: return x
12: end procedure

3.2. Approximate Sparse Triangular Solve. The exact sparse triangular solve may
introduce fill. We want an approximate solve with no fill. Our approximate sparse triangular
solve algorithm is given in Algorithm 5.

Algorithm 5 Sparse Triangular Solve: Column-by-Column Elimination (Approximate)

1: procedure ApproximateTriangularSolve(L,L, b,B)
2: Input: Lower triangular matrix L ∈ Rn×n, sparsity pattern L, vector b ∈ Rn, and

pattern B along which to approximate the application of the inverse to b
3: Output: Solution vector x of size n
4: x← copy(b)
5: for j = 1 to n and j ∈ B do
6: xj ← xj/ℓj,j
7: for i = j + 1 to n and i ∈ B and (i, j) ∈ L do
8: xi ← xi − xj · ℓi,j
9: end for

10: end for
11: return x
12: end procedure

Typically, the right hand side b is sparse and B is the sparsity pattern of b. Our use
case is when b is a column of U . The special case of a sparse solve with a sparse right hand
side has been well studied [6, 10], and the sparsity in x is determined by the reachability set.
However, as we wish to preserve sparsity, we instead impose that the sparsity pattern of x
shall be the same as that of b. The intuition behind our method is to extract the nonzero

162 Parallel Incomplete LU Factorizations Based On Alternating Triangular Solves

parts of b and solve for the corresponding submatrix of L, though the implementation is
slightly different to avoid extracting such a submatrix. This results in an approximate solve
that preserves sparsity.

We describe the ATS-ILU algorithm next.

3.3. Alternating Triangular Solves ILU(k) Algorithm. The ATS-ILU(k) algo-
rithm is based on the idea of approximately solving for L and U in an alternating fashion
along only their given sparsity patterns. Again, the rows of L and the columns of U can
be solved independently, allowing for a high level of parallelism. The algorithm is shown
in Algorithm 6. We present the algorithm for a general pattern S but in practice, this will
correspond to the pattern of Ak for some small power k.

Algorithm 6 ATS-ILU(k)

1: Input: Sparse matrix A, sparsity pattern S, starting factors L and U
2: while not converged do
3: for i ∈ {1 2 . . . n} do
4: idx← {j ∈ N | (i, j) ∈ S, j ≤ i}
5: ℓi,idx ← ai,idx (Uidx,idx)

−1

6: end for
7: for j ∈ {1 2 . . . n} do
8: idx← {i ∈ N | (i, j) ∈ S, i ≥ j}
9: uidx,j ← (Lidx,idx)

−1
aidx,j

10: end for
11: end while

In this algorithm, we solve for each row of L and each column of U independently.
Recall from section 2 that the notation ai,idx refers to the ith row of A restricted to the
indices in idx, and similarly for Uidx,idx and Lidx,idx. These submatrices can be viewed as
the (dense) non-contiguous submatrices of L and U that correspond to the sparsity pattern
S along the given row or column. We show an example of this in Figure 3.1.

We note that solving for the solution of these non-contiguous submatrices and vectors
can either be viewed as an exact solution of an approximate problem or an approximate
solution of an exact problem. The former applies the inverse of the dense submatrix to the
right-hand side vector, while the latter utilizes the approximate solve algorithm shown in
Algorithm 5. These two views are equivalent in the sense that they both result in the same
solution vector.

3.4. Relation between ATS-ILU and ParILU. We again note that the ATS-
ILU(k) algorithm has some similarities to the ParILU algorithm by Chow, but there are
some key differences. Both algorithms perform iterative updates to the L and U factors
of the matrix A until convergence, both algorithms seek to solve the equation LU = A
approximately, and both algorithms can be implemented in a parallel fashion. However,
in Chow’s method, a single inner product is used to relax one value at a time, while our
method is coarser-grained, as we operate on an entire row (column) at a time.

A second difference is that ParILU is asynchronous and updates L and U simultane-
ously, while we alternate between L and U updates. However, there is a close relation-
ship. Suppose the execution order in Chow’s method is to update first the lower triangular
part, then the upper part. In this case, ParILU becomes synchronous and very similar
to ATS-ILU. Conversely, one could modify ATS-ILU to update L and U simultaneously
(asynchronously) but we do not explore that here.

M. Tunnell & E.G. Boman 163

1 5 9 13 17 21 25

1

5

9

13

17

21

25

Original Matrix
1 5 9 13 17 21 25

1

5

9

13

17

21

25

Lower Triangular Factor
1 5 9 13 17 21 25

1

5

9

13

17

21

25

Upper Triangular Factor

5 8 12 14 15 17

17

Non-contiguous Target Row in Original Matrix

5 8 12 14 15 17

5

8

12

14

15

17

Non-contiguous Sub-matrix
from Upper Triangular Factor

Fig. 3.1. This figure illustrates the extraction of the small non-contiguous submatrix from U given row
17 from L. Given the non-zero index locations of the given row, we extract the non-contiguous submatrix
from U that corresponds to these columns and rows. Similarly, we extract the right-hand side vector from
A that corresponds to these columns at the given row.

We claim ATS-ILU uses exactly the same number of flops as ParILU per sweep (or
update iteration). This can be seen from Figure 3.1. Consider the flops needed to update
row 17 in L. In ATS-ILU, this is given by the number of nonzeros in the small submatrix
shown in the bottom right. These correspond to the red nonzeros in U . On the other hand,
ParILU requires sparse inner products between row 17 of L and columns 1 to 17 of U .
Interestingly, this corresponds exactly to the same red nonzeros. Therefore, the number of
flops is the same.

Note that even if the flop count is the same, the methods are different and will typically
produce different factors. For example, ATS-ILU updates the diagonal of L so it will
typically not be unit while ParILU strictly enforces unit diagonal.

We believe our method is likely more memory efficient as the memory access pattern
is more regular. Also, we avoid the sparse inner products, which are difficult to implement
efficiently.

3.5. Alternating Triangular Solves Algorithm with Thresholding (ILUT). In
this subsection, we describe the ATS-ILUT algorithm, which is a thresholded variant of the
ATS-ILU algorithm that allows for a variable sparsity pattern based on the level of fill-in.

The variable sparsity pattern utilized in algorithm is based on the one used in the
ParILUT method [1, 2]. After testing, we found that the “candidate fill-in” method used
in ParILUT was highly competitive and we utilize something similar. This method is based
on creating a new sparsity pattern based on the sparsity pattern of the residual matrix,

164 Parallel Incomplete LU Factorizations Based On Alternating Triangular Solves

R = A−LU [1]. Like in [1], candidate locations for fill-in are chosen from

C ← R\(L ∪ U),
where R is the sparsity pattern of R = A−LU , and L and U are the sparsity patterns of L
and U , respectively. The lower and upper triangular candidate locations are added to the
sparsity pattern of L and U , respectively, prior to updating the factors in each iteration and
the original locations of L and U are retained. This method allows for a variable sparsity
pattern that can be adjusted based on the level of fill-in in the factors L and U .

At the end of each iteration, the factors L and U are thresholded to remove elements
with a magnitude below a certain threshold. This threshold is chosen to be the kth largest
element in the factors L and U , where k is the maximum number of elements allowed in L
and U . This method of thresholding is both simple and effective, and it reduces the number
of variables the end user needs to tune in order to get a good approximation of the ILU
factors. We note that this thresholding strategy is also used in the ParILUT method [1].
The full algorithm is given in Algorithm 7.

Algorithm 7 ATS-ILUT

1: Input: Sparse matrix A ∈ Rn×n, starting factors L and U , starting sparsity pattern
S, maximum number of elements Lmax and Umax in L and U , respectively

2: R← (A−LU)
3: L ←

{
(i, j) ∈ N2 | j ≤ i, ri,j ̸= 0

}

4: for i ∈ {1 2 . . . n} do
5: idx← {j ∈ N | j ≤ i, (i, j) ∈ L ∪ S}
6: ℓi,idx ← ai,idx (Uidx,idx)

−1

7: end for
8: R← (A−LU)
9: U ←

{
(i, j) ∈ N2 | j ≥ i, ri,j ̸= 0

}

10: for j ∈ {1 2 . . . n} do
11: idx← {i ∈ N | j ≥ i, (i, j) ∈ U ∪ S}
12: uidx,j ← (Lidx,idx)

−1
aidx,j

13: end for
14: τ ← Lmax rank element in {

∣∣ℓi,j | (i, j) ∈ N2, ℓi,j ̸= 0
∣∣}

15: Threshold L to elements with larger magnitude than τ
16: τ ← Umax rank element in {

∣∣ui,j | (i, j) ∈ N2, ui,j ̸= 0
∣∣}

17: Threshold U to elements with larger magnitude than τ

Note that on lines 2 and 8 of Algorithm 7, only the lower and upper portions of the
residual are needed. As an implementation detail, one could compute half of the residual at
each half step to reduce the total expended work by a significant margin. Next we briefly
discuss options for the starting sparsity pattern.

3.6. Initial Guess and Sparsity Pattern. The initial guess for L and U make a
difference. In fact, there is no guarantee that the alternating method converges to the global
solution (though empirically it usually works).

There are several options for the starting sparsity pattern S. One option is to use the
sparsity pattern of the matrix A, which was used in the ParILUT method [1]. Alternatively,
one could use the sparsity pattern of the matrix Ak for some k > 1 or k = 0. We find it
hard to justify using the sparsity pattern of Ak for k > 1. The sparsity pattern of A0 = I
is the diagonal of A, which is a reasonable choice. Later in section 6, we test the sparsity
patterns of Ak for k ∈ {0, 1, 2} and report our findings.

M. Tunnell & E.G. Boman 165

Next, we discuss important implementation details of the two algorithms.

4. Implementation details. This section is dedicated to the implementation details
of the ATS-ILU and ATS-ILUT algorithms. For simplicity, we focus on how to solve for L
given U . How to compute U given L is analogous.

For reasons relating to the manner in which we iterate over L and U , we store L in a
compressed sparse row (CSR) format and U in a compressed sparse column (CSC) format.
For this reason, we can treat U as the transpose of itself in CSR format, which transforms
the solve in lines 6 and 20 of Algorithm 7 and line 5 of Algorithm 6 from

ℓi,idx ← ai,idx (Uidx,idx)
−1

to

ℓi,idx ←
(
(Uidx,idx)

−T
aidx,i

)T
,

which allows us to use nearly the same algorithm for the update of both L and U . In
implementation, the only difference between the two algorithms is the manner in which we
lookup the elements of A that we are solving for. If we were to pass AT instead of A to the
update routine when solving for U , the implementation would be identical.

We implement the approximate sparse triangular solve algorithm shown in Algorithm 5
using a custom kernel that looks up values in U and A given the input indices from L via
binary search. We call this kernel binary search triangular solve. This implementation
performs a lookup of the values in the non-contiguous submatrix of U and the right-hand
side vector of A. In the first pass of the triangular solve, the row values of L are repopulated
with their corresponding elements in A, and are treated as the non-contiguous right-hand
side vector.

We implemented the ATS-ILUT algorithm with a large number of different variations.
These different variations are controlled by options that conditionally compile different parts
of the code using constexpr variables and C-style preprocessing. The options we imple-
mented are as follows:

1. USE NEW: This option utilizes the newest factor in the update step. i.e L(k+1) is
used to update U (k) and similar.

2. UPDATE RESIDUAL BETWEEN: This option updates the residual matrix R between the
two update steps.

3. USE RESIDUAL LHS: This option augments the left-hand side of the solve with the
residual matrix. i.e for some modified matrix m M , we let mi,j = ui,j if ui,j ̸= 0
and ri,j otherwise.

4. USE RESIDUAL RHS: This option augments the right-hand side of the solve with the
residual matrix. i.e given a solve for some row i of L we have b, where bj = ai,j if
ai,j ̸= 0 and ri,j otherwise.

5. ADDITIONAL SWEEPS BEFORE: This option performs additional sweeps prior to the
beginning of the main loop.

6. ADDITIONAL SWEEPS AFTER: This option performs additional sweeps after the thresh-
olding step of the main loop.

We have exhaustively tested all combinations of these options (with options 5 and 6 limited
to {0, 1}) on several matrices in the SuiteSparse collection. In section 6, we will discuss a
selection of the results from these tests.

5. Parallel Aspects. A key advantage of ATS-ILU compared to the traditional ILU
algorithm is that it is highly parallel. Thus, it is well suited for modern architectures, such
as multicore CPU and accelerators such as GPU.

166 Parallel Incomplete LU Factorizations Based On Alternating Triangular Solves

The ParILU method is also parallel, but not deterministic. The results will vary de-
pending on the thread execution order. It is possible to impose a certain execution order,
but this will slow the method down. In contrast, ATS-ILU is naturally deterministic. This
is easy to see as L is used to update U and vice versa. It is also possible to update L and U
simultaneously (asynchronously) but we did not explore that as we view the deterministic
behavior as an advantage.

In ParILU, there is one thread per nonzero in the matrix. In ATS-ILU, the parallelism
is over rows and columns. In our current implementation, one thread is assigned one row (or
column), giving a coarser parallelism than in ParILU. However, another option is to assign
a thread team for the sparse triangular solve in each row (column). This would require
a team-level sparse triangular solve, which is not widely available. Thus, we consider this
option future work.

6. Experiments and Results. We implement both the ATS-ILU and ATS-ILUT
algorithms in C++ using the Kokkos library [22]. We test the algorithms on a variety
of matrices from the SuiteSparse collection [7] and compare the results to the ParILUT
algorithm. We note that we use the Kokkos implementation of ParILUT, which is a shared-
memory parallel implementation of the ParILUT algorithm [1]. This implementation per-
forms thresholding using the same method as the [1] implementation and not the fast ap-
proximate approach described in [2]. This is a valid comparison because we use the same
thresholding strategy in our ATS-ILUT algorithm and the approximate one would be simi-
larly applicable to our algorithm. All of the experiments given below were run on a single
node processor with 24 threads and 128 GB of memory.

We compare the ATS-ILUT algorithm implementation against the ParILUT algorithm.
In [2], they found their thresholding variant outperformed both their non-thresholded level-
based variant but also often outperformed the classical level-based method. Because the
results they obtained in their paper largely carry over to ours, we do not repeat that exper-
iment in particular. Instead, we focus on the improved thresholding-based variants of ATS
and ParILU.

Throughout this section, our measure of goodness is the number of GMRES iterations
to converge to a relative residual of 10−10. When referring to something as worse in terms
of this measure, we mean that it required more iterations to converge. Conversely, when
referring to something as better, we mean that it required fewer iterations to converge. We
set the maximum subspace size of GMRES to 500 and the maximum number of iterations to
1500. We scale each matrix to have unit diagonal with Jacobi scaling. We use the GMRES
implementation from the KokkosKernels library [22].

We tested 36 combinations of the options described in section 4 on all sparsity pat-
terns stated above. We limited the two sweep-related options to either 0 or 1 additional
sweeps. We share the results for the best two configurations below. Both of these con-
figurations have USE NEW and UPDATE RESIDUAL BETWEEN enabled, and USE RESIDUAL LHS

and USE RESIDUAL RHS disabled. We found the performance of the algorithm to be largely
unaffected by the ADDITIONAL SWEEPS BEFORE option but do notice a difference with the
ADDITIONAL SWEEPS AFTER option. Because there was little difference in performing an ini-
tial sweep before the first iteration, we share the results with it disabled. The results for the
two remaining configurations are given next in section 6. Note that “No Extra” refers to
the configuration with ADDITIONAL SWEEPS AFTER disabled and “One Extra” refers to the
configuration with ADDITIONAL SWEEPS AFTER set to 1. These configurations were tested on
atmosmodd, torso2, majorbasis, and venkat01 from the SuiteSparse collection [7].

Additionally, we tested with starting sparsity patterns of Ak for k ∈ {0, 1, 2}. The
behavior with the starting sparsity pattern of A0 was similar, sometimes marginally better

M. Tunnell & E.G. Boman 167

but often marginally worse, than the behavior with the starting sparsity pattern of A1.
Because the behavior is similar between these two patterns and because A1 was the starting
pattern used in the ParILUT method, we do not share the results with the starting sparsity
pattern of A0 in this paper.

The behavior with the starting sparsity pattern A2 was inconsistent and was largely
uncompetitive with the other starting sparsity patterns. With this starting sparsity pattern,
the preconditioner after the first update cycle was always worse than with the other starting
patterns. In some cases, the resulting factors were better after the fifth update cycle, but
this was not consistent across all matrices or even levels of fill for a given matrix. We discuss
potential reasons for this behavior in section 7 but do not share the results in this paper
due to space.

Table 6.1
Comparison of ATS-ILU Variants with PAR-ILUT across Different Matrices, Fill Levels, and Itera-

tions with an A1 Starting Sparsity Pattern. The best at each iteration is bolded.

Matrices: atmosmodd torso2 majorbasis venkat01

Method Fill
Iterations

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ATS-ILUT
No Extra

1.0 166 150 147 146 146 9 8 7 8 7 12 9 10 9 10 23 23 23 24 25

2.0 132 101 96 95 98 9 7 6 8 7 12 8 9 9 9 17 14 13 12 12

3.0 132 95 86 83 82 9 7 6 8 7 12 8 9 9 9 17 13 11 10 10

ATS-ILUT
One Extra

1.0 147 145 145 145 145 7 8 8 9 9 12 10 10 10 10 23 23 24 25 25

2.0 114 97 97 97 98 7 8 8 9 9 11 9 9 10 10 17 14 13 12 12

3.0 114 89 86 85 86 7 8 8 9 9 11 9 9 10 10 17 13 11 10 10

ParILUT

1.0 154 145 145 145 145 8 7 6 6 6 12 10 9 9 9 23 23 24 24 24

2.0 120 98 97 97 97 8 5 4 4 3 12 8 6 6 5 19 15 13 12 12

3.0 120 91 86 85 85 8 5 4 4 3 12 8 6 5 5 19 15 12 11 10

The results in section 6 show that the ATS-ILUT algorithm is competitive with the
ParILUT algorithm. In most cases, the resulting factors after 5 update cycles are similar
in performance to the ParILUT factors. However, the ATS-ILUT algorithm is often able to
achieve a significantly better result after the first update cycle relative to ParILUT at the
same update cycle.

Next, we show results for four more matrices. We test on abnormal sandia an internal
Sandia matrix that arises when solving a nonlinear thermal-fluid problem, as well as three
more SuiteSparse matrices: af shell3, G3 circuit, and parabolic fem. This is given next
in Table 6.

Similarly, these results largely show parity between the ATS-ILUT and ParILUT algo-
rithms. ATS-ILUT with the “No Extra” configuration was often better at lower fill levels,
while the “One Extra” configuration tended to converge to a good preconditioner faster.

We also tested these methods on the matrices ecology2 and offshore. No algorithm
produced a preconditioner that converged to the tolerance within the specified number of
GMRES iterations for the ecology2matrix. For the offshorematrix, all methods produced
a preconditioner that converged to the tolerance within the specified number of iterations
if left to update for only one or two cycles. When updating for three cycles, all methods
(all tested variants of ATS-ILUT and ParILUT) exhibited strange behavior and did not
converge to the tolerance within the specified number of GMRES iterations. There was
little difference in the number of GMRES iterations required to converge between the ATS-
ILUT and ParILUT algorithms for the offshore matrix after the first or second update.

168 Parallel Incomplete LU Factorizations Based On Alternating Triangular Solves

Table 6.2
Comparison of ATS-ILU Variants with PAR-ILUT across Different Matrices, Fill Levels, and Itera-

tions with an A1 Starting Sparsity Pattern. The best at each iteration is bolded.

Matrices: abnormal sandia af shell3 G3 circuit parabolic fem

Method Fill
Iterations

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ATS-ILUT
No Extra

1.0 54 44 42 42 42 905 723 594 605 568 1169 1140 1148 1133 1131 1183 1089 1090 1083 1071

2.0 51 33 25 24 23 872 564 395 334 299 860 639 467 426 396 765 561 464 492 444

3.0 51 31 22 18 17 872 559 378 308 258 860 638 448 373 318 765 551 422 434 381

ATS-ILUT
One Extra

1.0 50 45 45 46 45 797 657 638 625 631 1153 1186 1189 1187 1183 1261 1192 1224 1220 1201

2.0 42 29 27 27 27 651 402 319 289 274 690 520 408 424 414 729 719 505 547 446

3.0 42 24 20 20 20 651 397 290 226 204 690 520 357 326 305 729 715 681 525 378

ParILUT

1.0 54 45 45 45 45 822 597 581 616 592 1188 1170 1180 1215 1217 1232 1168 1190 1201 1197

2.0 49 32 26 25 25 752 415 311 279 268 758 531 390 365 360 864 482 379 353 354

3.0 49 30 21 18 17 752 415 293 234 204 758 531 379 295 269 864 479 320 219 191

7. Conclusions. In this paper we have introduced the ATS-ILU and ATS-ILUT algo-
rithms based on alternating inexact triangular solves. The ATS-ILU algorithm is a novel
approach to computing ILU(k)-type factors that is deterministic and parallel. The ATS-
ILUT algorithm is a thresholded variant of the ATS-ILU algorithm that allows for a variable
sparsity pattern based on the level of fill-in. We have shown that the ATS-ILU and ATS-
ILUT algorithms are competitive with the ParILUT algorithm on a variety of matrices from
the SuiteSparse collection as well as the abnormal Sandia matrix. Our algorithm is deter-
ministic without a loss in performance, which is a significant advantage over the ParILU
algorithm. Additionally, our algorithm has better memory reuse than the ParILU algorithm,
which is important for performance on modern architectures.

In terms of the number of GMRES iterations to converge, there was relatively little
difference in the performance between the ParILUT and ATS-ILUT algorithms after a few
update cycles. One reason for this could be that both algorithms are successful in solving
for factors that are nearly-optimal given the sparsity pattern. We note that both of our
algorithms use a similar method for the addition of new candidate locations to the sparsity
pattern at each iteration. Indeed, we found that utilizing a different starting sparsity pattern
(A2) sometimes resulted in better factors ultimately, but not in a manner that was consistent
across all matrices or levels of fill for a given matrix. We believe that there is further work
to be done in two main domains: choice of starting sparsity pattern and the method for
adding new candidate locations to the sparsity pattern. We believe that the choice of
starting sparsity pattern is important and that the behavior with the A2 starting sparsity
pattern provides some empirical evidence for this.

Even with our algorithm ultimately creating factors that are similarly effective to the
ParILUT factors, we believe that there is still merit in further exploring the ATS-ILU and
ATS-ILUT algorithms. Our algorithm produces factors that work as a decent preconditioner
for GMRES with only a single update cycle (sweep). Thus, our method has an advantage
when short setup time is important. For certain applications, such as, one in which the
preconditioner needs to be updated frequently or if the matrix is changing rapidly, this
could be a significant advantage. We believe that the ATS-ILU and ATS-ILUT algorithms
are a promising new approach to computing thresholded ILU factors and that there is further
work to be done in this area.

Acknowledgments. Sandia National Laboratories is a multimission laboratory man-
aged and operated by National Technology and Engineering Solutions of Sandia, LLC.,

M. Tunnell & E.G. Boman 169

a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

REFERENCES

[1] H. Anzt, E. Chow, and J. Dongarra, Parilut—a new parallel threshold ILU factorization,
SIAM Journal on Scientific Computing, 40 (2018), pp. C503–C519, https://doi.org/10.1137/
16M1079506, https://doi.org/10.1137/16M1079506.

[2] H. Anzt, T. Ribizel, G. Flegar, E. Chow, and J. Dongarra, Parilut - a parallel threshold ilu
for gpus, in 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
IEEE, May 2019, https://doi.org/10.1109/ipdps.2019.00033, http://dx.doi.org/10.1109/

IPDPS.2019.00033.
[3] M. Benzi, Preconditioning techniques for large linear systems: A survey, Journal of Computational

Physics, 182 (2002), p. 418–477, https://doi.org/10.1006/jcph.2002.7176, http://dx.doi.org/
10.1006/jcph.2002.7176.

[4] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical
computing, SIAM Review, 59 (2017), pp. 65–98, https://doi.org/10.1137/141000671, https:

//epubs.siam.org/doi/10.1137/141000671.
[5] E. Chow and A. Patel, ”a fine-grained parallel ILU factorization”, SIAM Journal on Scientific

Computing, 37 (2015), pp. C169–C197.
[6] T. Davis, Direcet Methods for Sparse Linear Systems, SIAM, 2006.
[7] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Transactions on

Mathematical Software, 38 (2011), p. 1–25, https://doi.org/10.1145/2049662.2049663, http:
//dx.doi.org/10.1145/2049662.2049663.

[8] X. Dong and G. Cooperman, A Bit-Compatible Parallelization for ILU(k) Preconditioning, Springer
Berlin Heidelberg, 2011, p. 66–77, https://doi.org/10.1007/978-3-642-23397-5_8, http://dx.
doi.org/10.1007/978-3-642-23397-5_8.

[9] H. C. Edwards, C. R. Trott, and D. Sunderland, Kokkos: Enabling manycore performance porta-
bility through polymorphic memory access patterns, Journal of Parallel and Distributed Com-
puting, 74 (2014), pp. 3202 – 3216, https://doi.org/https://doi.org/10.1016/j.jpdc.2014.
07.003, http://www.sciencedirect.com/science/article/pii/S0743731514001257. Domain-
Specific Languages and High-Level Frameworks for High-Performance Computing.

[10] J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic operations,
SIAM Journal on Scientific and Statistical Computing, 9 (1988), pp. 862–874, https://doi.org/
10.1137/0909058, https://doi.org/10.1137/0909058.

[11] M. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal
of Research of the National Bureau of Standards, 49 (1952), p. 409, https://doi.org/10.6028/
jres.049.044, http://dx.doi.org/10.6028/jres.049.044.

[12] D. Hysom and A. Pothen, Efficient parallel computation of ilu(k) preconditioners, in Proceedings of
the 1999 ACM/IEEE conference on Supercomputing, SC ’99, ACM, Jan. 1999, https://doi.org/
10.1145/331532.331561, http://dx.doi.org/10.1145/331532.331561.

[13] P. Hénon and Y. Saad, A parallel multistage ilu factorization based on a hierarchical graph decom-
position, SIAM Journal on Scientific Computing, 28 (2006), p. 2266–2293, https://doi.org/10.
1137/040608258, http://dx.doi.org/10.1137/040608258.

[14] T. M. Inc., Matlab version: 9.13.0 (r2022b), 2022, https://www.mathworks.com.
[15] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular

graphs, SIAM Journal on Scientific Computing, 20 (1998), p. 359–392, https://doi.org/10.1137/
s1064827595287997, http://dx.doi.org/10.1137/S1064827595287997.

[16] N. Li, Y. Saad, and E. Chow, Crout versions of ilu for general sparse matrices, SIAM Journal
on Scientific Computing, 25 (2003), p. 716–728, https://doi.org/10.1137/s1064827502405094,
http://dx.doi.org/10.1137/S1064827502405094.

[17] A. Montoison and D. Orban, Krylov.jl: A Julia basket of hand-picked Krylov methods, Journal of
Open Source Software, 8 (2023), p. 5187, https://doi.org/10.21105/joss.05187.

[18] Y. Saad, Ilut: A dual threshold incomplete lu factorization, Numerical Linear Algebra with Applica-
tions, 1 (1994), p. 387–402, https://doi.org/10.1002/nla.1680010405, http://dx.doi.org/10.
1002/nla.1680010405.

[19] Y. Saad, Iterative methods for sparse linear systems, SIAM, Philadelphia, MS, 2 ed., 2003.
[20] Y. Saad and M. H. Schultz, Gmres: A generalized minimal residual algorithm for solving nonsym-

metric linear systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986), p. 856–869,
https://doi.org/10.1137/0907058, http://dx.doi.org/10.1137/0907058.

[21] C. Trott, L. Berger-Vergiat, D. Poliakoff, S. Rajamanickam, D. Lebrun-Grandie, J. Mad-

170 Parallel Incomplete LU Factorizations Based On Alternating Triangular Solves

sen, N. Al Awar, M. Gligoric, G. Shipman, and G. Womeldorff, The kokkos ecosystem:
Comprehensive performance portability for high performance computing, Computing in Science
Engineering, 23 (2021), pp. 10–18, https://doi.org/10.1109/MCSE.2021.3098509.

[22] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Ellingwood, R. Gaya-
tri, E. Harvey, D. S. Hollman, D. Ibanez, N. Liber, J. Madsen, J. Miles, D. Poliakoff,
A. Powell, S. Rajamanickam, M. Simberg, D. Sunderland, B. Turcksin, and J. Wilke,
Kokkos 3: Programming model extensions for the exascale era, IEEE Transactions on Parallel
and Distributed Systems, 33 (2022), pp. 805–817, https://doi.org/10.1109/TPDS.2021.3097283.

M. Tunnell & E.G. Boman 171

TENSOR PARAMETRIC OPERATOR INFERENCE
WITH HAMILTONIAN STRUCTURE

ARJUN VIJAYWARGIYA∗, SHANE A. MCQUARRIE† , AND ANTHONY GRUBER‡

Abstract. This work presents a tensor-based approach to constructing data-driven reduced-order mod-
els corresponding to semi-discrete partial differential equations. By expressing parameter-varying operators
with affine dependence as contractions of a generalized parameter vector against a constant tensor, this
method leverages the operator inference framework to capture parametric dependence in the reduced-order
model via the solution to a convex, least-squares optimization problem. This leads to a simple and straight-
forward implementation which directly extends to learning parametric operators with symmetry constraints,
a key feature required for constructing accurate surrogates of systems with a Hamiltonian structure. The
method is demonstrated on a scalar heat equation with variable diffusion coefficient and a wave equation
with variable wave speed.

1. Introduction. Mathematical models based on partial differential equations (PDEs)
are often formed through the combination of terms describing locally distinct physical pro-
cesses. For example, an advection-diffusion equation describing the evolution of a scalar
quantity c on a domain M ⊂ Rn, given by ∂tc = ∇ · (D∇c− vc) for appropriate tensor
D and velocity v, combines the term ∇ · (D∇c) expressing diffusion with a corresponding
term v · ∇c describing material transport. As the evolution of many important physical
phenomena can be described clearly and simply with differential operators, this provides a
high degree of flexibility in phenomenological modeling, allowing the practitioner to con-
struct compact and descriptive mathematical tools in a plug-and-play fashion. Importantly,
the practical utility of PDE-based models typically relies on the calibration of a number
of parameters (D,v in the example above), which are critical to the behavior of solutions
and hence also to physical realism. Since these parameters are application dependent, this
means that any technique for constructing reduced-order models (ROMs) must be amenable
to preserving parametric structure.

In the case of intrusive, projection-based ROMs, this is well understood and straight-
forward to formulate: since the ROM equations are directly generated through Galerkin
projection onto a data-driven reduced basis, any parametric dependence in the discrete op-
erators at the full-order model (FOM) level will automatically be inherited at the ROM
level. However, intrusive methods require direct manipulation of the governing equations
and access to the underlying operators in the high-fidelity source code [1, 2, 6]. This may
not always be possible since high-fidelity models often have complex code implementations
which are not amenable to modifications. Manipulating these codes can be highly non-trivial
and error-prone, or in some cases, entirely impossible due to licensing restrictions.

An alternative strategy is non-intrusive model reduction, where the operators govern-
ing the ROM must be inferred from data and not directly constructed through projection.
However, in this case, a lack of access to the discrete FOM precludes the classical ap-
proach to building in parametric dependence, and it is less clear how to efficiently design
an effective surrogate which approximates the Galerkin-optimal intrusive ROM. This makes
powerful tools such as Operator Inference (OpInf) [15] less useful in their standard form,
as their restriction to convex, least-squares regression will “average out” this dependence
on parameters. Furthermore, while methods based on nonlinear regression can accommo-
date parametric dependence, they do not necessarily fare better in general due to their
complicated optimization and propensity to converge to poor local minima [4, 8, 11].

∗Division 01442, Sandia National Laboratories, avijayw@sandia.gov
†Division 01441, Sandia National Laboratories, smcquar@sandia.gov
‡Division 01442, Sandia National Laboratories, adgrube@sandia.gov

172 CSRI Summer Proceedings 2024

In view of this, the present work offers a simple and general way to incorporate para-
metric dependence into OpInf, retaining the advantages of the approach while allowing
for parametric variability in the learned operators. The following simple observation is
key: when a matrix operator M(µ) : RN → RN depends linearly on a known function
µ′ = θ(µ) ∈ Rp′

of the parameter vector µ ∈ Rp, then M(µ) = Tµ′ can be written as the
contraction of a constant tensor T ∈ RN×N×p′

against the transformed parameters µ′ ∈ Rp′
.

Said differently, the adjoint relationship A 7→ (B 7→ C) ∼= (A⊗B) 7→ C between continuous
linear mappings and the tensor product yields a description of parametric dependence in
terms of the linear action of a constant object. This notion is general enough to encom-
pass a wide range of parametric behavior and will be shown to enable an OpInf learning
problem which does not rely on local approximation techniques such as Taylor expansion [5]
or linear interpolation [15]. The method proposed here reformulates the affine-parametric
OpInf methods of [14, 21] with a tensorized description of the core learning problem, which
leads to a concise theory and streamlined implementation. Our method also facilitates an
important generalization to a class of systems where the preservation of certain structures
is critical.

The contributions of this article are the following:

• A general, tensor-based approach to parametric OpInf which is simple to implement
and recovers previous parametric OpInf work as a special case.

• An incorporation of symmetry constraints into the core learning problem, leading to
an algorithm for Hamiltonian structure-preservation which guarantees symplecticity
and conservative reduced dynamics.

The remainder of the work is structured as follows. Section 2 discusses the proposed tensor
parametric approach in the structure-agnostic case, including necessary background, the core
inference problem and its solution, followed by a demonstration of the approach on a 2-D
heat equation with domain-varying diffusivity. Section 3 extends this approach to parametric
systems with Hamiltonian structure, reviewing additional background on these systems,
presenting the modified inference problem, and discussing its solution, defore demonstrating
the approach on a 1-D wave equation with domain-varying wave speed. Finally, Section 5
offers some concluding remarks and avenues for future work.

2. Parametric ODEs.

2.1. Background. Given a vector µ ∈ RNp of parameters, consider a linear parametric
system of ordinary differential equations of the form

q̇ = A(µ)q = (Tµ)q, q0 = q(0), (2.1)

where q = q(t,µ) ∈ RN is the ODE state, A : RNp → RN×N is a matrix-valued function

with affine parameter-dependence, so that A(µ) =
∑Np

i=1 µiAi, and T ∈ RN ⊗ RN ⊗ RNp

is the order-3 tensor obtained from A by tensor-Hom adjunction. Such systems frequently
arise from the semidiscretization of continuous PDEs through the “method of lines” [20].
An ODE system of the form (2.1) shall be referred to as a Full-Order Model (FOM) in the
remainder of this paper as it is solved in its full dimensionality. A Reduced Order Model
(ROM) can be obtained from (2.1) through a projection-based model reduction strategy [1].
Given a trial space U ∈ RN×r and an approximate ansatz q = q̃(t,µ) = Uq̂(t,µ), with
an unknown coefficient vector q̂ ∈ Rr, a straightforward Galerkin projection of the system
(2.1) onto the span of U gives the reduced ODE system

˙̂q = U⊺A(µ)Uq = U⊺(Tµ)Uq̂ :=
(
T̂ µ
)
q̂, q̂0 = U⊺q. (2.2)

A. Vijaywargiya, S.A. McQuarrie, & A. Gruber 173

where T̂ ∈ Rr ⊗ Rr ⊗ RNp is a reduced order-3 tensor with components

T̂ a
bx =

N∑

i=1

N∑

j=1

Ua
i T

i
jxU

j
b . (2.3)

The system (2.2) provides a lower dimensional representation of the FOM (2.1) by only
pertaining to the evolution of the reduced state vector q̂. If the trial basis U is properly
constructed to capture the dominant modes of the system dynamics, the ROM can accu-
rately recover the essential characteristics of the original system at a significantly reduced
computational cost. The next section provides a detailed description of how a ROM like (2.2)
can be constructed non-intrusively by directly inferring the tensor operator (2.3) directly
data, without requiring an access to the underlying source code of the FOM.

2.2. Methodology. Now that the necessary background has been reviewed, it is pru-
dent to explain how the tensors in (2.2) can be inferred. Notably, the tensor T̂ is inde-
pendent of the reduced state q̂ and the parameters µ, a fact which will be crucial to the
optimization strategy employed here. Precisely, the goal is to learn T̂ from data via a con-
vex, least-squares regression. Before the inference procedure can be described, it is beneficial
to review how a trial basis U needed for the Galerkin projection may be constructed. This
is briefly outlined in the following subsection.

2.2.1. Proper Orthogonal Decomposition. This subsection briefly outlines a strat-
egy to construct the trial basis matrix U through the technique of Proper Orthogonal
Decomposition (POD). POD is a powerful and widely used tool to reduce the dimension-
ality of high-dimensional systems by identifying a lower dimensional subspace that retains
the key dynamics. [3, 12, 17]. It can be implemented in the current setup as follows.
Denote by µs the sth sampled vector of training parameters, where 1 ≤ s ≤ Ns. Let
Qs =

{
qi(tα,µs)

}
i,α
∈ RN×Nt be the sth matrix containing the full-order solution states

collected at the Nt times {tα}. The matrix Qs shall be referred to as a “snapshot ma-
trix” corresponding to the parameter µs. Let Y ∈ RN×NtNs denote the concatenation
[Q1 Q2 · · · QNs

] of the Ns snapshot matrices. A POD basis U ∈ RN×r can now be con-
structed by computing the Singular Value Decomposition Y ≈ UΣV ⊺ such that U contains
the first r left-singular vectors of Y . The columns of U represent the dominant modes of the
system dynamics, and the matrix can now be used to obtain a ROM via Galerkin projection
of the FOM as described previously in (2.2).

2.2.2. Tensor Parametric Operator Inference. Let Q̇s represent the correspond-
ing data matrix of the approximate time-derivatives obtained from Qs using the fourth
order finite-difference stencil given by[19]

q̇n ≈

1

∆t

(
−25

12
qn + 4qn+1 − 3qn+2 +

4

3
qn+3 −

1

4
qn+4

)
, n = 0,

1

∆t

(
−1

4
qn−1 −

5

6
qn +

3

2
qn+1 −

1

2
qn+2 +

1

12
qn+3

)
, n = 1

1

∆t

(
1

12
qn−2 −

2

3
qn−1 +

2

3
qn+1 −

1

12
qn+2

)
, n = 2, . . . , Nt − 2

1

∆t

(
− 1

12
qn+1 +

1

2
qn −

3

2
qn−1 +

5

6
qn−2 +

1

4
qn−3

)
, n = NT − 1

1

∆t

(
25

12
qn − 4qn−1 + 3qn−2 −

4

3
qn−3 +

1

4
qn−4

)
, n = Nt,

(2.4)

174 Tensor Parametric Operator Inference With Hamiltonian Structure

where q̇n and qn are the n-th columns of Q̇ and Q. Let ||·|| denote the Frobenius norm.

The reduced tensor T̂ in (2.2) can be inferred by solving the minimization problem

argmin
T̂

1

2

Ns∑

s=1

∣∣∣
∣∣∣ ˙̂Qs −

(
T̂ µs

)
Q̂s

∣∣∣
∣∣∣
2

,

where the reduced matrices Q̂s,
˙̂
Qs ∈ Rr×Nt are obtained from Qs and Q̇s as

Q̂s = U
⊺Qs,

˙̂
Qs = U

⊺Q̇s.

For convenience, let vecijT̂ denote the column-wise partial vectorization operator, which

unrolls the adjacent indices i, j of the tensor T̂ into a single index with the same neighbors.
The solution to the inference procedure for T̂ is outlined in the following theorem.

Theorem 2.1. Suppose Ĉs ∈ Rr×Nt and B̂s ∈ Rr×Nt . The unique solution to the
least-squares minimization problem

argmin
T̂

1

2

Ns∑

s=1

∣∣∣
∣∣∣Ĉs −

(
T̂ µs

)
B̂s

∣∣∣
∣∣∣
2

,

is given by the solution to the linear system

l̂ t̂⊺ = n̂⊺, (2.5)

where t̂ ∈ Rr×rNp , l̂ ∈ RrNp×rNp , and n̂ ∈ Rr×rNp denote the vectorized expressions:

t̂ :=vec23 T̂ ,

l̂ := vec12vec34

(
Ns∑

s=1

µs ⊗ B̂sB̂
⊺
s ⊗ µs

)
, n̂ := vec23

(
Ns∑

s=1

ĈsB̂
⊺
s ⊗ µs

)
.

Proof. The proof is a direct calculation. Consider the Lagrangian

L
(
T̂
)
:=

1

2

Ns∑

s=1

∣∣∣
∣∣∣
(
Ĉs − T̂ µs

)
B̂s

∣∣∣
∣∣∣
2

.

Differentiating with respect to T̂ , it follows that

dL
(
T̂
)
=

Ns∑

s=1

〈(
dT̂ µs

)
B̂s,

(
T̂ µs

)
B̂s − Ĉs

〉

=

〈
dT̂ ,

Ns∑

s=1

[(
T̂ µs

)
B̂s − Ĉs

]
B̂⊺

s ⊗ µs

〉
=
〈
dT̂ ,∇L

(
T̂
)〉
,

so that the stationarity condition ∇L
(
T̂
)
= 0 implies

Ns∑

s=1

(
T̂ µs

)
B̂sB̂

⊺
s ⊗ µs =

Ns∑

s=1

ĈsB̂
⊺
s ⊗ µs.

A. Vijaywargiya, S.A. McQuarrie, & A. Gruber 175

Now, notice that the left-hand side can be expressed as

Ns∑

s=1

(
T̂ µs

)
B̂sB̂

⊺
s ⊗ µs = T̂ :

Ns∑

s=1

µs ⊗ B̂sB̂
⊺
s ⊗ µs,

and therefore (2.5) follows directly after using the definitions of t̂, m̂, and n̂.

Theorem 2.1 provides a tool for carrying out the basic tensor-based parametric OpInf
presented here. In particular, note that the partial vectorization vecij has a natural inverse

matij , and therefore it is easy to form the desired tensor T̂ = mat23 t̂ once the matrix t̂ has

been learned. Moreover, since T̂ is independent of the parameter vector µ, this inference
can be carried out even in the case that Ns = 1.

Remark 2.1. Note that the entire calculation leading to Theorem 2.1 goes through
unchanged if µ is replaced by µ′ := θ(µ) ∈ RN̄p where θ is some (known) nonlinear function

of the parameters. The only difference in this case will be the dimension of the tensor T̂ ,
which must be of size N̄p in its last index.

Remark 2.2. We can turn l(vecT) around into standard OpInf form with more
cumbersome tensors. Let A ∈ Rn ⊗ RNt ⊗ RNp ⊗ RNs be the tensor with components
Abx

αs = Q̂b
αsµ

x
s . Then, l(O) = ||DO⊺ −R⊺||2 where D = (vec13vec24A)

⊺ ∈ RNtNs×nNp ,

O = vec23T ∈ Rn×nNp , and R = vec23
˙̂
Q ∈ Rn×NtNs . As usual, this problem decouples over

the rows of O.

2.3. Model Problem. This subsection describes how a full-order model (FOM) for
a parametrized heat equation problem can be expressed in the tensor ODE form (2.1) and
how the proposed model reduction and operator inference procedures can be applied to it.
To that end, consider the following initial boundary value problem with Dirichlet boundary
conditions

∂tq(x, t) = c(µ)∆q(x, t), x ∈ Ω× (0, tf],

q(x, 0) = q0(x), x ∈ Ω

q(x, t) = 0, x ∈ ∂Ω× (0, tf],

(2.6)

where c(µ) : RNp → R is the parameterized thermal conductivity coffecient given by

c(µ) = µ11Ω1
+ µ21Ω2

+ . . .+ µNp
1ΩNp

.

Here, Ω =
⋃Np

i=1 Ωi is a decomposition into non-overlapping subdomains and 1Ωi denotes
the indicator function:

1Ωi(x) =

{
1, x ∈ Ωi,

0, otherwise.

A FOM for (2.6) can be constructed using a Continuous Galerkin discretization in space.
Let Ωh := {Ki}NE

i=1 be a conforming triangulation of the domain Ω containing NE elements.
The discretization takes the following form: find q̇h ∈ Vh such that for all vh ∈ Vh,

(q̇h, vh)Ωh
= −(c(µ)∇qh,∇vh)Ωh

, (2.7)

176 Tensor Parametric Operator Inference With Hamiltonian Structure

where (·, ·)Ωh
denotes the L2 inner product on Ωh and Vh is theH1-conforming finite element

space

Vh := {vh ∈ H1(Ω) : vh|K ∈ P1(K), ∀K ∈ Ωh; vh|∂Ω = 0},

with P1(K) representing the space of linear polynomials on element K. The FOM (2.7) can
be put in a familiar matrix-form suitable to tensorization. Let {ϕi(x)}Ni=1 be the set of basis

functions of the space Vh. By using the expansion qh =
∑N

i=1 qi(t)ϕi(x) and test function
vh = ϕj in (2.7), it follows that

NW∑

i=1

(ϕi, ϕj)Ωh
q̇i = −

N∑

i=1

(c(µ)∇ϕi,∇ϕj)Ωh
qi

which is equivalent to the matrix-vector form

Mq̇ = −S(µ)q =⇒ q̇ = −M−1S(µ)q = A(µ)q, (2.8)

where A(µ) = −M−1S(µ), q = [q1, q2, . . . , qN]⊺ ∈ RN is a vector containing the degrees of
freedom of qh, M ∈ RN×N is a mass matrix with components

Mi,j =

N∑

i=1

(ϕi, ϕj)Ωh
,

and S ∈ RN×N is a parameter dependent stiffness matrix with components

Sij =

N∑

i=1

(c(µ)∇ϕi,∇ϕj)Ωh
.

Since the matrix A(µ) has an affine parametric dependence, (2.8) can now be tensorized by
replacing A(µ) by the contraction Tµ. Model reduction can then be applied to the system
as outlined in Algorithm 1.

Algorithm 1 Tensor Operator Inference without Structure (OpInf)

Input: Snapshot set {Qs}Ns
s=1 of the FOM solution at times T = {t0, . . . , tNt

}, and reduced
dimension r > 1.

Output: Reduced tensor operator T̂ ∈ Rr×r×Np in the ODE ˙̂q = (T̂ µ)q for µ ∈ RNp .
1: Compute the time derivative data {Q̇s}Ns

s=1 from {Qs}Ns
s=1 using the finite difference

formula (2.4).
2: Construct a reduced basis U ∈ Vr(RN) through a truncated SVD of the matrix
Y = [Q1 . . . QNs

].

3: Set the reduced snapshots Q̂s = U
⊺Qs and

˙̂
Qs = U

⊺Q̇s ∈ Rr×Nt for s = 1, . . . , Ns

4: Solve for T̂ using (2.5) with Cs =
˙̂
Qs and Bs = Q̂s.

3. Parametric Hamiltonian ODEs.

3.1. Background. Consider a linear parametric Hamiltonian system of the form

ẏ = J∇yH(y,µ) = JA(µ)y = J(Tµ)y, y0 = y(0), (3.1)

A. Vijaywargiya, S.A. McQuarrie, & A. Gruber 177

where µ ∈ RNp is the parameter vector, y = [q p]⊺ ∈ RN with N = 2M denotes the state
vector, q and p in RM are the canonical position and momentum variables, H : RN → R is
the Hamiltonian functional and J = −J⊺ ∈ RN×N is a skew-symmetric symplectic matrix
given by

J =

[
0 I

−I 0

]

Also, the matrix A : RNp → RN×N is assumed to be symmetric so that A(µ) = A(µ)⊺

(since 2x⊺Ax = x⊺(A +A⊺)x) and that it has an affine parametric dependence allowing

for the decomposition A(µ) =
∑Np

i=1 µiAi. The tensor T ∈ RN ⊗ RN ⊗ RNp is a tensor
obtained from A(µ) via tensor-Hom adjunction which is symmetric in its first two indices
so that Tµ = (Tµ)⊺. An important property of the ODE system (3.1) is that the system
Hamiltonian is conserved in time as can be seen in the following identity

Ḣ = ẏ · ∇H = J(Tµ)y · (Tµ)y = −(Tµ)y · J(Tµ)y = 0,

where the skew-symmetry of J has been used.
Given a POD trial space U ∈ RN×2r and ansatz y ≈ ỹ = Uŷ, a ROM can be con-

structed from (3.1) through a Galerkin projection as

˙̂y = U⊺J(Tµ)y, ŷ0 = U⊺y0. (3.2)

However, the ROM in (3.2) is not Hamiltonian since (U⊺J)⊺ = J⊺U = −JU ̸= −U⊺J .
This implies that the sympletic structure is lost, and the reduced Hamiltonian functional
Ĥ = H ◦ ŷ : R2r → R is not conserved (c.f., [9, 10]) since

˙̂
H = ˙̂y · ∇Ĥ = U⊺J(Tµ)Uŷ ·U⊺(Tµ)Uŷ = UU⊺(Tµ)Uŷ · J(Tµ)Uŷ ̸= 0, ∀µ ∈ RNp .

To get around this defect, a useful strategy was developed in [7], whereby a skew-

symmetric matrix Ĵ ∈ R2r×2r is obtained by treating the equivariance condition U⊺J =
ĴU⊺ as an overdetermined system for Ĵ . Solving this system in a least-squares sense with
Ĵ = U⊺JU , the following ROM can then be constructed:

˙̂y = ĴU⊺(Tµ)Uŷ = Ĵ(T̂ µ)ŷ = U⊺JUU⊺(Tµ)y. (3.3)

The above ROM preserves the reduced Hamiltonian since the symmetry conditions on T̂
and Ĵ imply

˙̂
H = ˙̂y · ∇Ĥ = Ĵ(T̂ µ)ŷ · (T̂ µ)ŷ = −(T̂ µ)ŷ · Ĵ(T̂ µ)ŷ = 0. (3.4)

However, the Hamiltonian ROM (3.3) is variationally inconsistent with the original FOM due
to the presence of an additional projection UU⊺ arising due to the least-squares projection
of J on U [10]. A Galerkin projection of the Hamiltonian variational principle satisfied
by the state y does not yield the variational principle satisfied by the reduced state ŷ.
This inconsistency in the ROM may lead to a considerably negative impact on the ROM’s
accuracy in several cases of interest.

To resolve this inconsistency, the authors of [10] perform a Petrov-Galerkin projection
using the test space JU to obtain the variationally consistent Hamiltonian ROM

˙̂y = Ĵ−⊺∇Ĥ = Ĵ−⊺(T̂ µ)ŷ, (3.5)

178 Tensor Parametric Operator Inference With Hamiltonian Structure

which is symplectic since Ĵ−⊺ = −Ĵ⊺ and preserves the Hamiltonian as indicated by the
following identity:

˙̂
H = ˙̂y · ∇Ĥ = Ĵ−⊺(T̂ µ)ŷ · (T̂ µ)ŷ = −(T̂ µ)ŷ · Ĵ−⊺(T̂ µ)ŷ = 0.

There is alternate way to construct a trial basis for the model reduction of Hamilto-
nian systems utilizing the technique of Proper Symplectic Decomposition (PSD) [16]. A
basis U constructed through PSD has the desirable property that V ⊺J = J2rU

⊺, where
J2r ∈ R2r×2r is the canonical symplectic matrix of dimensions 2r. The advantage of this is
variationally consistent Hamiltonian ROM which follows directly from the Galerkin projec-
tion,

˙̂y = U⊺JA(Tµ)Uŷ = J2rU
⊺A(µ)Uŷ = J2rÂ(µ)ŷ. (3.6)

It is common for the matrix A(µ) has a block diagonal structure so that (3.1) may be
written in the block form

[
q̇

ṗ

]
=

[
0 I
−I 0

][
A1(µ) 0

0 A2(µ)

][
q

p

]
, (3.7)

For many systems, the parameter dependence may only be carried by the block A2(µ)
with A1(µ) = A1. Hence, depending on the specific application, the entire matrix A(µ) or
a block of it may be replaced by the contraction Tµ. It is also interesting to note here that
the use of a PSD basis retains this block structure at the ROM level. This is discussed in
greater detail later in Subsection 3.2.

3.2. Methodology. In this subsection, the two strategies for constructing the trial
matrix U are first introduced. Following that, the non-intrusive inference of symmetry-
constrained tensor operators from data is described. Let Qs = {qi(tα,µs)}i,α, Ps =
{pi(tα,µs)}i,α ∈ RM×Nt be the s-th position and momentum snapshot matrices respec-
tively, collected by solving the FOM at Nt times, for parameter vector µs. Let Ys =
[Q⊺

s P
⊺
s]

⊺ ∈ RN×Nt be the corresponding state matrix.

3.2.1. Proper Orthogonal Decomposition. Suppose Y represents the vertical con-
catenation [Y1 Y2 · · · YNs

] of the state snapshots. A POD trial basis U ∈ RN×2r may
be constructed by computing the truncated SVD Y ≈ UΣV ⊺ so that U contains the first
2r left-singular vectors of Y . Once U is obtained, a ROM of form (3.4) or (3.5) can be
constructed via Galerkin or Petrov-Galerkin projection of the FOM such that the reduced
tensor T̂ ∈ R2r ⊗ R2r ⊗ RNp has components

T̂ a
bx =

N∑

i=1

N∑

j=1

Ua
i T

i
jxU

j
b .

and can be inferred from data.

3.2.2. Proper Symplectic Decomposition. Suppose Rs ∈ RM×2Nt denotes the s-
th horizontally concatenated matrixRs = [Qs Ps] andR ∈ RM×2NtNs be the concatenation
[R1 R2 · · · RNs]. A symplecticity-preserving basis can be obtained via the contangent lift
algorithm [16] by writing R = ŨΣV ⊺, where Ũ ∈ RM×r contains the first r left singular
vectors of R. A trial basis can be obtained from Ũ simply as U = Diag(Ũ , Ũ). The matrix
U has now been constructed through a Proper Symplectic Decomposition (PSD) and yields
the reduced Hamiltonian system (3.6) through a direct Galerkin projection of the FOM.

A. Vijaywargiya, S.A. McQuarrie, & A. Gruber 179

Furthermore, if a Hamiltonian system has the block form (3.7), the use of a PSD basis
retains this form at the reduced level so that the following may be written

[
˙̂q

˙̂p

]
=

[
0 Ir
−Ir 0

][
Â1(µ) 0

0 Â2(µ)

][
q̂

p̂

]
,

allowing one to split the ROM into two subcomponents

˙̂q = Â2(µ)p̂ = (T̂2µ)p̂, (3.8a)

˙̂p = −Â1(µ)q̂ = −(T̂1µ)q̂, (3.8b)

where T̂1, T̂2 ∈ Rr ⊗ Rr ⊗ RNp are now two smaller tensors with components

(T̂1)
a
bx =

N∑

i=1

N∑

j=1

Ũa
i (T1)

i
jxŨ

j
b , (T̂2)

a
bx =

N∑

i=1

N∑

j=1

Ũa
i (T2)

i
jxŨ

j
b .

If the matrix Â2 is independent of µ, the system can be further simplified as only one of the
two equations above will need to be endowed with a tensor operator, easing the inference
procedure.

3.2.3. Tensor Parametric Operator Inference with Symmetry Enforcement.
For parametric Hamiltonian ROMs in (3.4), (3.5), (3.8a), the learned tensor operator needs
to satisfy a symmtery constraint, for example one can solve the minimization problem

argmin
T̂

1

2

Ns∑

s=1

∣∣∣
∣∣∣Ĉs − Âs

(
T̂ µs

)
B̂s

∣∣∣
∣∣∣
2

s.t. T̂ ν = ±M̂−1
(
T̂ ν
)⊺
M̂ ∀ν ∈ RNp ,

where M̂ is a symmetric, positive-definite matrix, typically emerging as the reduced version
of the mass matrix of a finite-element discretization. The following result establishes the
inference procedure necessary for the inference.

Theorem 3.1. Suppose Âs ∈ Rr̄×r̄ is a reduced operator and B̂s ∈ Rr̄×Nt , Ĉs ∈
Rr̄×Ntare reduced snapshot matrices for each 1 ≤ s ≤ Ns, and M̂ ∈ Rr̄×r̄ is symmetric and
positive-definite. If Âs, B̂s have full rank for each s, the unique solution to the least-squares
minimization problem

argmin
T̂

1

2

Ns∑

s=1

∣∣∣
∣∣∣Ĉs − Âs

(
T̂ µs

)
B̂s

∣∣∣
∣∣∣
2

s.t. T̂ ν = ±M̂−1
(
T̂ ν
)⊺
M̂ ∀ν ∈ RNp , (3.9)

can be computed by solving the vectorized problem

Ns∑

s=1

[
µsµ

⊺
s ⊗K

(
Â⊺

sÂs ⊕̄K B̂sB̂
⊺
s

)]
vec T̂

=

Ns∑

s=1

µs⊗Kvec
(
Â⊺

s ĈsB̂
⊺
s ± M̂B̂sĈ

⊺
s ÂsM̂

−1
)
,

(3.10)

where ⊗K denotes the Kronecker product of matrices and

X ⊕̄K Y = (M̂−1XM̂−1)⊗K (M̂Y M̂) + Y ⊗K X.

180 Tensor Parametric Operator Inference With Hamiltonian Structure

Proof. Let Λ̂ ∈ Rr×r×Np be a tensor of Lagrange multipliers and define the Lagrangian

L
(
T̂ , Λ̂

)
=

1

2

Ns∑

s=1

∣∣∣
∣∣∣Ĉs − Âs

(
T̂ µs

)
B̂s

∣∣∣
∣∣∣
2

+
〈
Λ̂, T̂ ∓ M̂−1T̂ ⊺M̂

〉
,

where T̂ ⊺ indicates a transpose in the first two indices, i.e.,

(
T̂ ⊺
)i
jx

= T̂ j
ix and

(
M̂−1T̂ ⊺M̂

)i
jx

= (M̂−1)ilT̂
k
lxM̂

k
j .

Differentiating, it follows that

dL
(
T̂ , Λ̂

)
= −

Ns∑

s=1

〈
Ĉs − Âs

(
T̂ µs

)
B̂s, Âs

(
dT̂ µs

)
B̂s

〉

+
〈
dΛ̂, T̂ ∓ M̂−1T̂ ⊺M̂

〉
+
〈
Λ̂, dT̂ ∓ M̂−1dT̂ ⊺M̂

〉

=

〈
dT̂ , Λ̂∓ M̂Λ̂⊺M̂−1 −

Ns∑

s=1

Â⊺
s

(
Ĉs − Âs

(
T̂ µs

)
B̂s

)
B̂⊺

s ⊗ µs

〉

+
〈
dΛ̂, T̂ ∓ M̂−1T̂ ⊺M̂

〉

=
〈
dT̂ , ∂T̂L

〉
+
〈
dΛ̂, ∂Λ̂L

〉
.

Setting these gradients to zero yields the Euler-Lagrange equations

Λ̂∓ M̂Λ̂⊺M̂−1 =

Ns∑

s=1

Â⊺
s

(
Ĉs − Âs

(
T̂ µs

)
B̂s

)
B̂⊺

s ⊗ µs (3.11a)

T̂ ∓ M̂−1T̂ ⊺M̂ = 0. (3.11b)

In particular, the Lagrange multiplier Λ can be eliminated by symmetry considerations,
leading to

Ns∑

s=1

[
Â⊺

s

(
Ĉs − Âs

(
T̂ µs

)
B̂s

)
B̂⊺

s

±M̂B̂s

(
Ĉs − ÂsM̂

(
T̂ µs

)
B̂s

)⊺
ÂsM̂

−1
]
⊗ µs = 0,

which upon rearranging and applying (3.11b) yields

Ns∑

s=1

(
Â⊺

sÂs

(
T̂ µs

)
B̂sB̂

⊺
s + M̂B̂sB̂

⊺
s M̂

(
T̂ µs

)
M̂−1Â⊺

sÂsM̂
−1
)
⊗ µs

=

Ns∑

s=1

(
Â⊺

s ĈsB̂
⊺
s ± M̂B̂sĈ

⊺
s ÂsM̂

−1
)
⊗ µs.

This is a Sylvester equation in the first two indices of T̂ , so applying the “vec trick” [9]

and introducing the notation X ⊕̄K Y = (M̂−1XM̂−1)⊗K (M̂Y M̂)+Y ⊗KX yields the

A. Vijaywargiya, S.A. McQuarrie, & A. Gruber 181

partial vectorization of size r2 ×Np,

Ns∑

s=1

(
Â⊺

sÂs ⊕̄K B̂sB̂
⊺
s

)
vec12

(
T̂
)
µsµ

⊺
s

=

Ns∑

s=1

vec
(
Â⊺

s ĈsB̂
⊺
s ± M̂B̂sĈ

⊺
s ÂsM̂

−1
)
µ⊺

s .

Vectorizing again finally yields the equivalent matrix-vector system in the r2Np unknowns

of vec T̂ ,

Ns∑

s=1

[
µsµ

⊺
s ⊗K

(
Â⊺

sÂs ⊕̄K B̂sB̂
⊺
s

)]
vec T̂

=

Ns∑

s=1

µs ⊗K vec
(
Â⊺

s ĈsB̂
⊺
s ± M̂B̂sĈ

⊺
s ÂsM̂

−1
)
,

since vec(uv⊺) = v ⊗K u.

Theorem 3.1 illustrates how the present tensor-based OpInf can be applied to systems
with additional structure arising from symmetry conditions onA(µ). Since quadratic Hamil-
tonian systems require a gradient ∇H(µ) = A(µ) = Tµ which is self-adjoint, this result
guarantees an inferred operator with the desired mathematical behavior.

Before moving to a model problem, consider the inference of matrix operator Â2 in (3.8a)
in the case it is parameter-independent and does not need to be replaced by a tensor con-
traction. Given snapshot sets {Q̇s}Ns

s=1 and {Ps}Ns
s=1, this requires solving the following

minimization problem:

argmin
Â2

1

2

Ns∑

s=1

∣∣∣
∣∣∣ ˙̂Qs − Â2P̂s

∣∣∣
∣∣∣
2

s.t. Â2 = M̂−1Â⊺
2M̂ .

This solution to this minimization problem turns out to be a simple Sylvester solve for the
entries of Â2. Omitting the derivation, the linear system equivalent to this minimization is
given by

[(Îr ⊗ M̂−1B̂M̂) + (B̂⊺ ⊗ Îr)]vec Â2 = vec Ĉ, (3.12)

where Îr ∈ Rr×r is the identity matrix and

B̂ =

Ns∑

s=1

P̂sP̂
⊺
s , Ĉ =

Ns∑

s=1

˙̂
QsP̂

⊺
s + M̂−1P̂s

˙̂
Q⊺

sM̂ .

For a detailed derivation, the reader is referred to [9].

3.3. Model Problem. This subsection how the proposed model reduction and tensor
inference procedure can be applied to a parameterized wave equation system. Consider the
following initial boundary value problem

∂tty(x, t) = c(µ)2∆y(x, t), x ∈ Ω× (0, tf],

y(x, t) = 0, x ∈ ∂Ω× (0, tf],

y(x, 0) = y0(x), x ∈ Ω,

∂ty(x, 0) = 0, x ∈ Ω,

(3.13)

182 Tensor Parametric Operator Inference With Hamiltonian Structure

where the parameterized wavespeed c(µ)2 : RNp → R takes the following form

c2(µ) = µ2
11Ω1 + µ2

21Ω2 + . . .+ µ2
Np

1ΩNp
.

A full order solver for (3.13) can be constructed by borrowing the Hamiltonian-preserving
mixed finite element scheme from [18]. The semi-discrete scheme is written in terms of the
canonical variables (q, p) and takes the following form: find (q̇h, ṗh) ∈Wh ×Wh such that

(q̇h, wh)Ωh
= (ph, wh)Ωh

∀wh ∈Wh, (3.14a)

(ṗh, wh)Ωh
= (∇ · σh, wh)Ωh

∀wh ∈Wh, (3.14b)

where σh ∈ Vh solves

(
1

c(µ)2
σh, ξh)Ωh

+ (qh,∇ · ξh) = 0 ∀ξh ∈ Vh. (3.14c)

The discrete Hamiltonian for this scheme is given by

Hh(qh, ph) =
1

2
(ph, ph)Ωh

+
1

2
(

1

c(µ)2
σh,σh)Ωh

. (3.15)

Here, Wh and Vh are chosen to be the finite element spaces

Wh := {wh ∈ L2(Ω) : wh|K = P1(K),∀K ∈ Ωh},
Vh := {vh ∈ H(div,Ω) : vh|K = RT1(K),∀K ∈ Ωh; vh|∂Ω = 0},

where RT1(K) is the Raviart-Thomas space [P1(K)]2 ⊕ xP1(K) on element K with P1(K)
denoting the space of polynomials of degree 1 on element K.

The FOM (3.14) can be put in the block form (3.7) as follows. Suppose {ϕi}NW
i=1 and

{ψi}NV
i=1 are the sets of basis functions of spaces Wh and Vh respectively. Let q,p, and σ

denote the vectors containing the degrees of freedom of qh, ph, and σh. By using the test
function wh = ψj and the expansions σh =

∑NV

i=1 σi(t)ψi(x) and qh =
∑NW

i=1 qi(t)ϕi(x)
in (3.14c), it follows that

NV∑

i=1

(
1

c(µ)2
ψi,ψj

)

Ωh

σi = −
NW∑

i=1

(ϕi,∇ ·ψj)Ωh
qi,

which can be written in the following matrix-vector form

MV (µ)σ = −Sq, (3.16)

where the matrices MV (µ) ∈ RNV ×NV and S ∈ RNV ×NW have components

(MV)i,j =

NV∑

i=1

(
1

c(µ)2
ψi,ψj

)

Ωh

, Sj,i =

NW∑

i=1

(ϕi,∇ ·ψj)Ωh

Similarly, after using the test function wh = ϕj , the expansion ph =
∑NW

i=1 pi(t)ϕi(x), and
the above expansion for σh in (3.14b), it follows that

NW∑

i=1

(ϕi, ϕj)Ωh
ṗi =

NV∑

i=1

(∇ ·ψi, ϕj)Ωh
σi,

A. Vijaywargiya, S.A. McQuarrie, & A. Gruber 183

which, after substituting in the solve for σ from (3.16), is equivalently written as

MW ṗ = S⊺σ =⇒ ṗ = −M−1
W S⊺M−1

V (µ)Sq, (3.17)

where the mass matrix MW ∈ RNW×NW has components

(MW)i,j =

NW∑

i=1

(ϕi, ϕj)Ωh
.

Finally, with the test function wh = ϕj and the above expansions of qh and ph, (3.14a)
yields

NW∑

i=1

(ϕi, ϕj)Ωh
q̇i =

NW∑

i=1

(ϕi, ϕj)Ωh
pi,

which is equivalent to

q̇ = Ip, (3.18)

where I ∈ RNW×NW denotes the identity matrix. Together, (3.18) and (3.17) lead to the
following block form of the FOM (3.14)

[
q̇

ṗ

]
=

[
0 I
−I 0

][
M−1

W S⊺M−1
V (µ)S 0

0 I

][
q

p

]
, (3.19)

Remark 3.1. Note that the block form (3.19) can be rewritten simply as

ẏ = J∇H = JA(µ)y = (T µ̃)y, (3.20)

for y := [q,p]⊺ and µ̃ = [µ 1]⊺, to which the tensor model reduction can be applied directly
with a POD basis as detailed in Algorithm 2. However, if one wishes to use a PSD basis,
only equation (3.17) is tensorized as

ṗ = −M−1
W S⊺M−1

V (µ)Sq = −(Tµ)q,

and (3.18) is retained in its matrix form. Model reduction is then applied to the two blocks
separately as outlined in Algorithm 3.

As a final point, the expression for the discrete Hamiltonian in (3.15) can also be

184 Tensor Parametric Operator Inference With Hamiltonian Structure

formulated in a matrix-vector form as demonstrated in the following computation

Hh(qh, ph) =
1

2

NW∑

i=1

piϕi,

NW∑

j=1

pjϕj

Ωh

+
1

2

 1

c2(µ)

NV∑

i=1

σiψi,

NV∑

j=1

σjψj

Ωh

=
1

2

NW∑

i=1

pi

NW∑

j=1

(ϕi, ϕj)Ωh
pj +

1

2

NV∑

i=1

σi

NV∑

j=1

(
1

c(µ)2
ψi,ψj)Ωh

σj

=
1

2

NW∑

i=1

NW∑

j=1

pi(MW)ijpj +
1

2

NV∑

i=1

NV∑

j=1

σi(MV)ijσj

=
1

2
p⊺MWp+

1

2
σ⊺MV σ

=
1

2
p⊺MWp+

1

2
(−M−1

V Sq)⊺MV (−M−1
V Sq)

=
1

2
p⊺MWp+

1

2
q⊺S⊺M−1

V Sq

=
1

2
⟨p,p⟩MW

+
1

2
⟨q,M−1

W S⊺M−1
V Sq⟩MW

,

where ⟨a, b⟩MW
= a⊺MW b denotes an ℓ2 inner-product.

Remark 3.2. WithM = Diag(MW ,MW), the Hamiltonian can be expressed in terms
of the state variable y as Hh(y) =

1
2y

⊺MA(µ)y with the symmtery constraint (MA(µ))⊺ =
MA(µ). The equivalent tensor form is Hh(y) =

1
2y

⊺M(Tµ)y with (M(Tµ))⊺ =M(Tµ).
The symmetry constraint can be simplified to Tµ =M−1(Tµ)M using the fact that M is
a symmetric positive-definite matrix. This is precisely the constraint that is enforced in
the minimization problem in theorem 3.1. It is evident that the proposed tensor operator
inference procedure does require intrusive knowledge of the matrix MW .

Remark 3.3. When Legendre polynomials on [−1, 1] are used as local basis functions
for the finite element space Wh, the matrix MW is diagonal. On a uniform mesh, if the
local space P0(K), comprising of constant functions on K, is used instead of P1(K), MW

becomes a scaled identity matrix. In this case, only the scaling factor needs to be known
intrusively.

4. Numerical Results. In this section, the tensor operator inference framework is
applied to the parameterized heat equation and wave equation model problems discussed
in previous sections. In either case, both intrusive and non-intrusive ROMs are built, and
their accuracy is bench-marked by recording the relative L2 error of the ROM solution
as a function of the number of reduced dimensions. The error is computed as follows. If
Y , Ỹ ∈ RN×Nt are matrices containing the FOM and ROM solutions yh and ỹh at Nt time
points, then the L2 error can be computed as

Error(Y , Ỹ) = RL2(yh(x), ỹh(x) =

√√√√
Nt∑

n=1

||ynh − ỹnh ||2
||ynh ||2

. (4.1)

On the other hand, the projection error of a snapshot matrix Y with respect to given trial
basis Ur is also computed using (4.1) by setting Ỹ to be the projection UrU

⊺
r Y .

The data matrices on the left-hand sides of (2.5) and (3.10) can often have large condi-
tion numbers, leading to numerical instabilities in the inference process. To mitigate this,

A. Vijaywargiya, S.A. McQuarrie, & A. Gruber 185

Algorithm 2 Tensor Hamiltonian Operator Inference with Structure and a POD basis
(POD H-OpInf)

Input: Snapshot sets {Qs}Ns
s=1, {Ps}Ns

s=1 of the FOM solution at times T = {t0, . . . , tNt
},

and training parametersM = {µ1, . . . ,µNs
}, intrusive access to the mass matrixM :=

Diag(MW ,MW), and reduced dimension 2r ≥ 2.

Output: Reduced tensor operator T̂ ∈ R2r×2r×Np in the Hamiltonian Ĥ(ŷ) =
1
2 ŷ

⊺M̂(T̂ µ)ŷ satisfying M̂−1(T̂ µ)⊺M̂ = T̂ µ for µ ∈ RNp .

1: Compute the time derivative data {Q̇s}Ns
s=1, {Ṗs}Ns

s=1 from {Qs}Ns
s=1, {Ps}Ns

s=1 using the
finite difference formula (2.4).

2: Build the vertically concatenated data matrices Ys = [Q⊺
s P

⊺
s]

⊺ and

Ẏs = [Q̇s
⊺
Ṗs

⊺
]⊺ ∈ RN×Nt for s = 1, . . . , Ns.

3: Construct a reduced basis U ∈ V2r(RN) through a truncated SVD of the matrix
Y = [Y1 . . . YNs].

4: Set the reduced snapshots Ŷs = U
⊺Ys and

˙̂
Ys = U

⊺Ẏs ∈ R2r×Nt . for s = 1, . . . , Ns

5: Obtain Ĵ ∈ R2r×2r by setting Ĵ = U⊺JU with J ∈ RN×N .
6: Obtain M̃ = {µ̃1, . . . , µ̃Ns

} where µ̃s = [µs 1]⊺.
7: if Variational consistency is desired then

8: Solve (3.10) for T̂ with Ĉs =
˙̂
Ys, B̂s = Ŷs, As = Ĵ

−⊺ and µs replaced by µ̃s.
9: else

10: Solve (3.10) for T̂ with Ĉs =
˙̂
Ys, B̂s = Ŷs, As = Ĵ and µs replaced by µ̃s.

a regularization term, λI, where λ > 0 and I is the identity matrix of appropriate size,
may be added to improve stability. For the numerical examples considered in this paper,
λ ∼ 10−8 provides a sufficient amount of regularization; in more complex problems, the
choice of regularization may play an important role, see [13, 14] for regularization selection
strategies that can be applied to the standrd OpInf from described in Remark 2.2.

The following subsections provide a detailed description of the results of the numerical
experiments.

4.1. Heat Equation.

4.1.1. 2D Experiment. This numerical experiment is performed on the 2D spatial
domain Ω = [0, 2π]2 with tf = 1. The square domain is spit into four equally sized smaller
subdomains as

Ω = [0, π]2 ∪ [π, 2π]× [0, π] ∪ [0, π]× [π, 2π] ∪ [π, 2π]2.

The parameterized thermal conductivity c(µ) reads

c(µ) = µ11[0,π]2 + µ21[π,2π]×[0,π] + µ31[0,π]×[π,2π] + µ41[π,2π]2 .

The mesh Ωh consists of 1496 unstructured elements with 801 degrees of freedom, and the
time step size ∆t is set to 0.001. Hence, for this experiment N = 801 and Nt = 1001. The
initial condition is picked to be

q0(x1, x2) = exp
(
−(x1 − π)2 − (x2 − π)2

)

Using the first-order backward euler scheme for the time-integration, the fully discrete FOM
can be written as

q̇n+1 − q̇n
∆t

= −M−1S(µ)qn+1 = (Tµ)qn+1. (4.2)

186 Tensor Parametric Operator Inference With Hamiltonian Structure

Algorithm 3 Tensor Hamiltonian Operator Inference with Structure and a PSD basis (PSD
H-OpInf)

Input: Snapshot sets {Qs}Ns
s=1, {Ps}Ns

s=1 of the FOM solution at times T = {t0, . . . , tNt
},

and training parametersM = {µ1, . . . ,µNs}, intrusive access to the mass matrixMW ,
and reduced dimension r > 1.

Output: Reduced tensor operator T̂ ∈ Rr×r×Np and reduced matrix operator Î ∈ Rr×r in
the Hamiltonian Ĥ(ŷ) = 1

2 p̂
⊺M̂W Îp̂+

1
2 q̂M̂W T̂ q̂ satisfying M̂−1

W (T̂ µ)⊺M̂W = T̂ µ for
µ ∈ RNp .

1: Compute the time derivative data {Q̇s}Ns
s=1, {Ṗ s}Ns

s=1 from {Qs}Ns
s=1, {Ps}Ns

s=1 using the
finite difference formula (2.4).

2: Build the horizontally concatenated snapshot matrices Rs = [Qs Ps] ∈ RN×2Nt for
s = 1, . . . , Ns.

3: Construct a reduced basis U ∈ Vr(RN) through a truncated SVD of the matrix R =
[R1 . . . RNs

].

4: Set the reduced snapshots Q̂s = U⊺Qs,
˙̂
Qs = U⊺Q̇s, P̂s = U⊺Ps, and

˙̂
Ps = U⊺Ṗs ∈

Rr×Nt for s = 1, . . . , Ns.

5: Solve (3.10) for T̂ with Ĉs =
˙̂
Ps,As = −Ir, and B̂s = Q̂s, where Ir ∈ Rr×r denotes

the identity matrix.
6: Solve (3.12) for Î = Â2 using snapshot sets {Q̇s}Ns

s=1 and {Ps}Ns
s=1.

To generate the snapshots Q1, . . . ,QNs
, the fully discrete FOM (4.2) is used with 10 ran-

dom samples of µs uniformly generated in the interval (0.1, 0.3)4. A POD basis is then
constructed from the snapshot data, and OpInf and Intrusive ROMs are built. The tensor
operator in the OpInf ROM is inferred through the procedures outlined in Algorithm 1.
Once the ROMs are built, validation is performed by using them to compute solutions with
two different parameters µ sampled from the interval (0.1, 0.3)4, one from the training set
and another not included in it. Similar to the FOM, the ROMs are integrated in time using
a backward-euler scheme, and the solutions are computed up to the same terminal time
tf = 1. The plots of the ROM solutions at terminal time are displayed in Figure 4.1, along
with the absolute error |qFOM(tf)− qROM(tf)|, for r = 28 and µ not present in the training
set. These plots reveal that the ROM solution computed using the OpInf ROM closely
matches the ROM solution computed using the intrusive ROM.

Relative spacetime L2 errors of the different ROM solutions are computed using (4.1),
and their behavior is studied as the reduced dimension r is increased, along with the pro-
jection error of the snapshot dataset. The error profiles for the two cases are displayed in
the panels of Figure 4.2, showing the progressive decrease in ROM errors as well as the
projection error as r increases. Naturally, the results are more accurate when µ is selected
from the training set, with the relative L2 errors of both the intrusive and the OpInf ROM
solutions reaching 10−4. When µ is chosen from outside the training set, the L2 error of the
intrusive ROM solution approaches 10−4, while that of the OpInf ROM solution saturates
at 10−3, a sufficient level of accuracy for most practical applications.

4.2. Wave Equation. For this numerical experiment, the system (3.20) is considered
on the 1D spatial domain Ω = [0, 2π], which is divided into four equally sized subdomains
as

Ω = [0,
π

2
] ∪ [

π

2
, π] ∪ [π,

3π

2
] ∪ [

3π

2
, 2π].

A. Vijaywargiya, S.A. McQuarrie, & A. Gruber 187

The parameterized wavespeed c(µ)2 is then expressed as

c(µ)2 = µ2
1 1[0,π2] + µ2

2 1[π2 ,π] + µ2
3 1[π, 3π2] + µ2

4 1[3π2 ,2π].

The mesh Ωh contains 2000 elements with 4000 degrees of freedom, and the time step size
is set to ∆t = 4π

1000 . Therefore, M = 4000 and Nt = 1001. The terminal time for this
experiment is tf = 4π. Since this is a one-dimensional example, the space for σh reduces to

Vh := {vh ∈ H1(Ω) : vh|K = P1(K),∀K ∈ Ωh; vh|∂Ω = 0}.

(a) OpInf solution. (b) Intrusive solution.

(c) OpInf solution absolute error. (d) Intrusive solution absolute error.

Fig. 4.1: ROM solutions and absolute errors of the parameterized heat equation at terminal
time tf = 1 for parameter µ ∈ (0.1, 0.3)4 not present in the training set.

188 Tensor Parametric Operator Inference With Hamiltonian Structure

0 10 20 30
Reduced dimension r

10−4

10−3

10−2

10−1

E
rr

o
r

Opinf ROM error

Intrusive ROM error

Projection error

(a) µ present in the training set.

0 10 20 30
Reduced dimension r

10−4

10−3

10−2

10−1

E
rr

o
r

Opinf ROM error

Intrusive ROM error

Projection error

(b) µ not present in the training set.

Fig. 4.2: Relative L2 error in the 2D heat equation ROM solutions and projection error of the
training snapshot matrix as a function of reduced dimension r for two different parameters
µ ∈ (0.1, 0.3)4, one present in the training set and the other not.

The initial condition for this experiment is chosen as

q0(x) = exp
[
−(x− π)2

]
.

The FOM is time-integrated using the implicit midpoint rule, resulting in the following fully
discrete symplectic scheme:

yn+1 − yn

∆t
= J(Tµ)yn+ 1

2 , y0 = y0(x),

with y = [q p]⊺. To generate the training data, the fully discrete FOM is used to compute
and construct the snapshot sets {Qs}Ns

s=1 and {Ps}Ns
s=1 with 10 uniform samples of µs ∈

(0.8, 1.1)4. Both POD and PSD bases are then constructed from the snapshots, and ROMs
of the OpInf, H-OpInf, and intrusive types are built. The tensor operators for these ROMs
are inferred using Algorithms 2 and 3.

Validation is performed using two different parameters µs, one present in the training set
and the other absent. The ROMs are integrated using the implicit midpoint rule described
in (4.2), and solutions are computed up to tf = 4π, similar to the FOM case. Spacetime
plots of the ROM solutions, for µ absent from the training set, are displayed in Figure 4.3.
These panels show that the ROM solutions computed using the different approaches are
close to each other within a reasonable level of accuracy.

The L2 errors of all ROM solutions, along with the projection errors of the snapshot
data matrix with respect to the two bases, are recorded. Their behavior is studied as a
function of the number of reduced dimensions r for both parameters µ. The error profiles
are plotted in Figures 4.4 and 4.5. In the case of the POD ROMs, the L2 errors of the
computed solutions closely follow the decay in the projection error as r increases, for both
values of µ. The only deviations occur in the case of the OpInf ROMs; the L2 errors start
increasing for larger r values for both values of µ. In the case when µ not present in the
training set, the ROMs become unstable beyond this point, producing spurious oscillations
in the solutions and generating large errors. The other POD ROMs demonstrate appreciable
accuracy and generalizability, as the error profiles for both values of µ are nearly identical.

A. Vijaywargiya, S.A. McQuarrie, & A. Gruber 189

ROM Description

OpInf
ROM using a POD basis,

without a symmetric learned tensor operator.

PSD OpInf
ROM using a PSD basis,

without a symmetric learned tensor operator.

PSD H-OpInf
ROM using a PSD basis,

with a symmetric learned tensor operator.

Con OpInf
Variationally consistent ROM using a POD basis,
without a symmetric learned tensor operator.

Con H-OpInf
Variationally consistent ROM using a POD basis,

with a symmetric learned tensor operator.

Incon OpInf
Variationally inconsistent ROM using a POD basis,

without a symmetric learned tensor operator.

Incon H-OpInf
Variationally inconsistent ROM using a POD basis,

with a symmetric learned tensor operator.

PSD Intrusive Intrusive ROM with a PSD basis.

Con Intrusive Variationally consistent intrusive ROM with a POD basis.

Incon Intrusive Variationally inconsistent intrusive ROM with a POD basis.

Table 4.1: A glossary of ROMs.

In contrast, the PSD ROM solutions show a different trend. The L2 error appears
to saturate beyond 2r = 10 for the learned ROMs, even as the L2 error for the Intrusive
ROM solution and the projection error of the snapshot matrix continue to decrease with
increasing basis size 2r. The H-OpInf ROM provides more accurate results, with the L2

error saturating at a smaller value than that of the OpInf ROM. The enforcement of the
symmetry-like constraint for the learned operator results in a more accurate ROM. The
learned PSD ROMs offer less generalizability than their POD counterparts, as for µ not in
the training set, the L2 error of the solutions saturates at much larger values for both the H-
OpInf ROM and the OpInf ROM, while the L2 error of the intrusive ROM solution continues
to decrease with the projection error. This can be attributed to the less-informative nature

190 Tensor Parametric Operator Inference With Hamiltonian Structure

Fig. 4.3: Spacetime plots of the ROM solutions of the 1D parameterized wave equation for
µ ∈ (0.8, 1.1)4 not present in the training set and basis size 2r = 40.

of a truncated PSD basis, the basis vectors of which fail to accurately capture the system
dynamics unless 2r is large.

Finally, Figure 4.6 reveals the errors in the reduced Hamiltonian Ĥ = 1
2 ŷ

⊺M̂(T̂ µ)ŷ
associated with all ROM solutions. Panel (a) shows that OpInf ROMs do not preserve
the reduced Hamiltonian, as the learned tensor operator does not maintain the necessary
symmetry-like structure. Panel (b) shows that the Intrusive POD ROMs and H-OpInf
PSD ROMs preserve the Hamiltonian with the highest level of accuracy. Interestingly, the
Intrusive PSD ROM yields a larger error due to its construction. From (3.6), it is evident
that the term U⊺A(µ) is not the true gradient of the reduced Hamiltonian, which is given
by:

∇Ĥ = U⊺MA(µ)y.

The PSD H-OpInf ROM learns the true gradient by enforcing the correct condition, as ex-

A. Vijaywargiya, S.A. McQuarrie, & A. Gruber 191

2 6 10 14 18 22 26 30 34 38
Number of reduced dimensions (2r)

10−2

10−1

100
E

rr
o
r

Projection

Con H-OpInf ROM

Incon H-OpInf ROM

Con OpInf ROM

Incon OpInf ROM

Con Intrusive ROM

Incon Intrusive ROM

(a) µ present in the training set.

2 6 10 14 18 22 26 30 34 38
Number of reduced dimensions (2r)

10−2

10−1

100

E
rr

o
r

Projection

Con H-OpInf ROM

Incon H-OpInf ROM

Con OpInf ROM

Incon OpInf ROM

Con Intrusive ROM

Incon Intrusive ROM

(b) µ not present in the training set.

Fig. 4.4: Relative L2 error in the wave equation POD ROM solutions and projection error
of the training snapshot matrix as a function of reduced dimension r for two different
parameters µ ∈ (0.8, 1.1)4, one present in the training set and the other not. The plots for
the OpInf ROMs overlap.

2 6 10 14 18 22 26 30 34 38
Number of reduced dimensions (2r)

10−2

10−1

E
rr

o
r

Projection

H-OpInf ROM

OpInf ROM

Intrusive ROM

(a) µ present in the training set.

2 6 10 14 18 22 26 30 34 38
Number of reduced dimensions (2r)

10−2

10−1

E
rr

o
r

Projection

H-OpInf ROM

OpInf ROM

Intrusive ROM

(b) µ not present in the training set.

Fig. 4.5: Relative L2 error in the wave equation PSD ROM solutions and projection error
of the training snapshot matrix as a function of reduced dimension r for two different
parameters µ ∈ (0.8, 1.1)4, one present in the training set and the other not.

plained in Remark 3.2, resulting in better Hamiltonian conservation. Panel (c) shows that
both variationally consistent and inconsistent POD H-OpInf ROMs preserve the Hamilto-
nian with similar accuracy.

5. Conclusion. This paper presents a novel, tensor-based operator inference proce-
dure for building ROMs of parametric systems of semi-discrete PDEs. The method replaces
parameter-dependent operators in existing OpInf frameworks with the contraction of a con-
stant tensor with a generalized parameter vector and formulates a convex, least-squares
optimization problem for tensor inference. Additionally, by incorporating symmetry con-

192 Tensor Parametric Operator Inference With Hamiltonian Structure

0 2 4 6 8 10 12
Time

10−14

10−11

10−8

10−5

10−2
|Ĥ

(ŷ
)(
t)
−
Ĥ

(ŷ
)(

0
)|

FOM

Con H-OpInf ROM

Incon H-OpInf ROM

PSD H-OpInf ROM

Con OpInf ROM

Incon OpInf ROM

PSD OpInf ROM

Con Intrusive ROM

Incon Intrusive ROM

PSD Intrusive ROM

(a) Hamiltonian errors for all ROMs.

0 2 4 6 8 10 12
Time

10−15

10−13

10−11

10−9

|Ĥ
(ŷ

)(
t)
−
Ĥ

(ŷ
)(

0
)|

FOM

PSD H-OpInf ROM

Con Intrusive ROM

Incon Intrusive ROM

PSD Intrusive ROM

(b) Hamiltonian errors for all the intrusive and
the PSD H-OpInf ROM.

0 2 4 6 8 10 12
Time

10−8

10−7

|Ĥ
(ŷ

)(
t)
−
Ĥ

(ŷ
)(

0
)|

Con H-OpInf ROM Incon H-OpInf ROM

(c) Hamiltonian errors for the POD H-OpInf
ROMs.

Fig. 4.6: Error in the Hamiltonian of the different ROMs as a function of time. (a) shows
non-conservation of the Hamiltonian by OpInf ROMs. (b) shows near exact preservation
of the Hamiltonian by PSD H-OpInf and POD Intrusive ROMS. (c) shows larger errors for
POD H-OpInf ROMs.

straints into the learning problem, the approach extends to parametric Hamiltonian systems,
enabling the construction of symplecticity-preserving ROMs. The procedure is tested on two
model problems: a 2D parametric heat equation system without intrinsic structure and a
1D parametric linear wave system with an underlying Hamiltonian structure. In both cases,
the approach yields stable and accurate ROMs.

The proposed framework is based on a one-shot approach where the reduced tensor
operator is inferred by solving the normal equations corresponding to the stationarity of
the Lagrangian in the core minimization problem. However, this can often result in ill-
conditioned linear systems, potentially leading to unstable ROMs if an appropriate regu-
larization is not introduced. Moreover, when enforcing the symmetry of the learned tensor
operator, the procedure involves the construction of a large intermediate tensor, requiring
a significant amount of memory to be allocated. These issues can be mitigated by using
iterative solvers to directly solve the minimization problems without deriving and solving

A. Vijaywargiya, S.A. McQuarrie, & A. Gruber 193

the normal equations. Iterative solvers operate on better-conditioned systems, offer compu-
tational and memory efficiency, allow for preconditioning to improve convergence, and are
easier to parallelize, making them ideal for modern high-performance computing. They will
be the focus of future research directions.

REFERENCES

[1] P. Benner, S. Gugercin, and K. Willcox, A survey of projection-based model reduction methods
for parametric dynamical systems, SIAM Review, 57 (2015), pp. 483–531.

[2] P. Benner, M. Ohlberger, A. Patera, G. Rozza, and K. Urban, Model Reduction of Parametrized
Systems, Modeling, Simulation and Applications, 17, Springer International Publishing, 2017.

[3] G. Berkooz, P. Holmes, and J. L. Lumley, The proper orthogonal decomposition in the analysis of
turbulent flows, Annual review of fluid mechanics, 25 (1993), pp. 539–575.

[4] T. Bertalan, F. Dietrich, I. Mezić, and I. G. Kevrekidis, On learning Hamiltonian systems from
data, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019), p. 121107.

[5] I. Farcas, R. Gundevia, R. Munipalli, and K. E. Willcox, Parametric non-intrusive reduced-
order models via operator inference for large-scale rotating detonation engine simulations, in
AIAA SCITECH 2023 Forum, 2023.

[6] O. Ghattas and K. Willcox, Learning physics-based models from data: Perspectives from inverse
problems and model reduction, Acta Numerica, 30 (2021), p. 445–554.

[7] Y. Gong, Q. Wang, and Z. Wang, Structure-preserving Galerkin POD reduced-order modeling of
Hamiltonian systems, Computer Methods in Applied Mechanics and Engineering, 315 (2017),
pp. 780–798.

[8] S. Greydanus, M. Dzamba, and J. Yosinski, Hamiltonian neural networks, Advances in neural
information processing systems, 32 (2019).

[9] A. Gruber and I. Tezaur, Canonical and noncanonical Hamiltonian operator inference, Computer
Methods in Applied Mechanics and Engineering, 416 (2023), p. 116334.

[10] A. Gruber and I. Tezaur, Variationally consistent Hamiltonian model reduction, arXiv preprint,
arXiv:2404.15315 (2024).

[11] P. Jin, Z. Zhang, A. Zhu, Y. Tang, and G. E. Karniadakis, SympNets: Intrinsic structure-
preserving symplectic networks for identifying Hamiltonian systems, Neural Networks, 132 (2020),
pp. 166–179.

[12] Y. LIANG, H. LEE, S. LIM, W. LIN, K. LEE, and C. WU, Proper orthogonal decomposition and
its applications—part i: Theory, Journal of Sound and Vibration, 252 (2002), pp. 527–544.

[13] S. A. McQuarrie, C. Huang, and K. E. Willcox, Data-driven reduced-order models via regularised
operator inference for a single-injector combustion process, Journal of the Royal Society of New
Zealand, 51 (2021), pp. 194–211.

[14] S. A. McQuarrie, P. Khodabakhshi, and K. E. Willcox, Non-intrusive reduced-order models for
parametric partial differential equations via data-driven operator inference, SIAM Journal on
Scientific Computing, 45 (2023), pp. A1917–A1946.

[15] B. Peherstorfer and K. Willcox, Data-driven operator inference for nonintrusive projection-based
model reduction, Computer Methods in Applied Mechanics and Engineering, 306 (2016), pp. 196–
215.

[16] L. Peng and K. Mohseni, Symplectic model reduction of Hamiltonian systems, SIAM Journal on
Scientific Computing, 38 (2016), pp. A1–a27.

[17] L. Sirovich, Turbulence and the dynamics of coherent structures. i. coherent structures, Quarterly of
applied mathematics, 45 (1987), pp. 561–571.

[18] M. A. Sánchez, B. Cockburn, N.-C. Nguyen, and J. Peraire, Symplectic Hamiltonian finite ele-
ment methods for linear elastodynamics, Computer Methods in Applied Mechanics and Engineer-
ing, 381 (2021), p. 113843.

[19] C. R. Taylor, Finite difference coefficients calculator. https://web.media.mit.edu/~crtaylor/

calculator.html, 2016.
[20] S. Yuan, ODE-oriented semi-analytical methods, in Computational Mechanics in Structural Engineer-

ing, F. Y. Cheng and Y. Gu, eds., Elsevier Science Ltd, Oxford, 1999, pp. 375–388.
[21] S. Yıldız, P. Goyal, P. Benner, and B. Karasözen, Learning reduced-order dynamics for

parametrized shallow water equations from data, International Journal for Numerical Methods
in Fluids, 93 (2021), pp. 2803–2821.

194 Tensor Parametric Operator Inference With Hamiltonian Structure

SIMULATING ATOMIC PRECISION ADVANCED MANUFACTURING
(APAM) ENHANCED BJT

ELANOR WHITESIDES∗, JUAN P. MENDEZ† , JEFF IVIE , XUJIAO GAO , AND SHASHANK

MISRA

Abstract.
Atomic Precision Advanced Manufacturing (APAM) techniques enable the creation of 2D, electrically

significant structures within semiconductors. These structures, called δ-layers, possess high doping densities
unachievable by conventional manufacturing methods. δ-layers enhance the electrical properties of semicon-
ductors due to their dopant concentration surpassing the solid solubility of silicon and being all electrically
active. Integrating these regions into semiconductor devices using APAM fabrication techniques has strong
potential for beyond-Moore and quantum computing applications. This work investigates the gain amplifi-
cation capabilities of a novel BJT device equipped with 2D doped regions known as δ-layers fabricated using
APAM. The strong gain amplification enhancement capabilities of a one-dimensional BJT device are also
documented, demonstrating APAM’s effectiveness in greatly increasing the current gain of bipolar devices.

1. Introduction. As we approach the fundamental physical limits of traditional tran-
sistor fabrication methods, continued miniaturization faces increasing challenges due to
issues such as overheating and fabrication size constraints [1]. To address these challenges,
there is a growing need to explore fabrication on the atomic scale. Atomically precise fab-
rication presents new opportunities to shrink and enhance devices, and can be leveraged
for device prototyping in applications such as nanowire transistors, tunnel field-effect tran-
sistors (TFET), and spintronics [2]. Atomic Precision Advanced Manufacturing (APAM)
stands out as the most viable method for fabricating devices at the atomic level [3]. Unlike
other fabrication methods that are limited by physical constraints [4] or the solid solubility
limit of silicon, APAM allows for the creation of atomically small δ-layer structures (2D
structures) with high doping densities that overcome these restrictions.

Utilizing a precise fabrication process is crucial for improving quantum device perfor-
mance, as it directly affects final atomic positions [5]. APAM fabrication utilizes a surface
chemistry process that satisfies important performance requirements such as high precision
lithography, controlled phosphorus incorporation, and epitaxial overgrowth that discourages
defects [5]. APAM fabrication begins with hydrogen passivation, wherein hydrogen atoms
individually attach to each surface silicon atom on the silicon substrate [3]. A Scanning
Tunneling Microscope (STM) tip then strategically removes hydrogen atoms, revealing the
reactive surface of the silicon in the shape of the desired feature. Phosphine molecules are
introduced as a dopant precursor, and phosphorus atoms attach to the reactive sites [6].
Lastly, a silicon cap is applied to the entire surface of the device to protect it from damage
and to activate the dopants in the δ-layers. APAM uses this process of 2D STM lithography
to create ultra-thin planar δ-layers within silicon at nanometer resolution, consisting of one
or several atomic layers of dopant atoms [7][8]. The fabrication process’ open geometry
control allows for any pattern of choice to be fabricated.

These 2D structures fabricated using APAM offer several key advantages for device
enhancement. Their high dopant density can reach orders of 1021 cm−3, several orders above
that of standard manufacturing methods, which typically achieve maximum concentrations
of 1019 cm−3[9]. δ-layers’ doping concentrations surpass that of the solid solubility limit
of silicon, at levels that cause the semiconductor material to behave more as a metallic
conductor, greatly increasing electrical conductivity and current density [8]. Additionally,
δ-layer dopants are made to be all electrically active by encapsulating the surface phosphorus

∗Sandia National Laboratories, (elanor.whitesides01@student.csulb.edu)
†Sandia National Laboratories, (jpmende@sandia.gov)

CSRI Summer Proceedings 2024 195

atoms with silicon at room temperature [5], thus each charge impurity contributes to the
overall electrical conductivity.

The following ongoing investigation into a novel Bipolar Junction Transistor (BJT)
device explores the potential benefits of δ-layer incorporation and their effect on the BJT
current gain at room temperature. This work begins by discussing the results of a one-
dimensional BJT device case, which demonstrates the modeling of an APAM δ-layer and
its positive impact on current gain through simulation results. This work then presents
preliminary findings from two-dimensional BJT device simulations that incorporate a δ-
layer structure into the larger BJT environment. The work concludes with a suggestion of
future research goals.

2. Simulation approach. This work utilizes the open-source TCAD code, Charon
[10], a multi-dimensional, MPI-parallel, semi-classical device simulation code developed at
Sandia National Laboratories. Sandia’s TCAD Charon code solves self-consistently the
Poisson equation and the continuity equations for electrons/holes. Device geometries and
meshes are generated using the geometry and meshing tool Cubit [11]. Device simulation
results are visualized using the open-source data analysis and visualization tool Paraview
[12].

3. 1D BJT Simulations. The ideal one-dimensional BJT device pictured in Fig.
3.1 models a δ-layer structure, with n-type emitter and collector δ-regions possessing high
APAM doping densities, and a moderately doped p-type base. The BJT is characterized
as a common emitter n-p-n device. The emitter contact is grounded while the emitter-base
and base-collector junctions are forward biased such that V = VEB = VEC . The base width
is set to be 100 nm.

Fig. 3.1: Ideal one-dimensional BJT device.

Illustrated by the right axis of Fig. 3.2, the gain can be determined from the Gummel
plot as the ratio of the collector current to the base current, IC/IB . In Fig. 3.3, through
simulations investigating the doping effects of each region, an understanding of the δ-layer’s
behavior is developed, confirming its strong gain amplification capabilities. The contribution
of each region to the overall current gain is assessed by evaluating the maximum gain for
various doping density combinations in the base, emitter δ-layer, and collector δ-layer. NB ,
NE , and NC represent the doping values in the base (p-type), emitter (n-type) and collector
(n-type), respectively, measured in units of cm−3.

Fig. 3.3 (a) shows that increasing the base doping density reduces the current gain. This
effect can be attributed to higher base doping densities increasing both recombination within

196 Simulating Atomic Precision Advanced Manufacturing (APAM) Enhanced BJT

Fig. 3.2: Simulated common-emitter Gummel plots (left axis) for a 1D n-p-n BJT where
the doping values for the emitter, base, collector are 1020 cm−3, 1019 cm−3, and 1020 cm−3,
respectively. The right axis shows the computed gain.

the base and back injection current from base to emitter. These increases subsequently raise
the base current Ib and lower the collector current Ic, leading to a reduced overall current
gain. A low base doping level of 1018 cm−3 is best to achieve a high gain, with a peak value
around 275. Fig. 3.3 (b) demonstrates that the collector δ-layer doping density does not
significantly influence the gain. Traditional common-emitter BJTs typically achieve gains
ranging from tens to hundreds. Conversely, Fig. 3.3 (c) demonstrates that the emitter δ-layer
doping density has a significant impact on current gain due to enhanced carrier injection
across the emitter-base junction as emitter doping density increases. However, there is a
limit to how much the emitter δ-layer doping can be increased, as higher doping levels can
also raise the base current through band-to-band tunneling at the emitter-base junction.
The one-dimensional δ-layer BJT simulations reveal that significantly higher gains can be
attained through the application of APAM doping densities in the emitter and collector
δ-layer regions.

4. 2D BJT Simulations. Building on insights gained from the one-dimensional sim-
ulations, δ-layer’s gain amplification capabilities are applied to the development of a two-
dimensional BJT prototype, illustrated in Fig. 4.1. In this prototype, the δ-layer is inte-
grated into the larger, more complex device environment of the two-dimensional BJT. The
n-p-n type device configuration consists of an emitter implant, an equivalently doped col-
lector implant, and a lightly to moderately doped base substrate. The δ-layer structure is
fabricated between the emitter and collector contacts, separated by a 100 nm wide δ-layer
gap at the center of the device. The structure is encapsulated by a silicon cap with a doping
density equivalent to that of the base substrate. Preliminary simulations pictured in Fig.
4.2 study the implant doping effects by varying doping densities in the base substrate (NB),
emitter implant (NEmit Impl), and collector implant (NCol Impl) to assess the influence of
each region on transistor gain. Similar to the 1D simulations, a common emitter config-
uration is investigated, where the emitter contact is grounded while the emitter-base and
base-collector junctions are forward biased such that V = VEB = VEC .

Fig. 4.2 (a) demonstrates that base doping has a significant impact on transistor gain

E. Whitesides, J.P. Mendez, J. Ivie, X. Gao, & S. Misra 197

(a) (b)

(c)

Fig. 3.3: Simulated current gain for the common-emitter BJT configuration shown in Fig. 3.1
as a function of the emitter-base voltage (VEB) and the emitter-collector voltage (VEC), where
V=VEB=VEC: (a) for different base doping values; (b) for different collector doping values;
and (c) for different emitter doping values. The units are in cm−3.

in the device. When the base doping is reduced from 4× 1017 cm−3 to 3× 1017 cm−3, the
peak gain approximately doubles from 30 to 67. Decreasing base doping greatly reduces
carrier recombination in the base, leading to a decrease in base current and a corresponding
increase in gain. It is discovered that for base doping densities lower than approximately
3× 1017 cm−3, this BJT configuration experiences an early gain peaking effect. Lower base
doping densities on the orders of 2.5 × 1017 cm−3 and 2 × 1017 cm−3 achieve high gains
at much lower voltage values. A base doping of 2 × 1017 cm−3 yields a gain of nearly
6,700, orders above the maximum gains for the higher base doping densities. This early
gain peaking effect occurs when the depletion region encroaches significantly into the base,
reducing the effective base width and leading to abrupt increases in transistor gain, which
results in earlier and higher gain spikes for lower doping densities. It is possible that widening
the width of the δ-layer gap or scaling the base width appropriately may lessen this effect

198 Simulating Atomic Precision Advanced Manufacturing (APAM) Enhanced BJT

Fig. 4.1: 2D APAM BJT device

and result in more legitimate gains. Alternatively, these early high gains may be desirable
for some device applications.

In Fig. 4.2 (b), varying the doping density of the collector implant has no appreciable
effect on the gain at all. For each instance of NCol Impl, the gain is approximately 31,
which can be attributed to the emitter implant doping density of 5 × 1019 cm−3. The
introduction of APAM-fabricated δ-layers in the device shifts the primary influence on gain
to the emitter and collector δ-layers, rather than the doped implants themselves. This
observation is further demonstrated by Fig. 4.2 (c), which shows that increasing the emitter
implant doping slightly increases overall gain, but is less effective than reducing the base
substrate doping density. While higher emitter implant doping enhances gain up to a certain
level, once the doping concentration competes with that of the δ-layers (around 1021 cm−3),
any further gain amplification becomes negligible. Raising NEmit Impl from 5 × 1018 cm−3

to 5 × 1019 cm−3 brings the maximum gain from 20 to 31, while raising NEmit Impl from
5× 1019 cm−3 to 1020 cm−3 does not appreciably increase the gain.

To inspect the impact of the δ-layers on the gain, all of the device simulations are re-
conducted with the δ-layers removed, the results of which are shown in Fig. 4.3. In the cases
where δ-layers are removed, the n-type donor doping densities of the emitter and collector
δ-layers, typically on the order of 1021 cm−3, are replaced with a p-type acceptor dopant
density of 4×1017 cm−3 equivalent to that of the base substrate. It can be observed that the
presence of δ-layers alone increases the gain by at least an order. A non-δ-layer configuration
with a base density of 3×1017 cm−3 results in a maximum gain of approximately 4, whereas
the inclusion of δ-layers at the same doping level increases the maximum gain to 67.

5. Discussion. The simulated two-dimensional BJT device significantly enhances its
current gains through the incorporation of the δ-layer structure. The discussed device config-
uration further optimizes its enhanced current gain by doping the emitter δ-layer sufficiently
high and the base substrate appropriately low to avoid currents lost to recombination in the
base and prevent excessive current flow from the base into the emitter. Notably, the device
achieves its highest gain values with a lightly doped base substrate, around 3× 1018 cm−3.
The combination of low base doping and high emitter δ-layer doping maximizes the benefits
of increased conductivity and current density provided by the APAM-fabricated emitter and
collector δ-layers. However, the early gain peaking effect observed as a result of base width
depletion at low base doping densities must be addressed to ensure that the device is viable
for applications where early gain peaking is undesirable. Adjustments such as widening the
δ-layer gap or scaling the base width could potentially mitigate this effect and provide more

E. Whitesides, J.P. Mendez, J. Ivie, X. Gao, & S. Misra 199

(a)

(b)

(c)

Fig. 4.2: Simulated current gain for the common-emitter BJT configuration shown in Fig. 4.1
as a function of the emitter-base voltage (VEB) and the emitter-collector voltage (VEC), where
V=VEB=VEC: (a) for different base doping values; (b) for different collector doping values;
and (c) for different emitter doping values. The units are in cm−3.

stable high gains. Due to differences in geometry, the two-dimensional simulations yield
lower gains overall when compared to those achieved in the one-dimensional simulations,
despite having comparable doping configurations. It can be concluded that the δ-layers play
a pivotal role in significantly enhancing gain in each BJT simulation case, independent of
the variations in doping densities of the base (NB), emitter implant (NEmit Impl), and collec-
tor implant (NCol Impl). Simulations incorporating δ-layers consistently achieved maximum
gains that were at least an order of magnitude higher compared to configurations without
δ-layers, underscoring their substantial impact on device performance.

6. Summary. This work seeks to understand the impact of δ-layer incorporation on
the current gain of a two-dimensional APAM BJT device at room temperature. The study
is conducted using semi-classical TCAD simulations. A one-dimensional device model com-
posed of highly doped 2D regions known as δ-layers is simulated first to investigate the

200 Simulating Atomic Precision Advanced Manufacturing (APAM) Enhanced BJT

(a)
(b)

Fig. 4.3: Study of the effect of the δ-layer on the current gain. Simulated current gain for
the common-emitter BJT configuration shown in Fig. 4.1 as a function of the emitter-base
voltage (VEB) and the emitter-collector voltage (VEC), where V=VEB=VEC, for different
base doping values with δ-layers in (a) and without δ-layers in (b). The units are in cm−3.

impact of the δ-layers on the current gain. Building on insights gained from the 1D simula-
tions, the incorporation of these planar structures into a larger, more complex device envi-
ronment is investigated through simulations deriving the current gain of a δ-layer equipped
two-dimensional BJT for various doping densities. Overall, the δ-layers play a pivotal role
in significantly enhancing gain. It is found that the maximum gain is achieved by doping the
emitter δ-layer sufficiently high and the base substrate appropriately low. It is also found
that the collector δ-layer doping density does not significantly influence the gain.

7. Future Research. APAM’s potential for beyond-Moore and quantum computing
applications offers a significant opportunity for the continued miniaturization of transistor
devices and the advancement of microelectronics as a whole. Investigating the performance
of increasingly complex and practical APAM device prototypes will deepen the understand-
ing of their physics and potential applications. The next essential step is to explore more
devices fabricated at the atomic scale to achieve better performance, enhanced signal am-
plification, and faster switching times. While previous works, including an exploration of
an APAM-based vertical 2D-2D tunnel FET [13], have primarily operated at cryogenic
temperatures, further research is needed to assess the operation of APAM devices under
room temperature conditions for practical applications. This study provides preliminary
insights into the gain amplification capabilities of a novel two-dimensional BJT equipped
with APAM δ-layers, but continued optimization is necessary to fully demonstrate its per-
formance potential.

Acknowledgement. This research was supported in part by an appointment to the
National Nuclear Security Administration Minority Serving Institutions Internship Program
(NNSA-MSIIP), sponsored by the National Nuclear Security Administration and adminis-
tered by the Oak Ridge Institute for Science and Education.

E. Whitesides, J.P. Mendez, J. Ivie, X. Gao, & S. Misra 201

REFERENCES

[1] M. M. Waldrop. The Chips are Down for Moore’s Law . Nature, 530 (7589):42, 2016.
[2] T.-M. Lu, X. Gao, E. M. Anderson, J. P. Mendez Granado, D. M. Campbell, J. A. Ivie, S. W.

Schmucker, A. D. Grine, P. Lu, L. A. Tracy, R. Arghavani, and S. Misra. Path towards a vertical
TFET enabled by atomic precision advanced manufacturing. United States, Jun 2021.

[3] D. R. Ward, S. W. Schmucker, E. M. Anderson, E. Bussmann, L. Tracy, T.-M. Lu, L. N. Maurer, A.
Baczewski, D. M. Campbell, M. T. Marshall, and S. Misra. Atomic precision advanced manufac-
turing for digital electronics. EDFAAO, 22(1):4–10, 2020.

[4] C. K. Ober, H. Xu, V. Kosma, K. Sakai, and E. P. Giannelis. EUV photolithography: resist progress
and challenges. In K. A. Goldberg, editor, Extreme Ultraviolet (EUV) Lithography IX, volume
10583, page 1058306. International Society for Optics and Photonics, SPIE, 2018.

[5] K. E. J. Goh, L. Oberbeck, M. Y. Simmons, A. R. Hamilton, and M. J. Butcher. Influence of doping
density on electronic transport in degenerate Si:P δ-doped layers. Phys. Rev. B, 73:035401, Jan
2006.

[6] L. Oberbeck, N. J. Curson, M. Y. Simmons, R. Brenner, A. R. Hamilton, S. R. Schofield, and R. G.
Clark. Encapsulation of phosphorus dopants in silicon for the fabrication of a quantum computer .
Applied Physics Letters, 81(17):3197–3199, 10 2002.

[7] E. Crane, A. Kölker, T. Z. Stock, N. Stavrias, K. Saeedi, M. A. W. van Loon, B. N. Murdin, and N. J.
Curson. Hydrogen resist lithography and electron beam lithography for fabricating silicon targets
for studying donor orbital states. Journal of Physics: Conference Series, 1079(1):012010, Aug
2018.

[8] D. Mamaluy, J. P. Mendez, X. Gao, and S. Misra. Revealing quantum effects in highly conductive
δ-layer systems. Communications Physics, 4(1):205, Sep 2021.

[9] G. J. Snyder and E. S. Toberer. Complex thermoelectric materials. Nature Materials, 7(2):105–114,
Feb 2008.

[10] Charon — charon.sandia.gov. https://charon.sandia.gov/, [Accessed 11-10-2024].
[11] The Cubit® Geometry and Mesh Generation Toolkit — cubit.sandia.gov. https://cubit.sandia.

gov/, [Accessed 11-10-2024].
[12] ParaView - Open-source, multi-platform data analysis and visualization application — paraview.org.

https://www.paraview.org/. [Accessed 11-10-2024].
[13] X. Gao, J. P. Mendez, T. M. Lu, E. M. Anderson, D. M. Campbell, J. A. Ivie, S. W. Schmucker, A.

Grine, P. Lu, L. A. Tracy, R. Arghavani, and S. Misra. Modeling and Assessment of Atomic Pre-
cision Advanced Manufacturing (APAM) Enabled Vertical Tunneling Field Effect Transistor . In
2021 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD),
pages 102–106, 2021.

202 Simulating Atomic Precision Advanced Manufacturing (APAM) Enhanced BJT

M. Adams, T. Casey, B.W. Reuter 203

II. High Performance & Post-Moore Computing

Articles in this section discuss the implementation of software for high performance comput-
ing (HPC) or development of new types of scientific computing. In many cases, performance
improvements and portability are demonstrated for many-core heterogenous architectures,
such as conventional multicore CPUs, the Intel Many Integrated Core coprocessor (MIC),
and graphical processing units (GPUs). Software and algorithms for non-traditional hard-
ware such as SmartNICs or quantum computers offer other opportunities to advance scien-
tific computing in the post-Moore era.

1. A. Alvey-Blanco, K. Liegeois and B. Kelley Toward Automatic Kernel Fusion For
Kokkos Using MLIR

2. C.N. Avans, J. Ciesko, C. Pearson, E.D. Suggs, S.L. Olivier, and A. Skjellum
Performance Insights Into Supporting Kokkos Views In The Kokkos Comm MPI
Library

3. N. Bacon, S. Levy, P. Bridges, and K.B. Ferreira Analysis Of Modern Tools For
Communication Impacts

4. A. Epperly, K. Thompson, and O. Parekh Sum Of Squares Bounds On The Perfor-
mance Of The Quantum Approximate Optimization Algorithm

5. A. Krishna and R. Milewicz Experience Report On Observability And Its Effect
On Security And Usability In Software Systems

6. C. O’Neil, M.D. Porter, and S.K. Seritan Analyzing Qubit-runtime Tradeoffs In
Parallelizing Unary Iteration

7. J. Shawger andM.L. Curry Storage System Characterization In Virtualized Testbed
8. N.D. Siekierski, A.Q. Wilber-Gauthier, and S.K. Seritan Scalable Application-

Oriented Benchmarking Of Quantum Computers

M. Adams
T. Casey

B.W. Reuter

November 4, 2024

TOWARD AUTOMATIC KERNEL FUSION FOR KOKKOS USING MLIR

ADDISON ALVEY-BLANCO ∗, KIM LIEGEOIS † , AND BRIAN KELLEY ‡

Abstract.

Heterogeneous compute platforms have become pervasive in HPC. This has created a demand for pro-
gramming frameworks that promise performance portability so that developers can avoid writing many ver-
sions of the same code and lessen the difficulty of programming for accelerators. Typically, these frameworks
dispatch a single API call to many different versions of a kernel so that a particular kernel implementation
is selected for a given architecture. Developers string these API calls (kernels) together in a specific way to
implement their programs. Since the provided kernels are typically primitives, this causes an explosion of
kernel calls. The increase of kernel calls increases the launch overhead and misses data reuse opportunities
across kernels. Kernel fusion can be used to avoid these pitfalls. Automatic kernel fusion has been an
area of research for some time, but no approach has been widely adopted. This work presents a method-
ology for automatically fusing kernels in a user-driven, platform-agnostic way. We present results obtained
by generating code for Kokkos, a popular performance portability framework, and relying on Kokkos and
vendor-supplied compilers to determine platform-specific details after kernel fusion has been performed.

1. Introduction. The rise of accelerators and other specialized hardware have forced
new and existing software stacks to support heterogeneous compute platforms. The De-
partment of Energy compute platforms alone are made up of devices from each of the three
major vendors: NVIDIA, Intel, and AMD. Each of these vendors have their own architec-
tures, their own compilers, their own implementations of libraries like BLAS [1, 2, 4, 5, 6],
and their own language implementations. NVIDIA uses CUDA, AMD uses HIP, and Intel
uses SYCL. OpenCL exists as a one-size-fits-all language for running on all three vendors’
devices, but there may not be a one-to-one mapping from, say, CUDA primitives to OpenCL
requirements. Therefore, the same code written in OpenCL and CUDA may have differences
in performance. Hence, developers are left with a choice: 1. maintain a separate version
of their code for each compute platform, or 2. deal with drawbacks incurred from using a
one-size-fits-all approach.

Performance portability frameworks like Legion [7], RAJA [8], and Kokkos [9] allow
developers and users of scientific software stacks to “write once, run anywhere”. In general,
performance portability frameworks abstract away architecture-specific parallelization prim-
itives, allowing users to focus on implementing their algorithms in a generic way. Based on
the target architecture specified by a user, these frameworks generate architecture-specific
code. Our target portability framework is Kokkos. There is an extension to Kokkos called
Kokkos Kernels [25], focused on BLAS and sparse linear algebra kernels [23], that dispatches
a single API call to various kernel implementations that are tuned for a particular architec-
ture.

Loss of control over optimizations is a consequence of using libraries of linear algebra
primitives. An example that illustrates this is b = Ax + y, with A a matrix of size n ×
n, x a vector of size n, and y a vector of size n. While there are typically routines to
compute z = Ax, i.e. GEMV in BLAS, and b = z + y, i.e. AXPY in BLAS, a routine that
computes both operations as a single library call typically does not exist. The locality of
the program is reduced as a result. Specifically, for small inputs, as is the case in machine
learning applications and some scientific applications, we can compute a single entry, bi,
in cache and eliminate the need to materialize the intermediate variable z. Kernel fusion
[14, 15, 16, 20, 22, 24, 26], inspired by loop fusion [12, 17], is an optimization technique

∗Sandia National Laboratories, and University of Illinois at Urbana-Champaign, ajalvey@sandia.gov
†Sandia National Laboratories, knliege@sandia.gov
‡Sandia National Laboratories, bmkelle@sandia.gov

204 CSRI Summer Proceedings 2024

that aims to increase data locality and decrease kernel launch overhead. In our example,
b = Ax+ y, we can fuse the kernel computing z = Ax and the kernel computing b = z + y
to increase locality.

Current vendor-supplied compilers do not support kernel fusion, so we need external
solutions. One possibility is to use a compiler other than a vendor-supplied compiler. How-
ever, this risks missing optimizations performed by a vendor’s compiler. Another option
is to implement kernel fusion in a source-to-source compilation pipeline. By doing this,
we can perform kernel fusion and still take advantage of architecture-specific optimizations
implemented by a vendor’s compiler.

The overall contribution of this work is an attempt at solving the problem of kernel
fusion in a platform-agnostic manner. Specifically, we rely on users to supply information
about what to fuse as a replacement for a profitability model. We then use the user-
supplied information to partition a graph of kernel calls, with each partition representing a
fused kernel. For our compiler choice, we use the Multi-Level Intermediate Representation
(MLIR) compiler framework [21] due to its many levels of abstraction.

In section 2, we provide background on loop and kernel fusion. In section 3, we describe
our approach to the kernel fusion problem. In section 4, we show the results of our method for
kernel fusion on two examples. The first is a reference gradient computation commonly found
in the spectral element method (SEM), the second is a batched matrix-vector multiplication
and a vector addition. In section 5, we discuss the performance of our method compared to
our expectations and directions for future work. In section 6, we conclude by providing a
summary of our method and future work.

2. Background. Kernel fusion is a special case of loop fusion. Specifically, a compu-
tational kernel is a typed, perfectly nested set of parallel loops. A perfectly nested loop
is a loop in which there are no instructions between loop headers, i.e. all instructions are
contained in the innermost loop. Fusing kernels involves fusing the parallel loops the kernels
represent. To this end, we begin with background on loop fusion.

2.1. Loop fusion. Loop fusion is a loop transformation that is used to increase data
locality in a program [12, 17]. Loop fusion combines two or more compatible loops into a
single loop. By creating a single loop, temporary variables storing intermediate results can
be eliminated. This can allow intermediate results to stay in cache or in registers, thereby
increasing temporal locality of the program.

The problem of loop fusion is more general than that of kernel fusion. Specifically,
kernels typically do not interfere with a program outside of the scope of the kernel definition.
A loop, on the other hand, can alter variables and program state outside of the scope of
the loop body. Moreover, a kernel call is typed by the arguments passed and the results
returned. As a result, it is trivial to determine dependences between two or more kernel
calls. More analysis is required to determine the common variables between two or more
loop nests since the information is not readily available.

2.2. Kernel fusion. Kernel fusion is a code transformation that aims to (1) increase
data locality by combining two or more kernel definitions, and (2) reduce kernel launch
overhead by reducing the total number of launched kernels. Since separate, data-dependent
kernel invocations are typically run sequentially, one kernel must store a result in global
memory and any dependent kernels must load the result from global memory. Kernel fusion,
if legal to do, allows the data to be stored and accessed from fast memory. Kernel fusion is
not always possible and it does not always result in a performance increase.

Since manually fusing kernels can miss optimization opportunities, there have been a
number of works on automatic kernel fusion [14, 15, 16, 20, 22, 24, 26]. In [20, 24, 26], the

A. Alvey-Blanco, H. Liegeois, & B. Kelley 205

problem of kernel fusion is set up as graph partitioning problem. The graph is a directed
acyclic graph of kernel calls, i.e. a dependency graph, with edges representing a read-write
dependency between kernels. A directed edge from kernel A to kernel B means kernel A
must execute before kernel B.

In [26], the graph partitioning problem is setup so as to minimize the total runtime of
the program. A projected runtime is computed for each subkernel and a fused kernel created
from the same subkernels. If fusion does not violate dependency constraints and the sum of
the projected subkernel runtimes is greater than the projected fused kernel runtime, then
the fused kernel is used. This approach requires an accurate runtime model which might
not be available for all architectures targeted by a performance portability framework. The
approach taken by [14] is similar, but pre-existing benchmarks for each subkernel are used
in place of a performance model. This would require a significant amount of work if the
benchmarks are not available for the possible target architectures at compile time. The
approach taken by [24] computes edge weights by estimating locality improvement using
domain- and architecture-specific knowledge and solves the resulting graph partitioning
problem using minimum cut.

The implementation in [20] takes advantage of the widely used tools LLVM and Clang.
A decorator is provided by the user for kernels that should be considered for fusion. However,
users cannot specify specific kernels with which a particular kernel should be fused. The
resulting fusion problem in [20] is solved via a topological sort of the DAG generated from
the annotated kernels.

The proposed method in [15] utilizes a dataflow analysis method based on [18, 19] using
a control-flow graph (CFG) of kernels. However, the results shown are only using CUDA
[3] kernels.

2.3. Multi-Level Intermediate Representation (MLIR) framework. MLIR is
a compiler infrastructure framework in the LLVM project. It provides various levels of
abstraction in the intermediate representation (IR). Certain transformations can only be
applied at specific levels of abstraction. Moving through the levels of abstraction is referred
to as “lowering” or “raising” the IR. The levels of abstraction are referred to as dialects.

As an example, the Linalg dialect in MLIR represents linear algebra primitives and
generic linear algebra operations. The Linalg dialect has a natural connection to the Tensor
dialect, representing abstract, non-bufferized multidimensional arrays, and the Structured
Control-Flow (SCF) dialect, representing control-flow constructs like if-statements and for
loops. MLIR also provides various dialects that target certain devices and frameworks, i.e.
the GPU dialect and LLVM dialect.

2.4. Linear Algebra Performance through Intermediate Subprograms (LAPIS).
LAPIS is a source-to-source compiler focused on code transformations for sparse linear alge-
bra. There is a utility for generating Kokkos C++ code from MLIR input. The work in this
paper utilizes the existing MLIR-to-Kokkos translation tool in LAPIS. Our work directly
contributes to the optimization pipeline in LAPIS, which had limited capabilities prior to
the work in this paper. There are plans to release LAPIS as an open-source project in the
future.

3. Approach. In this section, we provide the details of our proposed solution to the
problem of fusing kernels automatically in a platform-agnostic way. In a similar way to
previous works, we view kernel fusion as a partial graph partitioning problem. To generate
the initial graph, we rely on the user to provide information about what kernels to fuse. We
do not guarantee that all requested kernels are fused together.

206 Toward Automatic Kernel Fusion for Kokkos using MLIR

3.1. Overview. We assume all kernel calls are made from a main routine. Further,
we assume all kernel definitions and the main routine are available in the same module.
Finally, we assume no aliasing occurs. These assumptions only need to hold for the IR
that our kernel fusion routine will process. Since our main focus is on scientific computing
and machine learning applications, we assume the kernel definitions represent some linear
algebra operations.

As an overview of the process, we first build a graph of kernel calls found in the IR of the
original program. We then process the graph and user-provided metadata to create fusion
sets. Fusion sets are collections of kernel calls that are to be fused together into a single call.
Once all fusion sets have been created, we remap arguments and results to make sense in the
context of the fused kernels and remove previously materialized intermediate results. Once
we have created all of the fused kernels, we then lower the new IR to Kokkos C++ using the
LAPIS translation tool. At this point, we rely on Kokkos to generate architecture-specific
code and various vendor-supplied compilers to further optimize the generated code.

3.2. Graph creation. To begin, we gather all calls found in the main routine. An
edge is inserted between two kernels if there is an input dependence or a true dependence.
An input dependence means two kernels load the same input data. Fusing two kernels with
input dependence can reduce the number of times the common input data is retrieved from
main memory. A true dependence means there is some intermediate data that must be
materialized in one kernel and loaded in the another. By fusing, we can eliminate the need
to materialize intermediates. We rely on the order-preserving property of MLIR to ensure
kernels are processed in the proper order.

def main ():

a = k0(x, y)

b = k1(a, y)

c = k2(s, t)

d = k3(s, u)

e = k4(b, c, d)

k0

k1

k2 k3

k4

Fig. 3.1: Example of a graph generated from kernel calls

An example of source code and the corresponding graph are included in Figure 3.1.
Since there is a read-write dependence between kernel 0 and kernel 1, there is an edge
connecting them. Similarly, there is a read-write dependence between kernel 1 and kernel
4, kernel 2 and kernel 4, and kernel 3 and kernel 4 represented by an appropriate edge in
the graph. Finally, the input dependence is shown as a dashed line from kernel 2 to kernel
3 since input dependence does not constrain the semantics of the program.

3.3. Generating fusion sets. Once we have generated a graph of kernel calls, we
then process the graph and user-provided metadata to partition the graph. We create sets
of kernel calls (nodes) called fusion sets. Edges between calls are replaced with edges between
fusion sets.

First, we check that each kernel is legal to fuse with all other kernels in the fusion
set. For legality checking, we utilize a modified version of the existing parallel loop fusion
legality checking in MLIR. In particular, it is ensured that dependences do not exist across
loop iterations, and that the parallel iteration spaces of the kernel definitions match. A
kernel call is added to a fusion set if it is legal to fuse and the user has requested it should
be fused with all other calls in the fusion set.

Following our example above, fusion sets correspond to partitions of the graph. In

A. Alvey-Blanco, H. Liegeois, & B. Kelley 207

Figure 3.2, fusion sets are represented by dashed circles around a subset of the nodes of the
graph.

k0

k1

k2 k3

k4

Fig. 3.2: Example of fusion sets

3.4. Fusing kernels. Lastly, we fuse all kernels in a fusion set together. We first move
all kernel calls in a fusion set out of the main function and into a new function that will
become the fused kernel. A call to the fused kernel is placed below the final subkernel call in
the main function. Arguments and results are remapped to the fused kernel call, removing
duplicates and unnecessary materialization. Once we have finished processing the fusion
sets, we lower the kernels via a sequential process. First, we inline each subkernel into the
fused kernels. Once all subkernels in all fused kernels have been inlined, we fuse the parallel
loops of the inlined subkernels. Finally, once all parallel loop fusion is completed, we delete
the subkernel definitions if they are unused elsewhere.

Figure 3.3 illustrates the fused version of our original example and the corresponding
graph.

def main ():

b = k01(x, y)

c, d = k23(s, t, u)

e = k4(b, c, d)

k01 k23

k4

Fig. 3.3: Code & graph result of fusion

4. Results & Discussion. The results below are gathered by generating Kokkos C++
code from the MLIR containing the fused kernels and choosing a vendor-supplied compiler
based on the device we are targetting. All of the results are compiled with all optimizations
on, i.e. using -O3.

Execution times collected are an average over 1000 runs of each point in the figures
below. In between each of the 1000 runs, the GPU cache is flushed by initializing a 512 MB
array on the GPU. The initialization time is not included in the measured time for each
point in the figures.

4.1. Finite Element Reference Gradient Computation.

4.1.1. Motivation. A common operation in finite-element methods is to apply an op-
erator, typically a mass or stiffness matrix, to degrees-of-freedom (DOFs). The application
of the operator can be decomposed into a sequence of single-axis tensor contractions if a
tensor-product discretization is used. The tensor contraction method reduces the computa-
tional cost from O(n2d) to O(nd+1), where d is the physical dimension and n are the number
of DOFs in a single element. This is commonly used in the spectral element method (SEM).
For an for an overview, see Chapter 4 of [11].

208 Toward Automatic Kernel Fusion for Kokkos using MLIR

Device L1 Cache Size (KB) L2 Cache Size (MB)
MI250 16 KB per CU 16 MB
H100 256 KB per SM 50 MB
V100 128 KB per SM 6 MB

Ponte Vecchio 64 KB per EU 418 MB

Fig. 4.1: L1 and L2 cache sizes for various GPU devices

4.1.2. Example: Reference Gradient. We apply a reference differentiation opera-
tor to DOF data of a tensor-product discretization to generate the reference gradient. If we
wanted the full gradient, we would need to apply metric terms to the reference gradient.
This is used in, for example, [10, 27]. The purpose of this example is to highlight fusion
benefits when there is only input dependence, so we do not apply metric terms.

Suppose we have a 3D tensor-product discretization with nd degrees of freedom per
dimension, ne elements. Then, we have a total of n3d DOFs, and a rank-4 tensor of DOFs
with size ne × nd × nd × nd. Given a differentiation operator D of size nd × nd, we can
express the reference partial derivatives as tensor contractions over each of the DOF axes
of the DOF tensor with D. In particular,

(
∂u

∂r

)e

ijk

=

nd∑

ℓ

Diℓu
e
ℓjk

(
∂u

∂s

)e

ijk

=

nd∑

ℓ

Djℓu
e
iℓk

(
∂u

∂t

)e

ijk

=

nd∑

ℓ

Dkℓu
e
ijℓ,

where ueijk denotes the (i, j, k)-th DOF of the e-th element.
A naive implementation would involve calling a separate kernel for each partial deriva-

tive. This implementation would suffer from poor data locality. Specifically, the operator
D never changes and can stay in fast memory. By calling three separate kernels, we are
loading the nd × nd operator D from global memory three times when we only need to do
it once. Additionally, we lose data reuse in the DOFs by not writing all three reductions
in a single kernel. We utilize our kernel fusion tool described above to fuse all three partial
derivative computations into the same kernel. In our implementation, we parallelize over
the elements.

The results gathered for this example are shown in Figures 4.2, 4.3 and 4.4. Figure
4.2 shows results gathered while varying the element count while Figure 4.3 shows results
gathered while varying the DOF count. The plots show the fused over unfused ratio and
raw measurements of L1 hit rate and execution time measured in seconds. In both figures,
we can see that a larger ratio of L1 hit rates corresponds to a smaller ratio of execution
times. This is to be expected since an increased L1 hit rate means the number of global
memory accesses is reduced, hence saving on GPU cycles. In the case where element count
is varied, a constant DOF count of 3 per dimension, i.e. 27 total DOFs, is used. In the case
where the DOF count is varied, a constant element count of 128× 103 is used.

In Figure 4.2, we can see that fusion improves performance for varied element counts.
Since we are parallelizing over the elements, we expect the benefit of fusion to be constant
for all element counts. However, this is not the case for the smallest element count on the

A. Alvey-Blanco, H. Liegeois, & B. Kelley 209

0.8

0.9

1.0

1.1

1.2

R
at

io

Fused / Unfused L1 Hit Rate

H100
MI250

0.2

0.4

0.6

0.8

1.0

R
at

io

Fused / Unfused Execution Time (s)

H100
MI250

10 12 14 16 18

60

70

80

90

100

L1
 H

it
R

at
e

L1 Hit Rate vs log2(Element Count)

H100, Fused
H100, Unfused
MI250, Fused
MI250, Unfused

10 12 14 16 18
0.0000

0.0005

0.0010

0.0015

Ex
ec

ut
io

n
T

im
e

(s
)

Execution Time (s) vs log2(Element Count)

H100, Fused
H100, Unfused
MI250, Fused
MI250, Unfused

Performance Metrics for Reference Gradient, Varying Element Count

log2(Element Count)

Fig. 4.2: L1 hit rates and execution times of reference gradient example on MI250 and H100
with varied element count

H100 and for the MI250 overall. This is due to architectural differences like the size of the
L1 and L2 cache on each of the devices.

The behavior in Figure 4.3 shows how the number of DOFs in each element dictates
fused performance. We can see that fusion results in an increased L1 hit rate only for
the H100. The fused L1 hit rate is reduced to about 80% of the unfused L1 hit rate on
the MI250. This is due to the small L1 cache of the MI250. The H100 has 256KB of L1
cache per streaming multiprocessor (SM) while the MI250 only has 16KB of L1 cache per
compute unit (CU). Despite the increased H100 L1 hit rate across all DOF counts, the fused
execution time is greater than the unfused execution time as the DOF count increases. Since
we are parallelizing over elements, threads will begin to compete for L1 cache space. Hence,
depending on the L1 cache space, fusion can be more or less beneficial.

We also gathered execution times for a Ponte Vecchio GPU and V100 GPU. We were
unable to collect cache hit rate data due to issues with the available profiling tools. In
Figure 4.4, the relative speed-up and execution time on all tested architectures is included.
A negative value on the y-axis corresponds to a slowdown. We can see that the MI250
suffers more than any other device in Figure 4.4. However, other devices also have decreased
performance when fused. If we compare the performance gain to the size of the L1 cache,
we can see that a large L1 cache typically corresponds with a larger-by-comparison increase
in performance. The Ponte Vecchio GPU is an exception, with the third smallest L1 cache.
The large L2 cache makes up for the lack of L1 cache space since fetching from L2 to L1
cache is faster than from global memory to L2 cache.

4.2. Batched GEMV + AXPY.

4.2.1. Motivation. Batched operations have become popular in part due to machine
learning applications. There have been efforts to create a standardized interface for batched
BLAS routines [13]. Batched linear algebra operations are also relevant to scientific com-
puting applications. For example, we can express the reference gradient computation above

210 Toward Automatic Kernel Fusion for Kokkos using MLIR

0.8

0.9

1.0

1.1

1.2

R
at

io

Fused / Unfused L1 Hit Rate

H100
MI250

0.8

1.0

1.2

1.4

1.6

1.8

R
at

io

Fused / Unfused Execution Time (s)

H100
MI250

2 4 6 8 10

60

70

80

90

100

L1
 H

it
R

at
e

L1 Hit Rate vs DOF Count

H100, Fused
H100, Unfused
MI250, Fused
MI250, Unfused

2 4 6 8 10
0.00

0.05

0.10

Ex
ec

ut
io

n
T

im
e

(s
)

Execution Time (s) vs DOF Count

H100, Fused
H100, Unfused
MI250, Fused
MI250, Unfused

Performance Metrics for Reference Gradient, Varying DOF Count

DOF Count per Dimension

Fig. 4.3: L1 hit rates and execution times of reference gradient example on MI250 and H100
with varied DOF count

as a batched matrix-times-vector with batch size equal to the dimension, d. Specifically, if
we do not exploit a tensor-product discretization, and we are working in d = 3 dimensions,
then we need three differentiation operators. We can organize the DOFs as a matrix of
size ne × n3d. We can express each entry of the gradient as a batched matrix-times-vector
operation

∇uer,i =
n3
d∑

j

Dr,iju
e
j , for r = 1, . . . , d

4.2.2. Example: Batched GEMV + AXPY. In this example, we consider a gen-
eral batched matrix vector multiplication and a vector addition, where both the matrix and
the vector have a batch axis. Specifically, our example is to implement

zℓi =

n∑

j

Aℓ,ijxℓ,j + yℓ,i, for ℓ = 1, . . . , b,

with a batch size of b, A a 3-tensor of size b× n× n, and x, y, and z three matrices of size
b× n. The unfused implementation involves two kernel calls: one kernel call is responsible
for the batched c = Ax, and the second kernel call is responsible for the batched z = c+ y.
The results collected for this experiment are shown in Figures 4.5, 4.6, and 4.7.

The H100 results found in Figure 4.5 show that varying the batch size has little impact
on the L1 hit rate, and thus does not reduce the execution time. This is not the same for
the MI250 results in Figure 4.6. The difference in the results can be explained, again, by
the difference in the size of the L1 caches between the two GPUs.

In the case where the input matrix size is varied, we can see that fusion has a larger
impact on the performance. A gradual increase in execution time and decrease in L1 hit

A. Alvey-Blanco, H. Liegeois, & B. Kelley 211

10 12 14 16 18
80

0

100

%
 S

pe
ed

-u
p

% Speed-up vs log2(Element Count)

V100
H100
INTEL-PVC
MI250

10 12 14 16 18
0.000

0.001

Ex
ec

ut
io

n
T

im
e

(s
) Execution Time (s) vs Element Size (Unfused)

V100
H100
INTEL-PVC
MI250

10 12 14 16 18
0.000

0.001

Ex
ec

ut
io

n
T

im
e

(s
) Execution Time (s) vs Element Size (Fused)

V100
H100
INTEL-PVC
MI250

2 4 6 8 10
80

0

100

%
 S

pe
ed

-u
p

% Speed-up vs DOF Count

V100
H100
INTEL-PVC
MI250

2 4 6 8 10
0.0

0.1

Ex
ec

ut
io

n
T

im
e

(s
) Execution Time (s) vs DOF Count (Unfused)

V100
H100
INTEL-PVC
MI250

2 4 6 8 10
0.0

0.1

Ex
ec

ut
io

n
T

im
e

(s
) Execution Time (s) vs DOF Count (Fused)

V100
H100
INTEL-PVC
MI250

Reference Gradient: % Speed-up in Execution Time

Fig. 4.4: Reference Gradient: Execution time comparisons on V100, H100, MI250, and Intel
Ponte Vecchio

rate as the input size increases can be observed. Since we are parallelizing over the batches,
the input data for each batch must fit in cache. As the input size increases, available space
in the L1 cache becomes scarce.

As in the reference gradient example, we tested on a variety of architectures but could
only collect L1 hit rate metrics for the H100 and MI250. We were able to collect execution
times for the H100, MI250, V100, and Intel Ponte Vecchio. Those results are shown in 4.7.

In Figure 4.7, we can see that kernel fusion benefits all architectures at all batch sizes and
almost all input sizes. However, this is not the case for the reference gradient results in Figure
4.4. This leads us to conclude that automatic kernel fusion in the context of performance
portability has a benefit for some, but not all, problems. While our user-driven approach
aims to address this, it is not effective if a user lacks the necessary knowledge. Hence, our
method requires a way of determining when fusion could be detrimental to performance
in the context of performance portability. All devices except the MI250 saw at least some
performance gain from kernel fusion in our micro-benchmarks. The MI300, which was not
available for testing, has twice as much L1 cache storage than the MI250. So, the story
may not be the same for the MI300 as for the MI250. To adjust for various cache sizes,
loop tiling could be used to increase locality within a fused kernel. Since tiling needs to be
performed in a platform-agnostic way, this is a goal for future work.

4.3. Discussion. Overall, we have shown our implementation of kernel fusion is able
to achieve expected results across architectures from various vendors. In particular, we show
that kernel fusion results in an increase in L1 cache hit rates. This results in a decrease in the
runtime of the fused kernel compared to the sum of the runtimes of the subkernels. We can
see that there is a performance benefit across various architectures. This illustrates that
kernel fusion can be implemented as a platform-agnostic code transformation. However,
we notice a performance degradation in cases where the L1 cache is not large enough to

212 Toward Automatic Kernel Fusion for Kokkos using MLIR

2 4 6 8 10
1.0

1.2

1.4

1.6

1.8

R
at

io

Fused / Unfused L1 Hit Rate
vary batch size
vary input size

2 4 6 8 10

0.85

0.90

0.95

1.00

R
at

io

Fused / Unfused Execution Time (s)
vary batch size
vary input size

2 4 6 8 10

20

30

40

50

L1
 H

it
R

at
e

L1 Hit Rate vs log2(Size)

Fused, vary batch
Unfused, vary batch
Fused, vary input
Unfused, vary input

2 4 6 8 10
0.0000

0.0005

0.0010

Ex
ec

ut
io

n
T

im
e

(s
)

Execution Time (s) vs log2(Size)
Fused, vary batch
Unfused, vary batch
Fused, vary input
Unfused, vary input

Batched GEMV + AXPY: H100 Profiling Metrics

log2(Size)

Fig. 4.5: H100 L1 hit rate and execution time metrics for batched GEMV + AXPY example

2 4 6 8 10

1.00

1.05

1.10

1.15

1.20

R
at

io

Fused / Unfused L1 Hit Rate
vary batch size
vary input size

2 4 6 8 10

0.85

0.90

0.95

1.00

R
at

io

Fused / Unfused Execution Time (s)
vary batch size
vary input size

2 4 6 8 10

70

80

90

100

L1
 H

it
R

at
e

L1 Hit Rate vs log2(Size)

Fused, vary batch
Unfused, vary batch
Fused, vary input
Unfused, vary batch

2 4 6 8 10
0.000

0.001

0.002

0.003

0.004

Ex
ec

ut
io

n
T

im
e

(s
)

Execution Time (s) vs log2(Size)
Fused, vary batch
Unfused, vary batch
Fused, vary input
Unfused, vary input

Batched GEMV + AXPY: MI250 Performance Metrics

log2(Size)

Fig. 4.6: MI250 L1 hit rate and execution time metrics for batched GEMV + AXPY example

support the amount of intermediate data. Additional transformations, such as tiling, may
be necessary to improve the use of the L1 cache. This begs the question of whether other
code transformations, like tiling, can be effectively applied with no knowledge of the target
architecture.

Another question that is being investigated as an extension of this work is how to
predict performance without knowledge of the target architecture. One replacement for

A. Alvey-Blanco, H. Liegeois, & B. Kelley 213

4 6 8 10
0

10
%

 S
pe

ed
-u

p

% Speed-up vs log2(Batch Size), Input Size = 32x32

V100
H100
INTEL-PVC
MI250

4 6 8 10

4

6

Ex
ec

ut
io

n
T

im
e

(s
) 1e 5

Execution Time (s) vs Batch Size (Unfused)

V100
H100
INTEL-PVC
MI250

4 6 8 10

4

6

Ex
ec

ut
io

n
T

im
e

(s
) 1e 5

Execution Time (s) vs Batch Size (Fused)

V100
H100
INTEL-PVC
MI250

4 6 8 10
0

10

%
 S

pe
ed

-u
p

% Speed-up vs log2(Input Size), Batch Size = 256

V100
H100
INTEL-PVC
MI250

4 6 8 10
0.000

0.002

0.004

Ex
ec

ut
io

n
T

im
e

(s
) Execution Time (s) vs Input Size (Unfused)

V100
H100
INTEL-PVC
MI250

4 6 8 10
0.000

0.002

0.004

Ex
ec

ut
io

n
T

im
e

(s
) Execution Time (s) vs Input Size (Fused)

V100
H100
INTEL-PVC
MI250

Batched GEMV + AXPY: % Speed-up in Execution Time

Fig. 4.7: Batched GEMV + AXPY: Execution time comparison for various devices with
varied batch and input sizes

a performance model we are actively looking at is asymptotic computational cost. The
overarching graph partitioning problem in kernel fusion could then be solved such that
computational cost is minimized.

5. Conclusion. We have presented a platform-agnostic method for fusing kernels to
improve data locality in a program. Our approach relies on user-provided metadata to choose
candidate kernels for fusion. We have shown that our method achieves the expected results
on a variety of architectures. A weakness in the current implementation is that if a user pro-
vides no input, then no kernels will be fused. While this is intentional, it can be off-putting
to users who may lack required knowledge for useful fusion combinations. Hence, a topic
of future work for this project is fusion profitability criteria that is platform-agnostic. One
possibility is to utilize the computational cost of the (linear algebra) operations represented
by the kernels.

REFERENCES

[1] BLAS and Sparse BLAS Routines.
[2] cuBLAS. Archive Location: CUDA API References.
[3] CUDA C++ Programming Guide.
[4] cuSPARSE Library.
[5] rocBLAS documentation — rocBLAS 4.2.0 Documentation.
[6] rocSPARSE documentation — rocSPARSE 3.2.0 Documentation.
[7] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, Legion: Expressing locality and indepen-

dence with logical regions, in 2012 International Conference for High Performance Computing,
Networking, Storage and Analysis, Salt Lake City, UT, Nov. 2012, IEEE, pp. 1–11.

[8] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J. Kunen, O. Pearce,
P. Robinson, B. S. Ryujin, and T. R. Scogland, RAJA: Portable Performance for Large-Scale

214 Toward Automatic Kernel Fusion for Kokkos using MLIR

Scientific Applications, in 2019 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), Nov. 2019, pp. 71–81.

[9] H. Carter Edwards, C. R. Trott, and D. Sunderland, Kokkos: Enabling manycore performance
portability through polymorphic memory access patterns, Journal of Parallel and Distributed Com-
puting, 74 (2014), pp. 3202–3216.

[10] J. Chan, Z. Wang, A. Modave, J.-F. Remacle, and T. Warburton, GPU-accelerated discontinuous
Galerkin methods on hybrid meshes, Journal of Computational Physics, 318 (2016), pp. 142–168.

[11] M. O. Deville, P. F. Fischer, and E. H. Mund, High-Order Methods for Incompressible Fluid
Flow, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University
Press, 2002.

[12] C. Ding and K. Kennedy, Improving effective bandwidth through compiler enhancement of global
cache reuse, in Proceedings 15th International Parallel and Distributed Processing Symposium.
IPDPS 2001, Apr. 2001, pp. 10 pp.–. ISSN: 1530-2075.

[13] J. Dongarra, I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Hogg, P. V.
Lara, P. Luszczek, M. Zounon, S. D. Relton, T. Costa, and S. Knepper, Batched BLAS
(Basic Linear Algebra Subprograms) 2018 Specification.

[14] J. Filipovič, M. Madzin, J. Fousek, and L. Matyska, Optimizing CUDA Code By Kernel Fusion—
Application on BLAS, The Journal of Supercomputing, 71 (2015), pp. 3934–3957. arXiv:1305.1183
[cs].

[15] J. Fukuhara and M. Takimoto, Automated kernel fusion for GPU based on code motion, in Pro-
ceedings of the 23rd ACM SIGPLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems, San Diego CA USA, June 2022, ACM, pp. 151–161.

[16] T. Gysi, C. Müller, O. Zinenko, S. Herhut, E. Davis, T. Wicky, O. Fuhrer, T. Hoefler, and
T. Grosser, Domain-Specific Multi-Level IR Rewriting for GPU, July 2020. arXiv:2005.13014
[cs].

[17] K. Kennedy and K. S. McKinley, Maximizing loop parallelism and improving data locality via loop
fusion and distribution, in Languages and Compilers for Parallel Computing, G. Goos, J. Hartma-
nis, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, eds., vol. 768, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1994, pp. 301–320. Series Title: Lecture Notes in Computer Science.

[18] J. Knoop, O. Rüthing, and B. Steffen, Lazy code motion, SIGPLAN Not., 27 (1992), pp. 224–234.
[19] , Optimal code motion: theory and practice, ACM Trans. Program. Lang. Syst., 16 (1994),

pp. 1117–1155.
[20] A. Lamzed-Short, T. R. Law, A. Mallinson, G. R. Mudalige, and S. A. Jarvis, Towards Au-

tomated Kernel Fusion for the Optimisation of Scientific Applications, in 2020 IEEE/ACM 6th
Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC) and Workshop on Hierar-
chical Parallelism for Exascale Computing (HiPar), Nov. 2020, pp. 45–55.

[21] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle, T. Sh-
peisman, N. Vasilache, and O. Zinenko, MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation, in 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), Feb. 2021, pp. 2–14.

[22] A. Li, B. Zheng, G. Pekhimenko, and F. Long, Automatic Horizontal Fusion for GPU Kernels,
July 2020. arXiv:2007.01277 [cs].

[23] K. Liegeois, S. Rajamanickam, and L. Berger-Vergiat, Performance Portable Batched Sparse
Linear Solvers, IEEE Transactions on Parallel and Distributed Systems, 34 (2023), pp. 1524–
1535. Conference Name: IEEE Transactions on Parallel and Distributed Systems.

[24] B. Qiao, O. Reiche, F. Hannig, and J. Teich, From Loop Fusion to Kernel Fusion: A Domain-
Specific Approach to Locality Optimization, in 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), Feb. 2019, pp. 242–253.

[25] S. Rajamanickam, S. Acer, L. Berger-Vergiat, V. Dang, N. Ellingwood, E. Harvey, B. Kelley,
C. R. Trott, J. Wilke, and I. Yamazaki, Kokkos Kernels: Performance Portable Sparse/Dense
Linear Algebra and Graph Kernels, Mar. 2021. arXiv:2103.11991 [cs].

[26] M. Wahib and N. Maruyama, Scalable Kernel Fusion for Memory-Bound GPU Applications, in SC
’14: Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, Nov. 2014, pp. 191–202. ISSN: 2167-4337.

[27] K. Świrydowicz, N. Chalmers, A. Karakus, and T. Warburton, Acceleration of tensor-product
operations for high-order finite element methods, The International Journal of High Performance
Computing Applications, 33 (2019), pp. 735–757. Publisher: SAGE Publications Ltd STM.

A. Alvey-Blanco, H. Liegeois, & B. Kelley 215

PERFORMANCE INSIGHTS INTO SUPPORTING KOKKOS VIEWS IN
THE KOKKOS COMM MPI LIBRARY

C. NICOLE AVANS∗, JAN CIESKO† , CARL PEARSON‡ , EVAN DRAKE SUGGS § , STEPHEN L.

OLIVIER¶, AND ANTHONY SKJELLUM∥

Abstract.

We introduce Kokkos Comm, a new Kokkos ecosystem library designed to address the challenges of
integrating Kokkos, a C++ performance portability ecosystem, with distributed memory programming
models. Kokkos Comm aims to alleviate the difficulties associated with coordinating non-blocking MPI
operations and Kokkos execution spaces, as well as handling non-contiguous data structures represented
by Kokkos::Views. Additionally, it serves as a platform for researching improved methods of managing
non-contiguous data and exploring new communication APIs with performance portability across various
underlying transports. This research aims to aid in the development of Kokkos Comm by providing insights
to guide further performance-oriented development.

1. Background. Increasingly complex high-performance computing (HPC) architec-
tures have led to a demand for the efficient integration of on-node and off-node performance-
portable programming models. Kokkos [11], a C++ library for on-node parallel execution
and memory abstraction, is a popular solution, enabling developers to write single-source
applications that can efficiently utilize diverse CPU and GPU hardware platforms from var-
ious vendors. Presently, integration with MPI presents difficulties with supporting the main
Kokkos data structure, the Kokkos::View, and coordination of non-blocking MPI communi-
cation. We introduce initial work on Kokkos Comm, a new library in the Kokkos Ecosystem
designed to bridge the gap between Kokkos and distributed memory programming. The pri-
mary objectives of Kokkos Comm are threefold:

• Alleviate the challenges associated with combining Kokkos and MPI [4], focusing
on the coordination of non-blocking MPI operations with Kokkos execution spaces
and efficient handling of non-contiguous Kokkos::Views.

• Provide a platform to investigate improved methods of managing non-contiguous
data in the context of Kokkos and MPI interactions.

• Serve as a testbed to research novel communication APIs in addition to MPI, such
as MPIAdvance [1], libfabric [8], UCX [12], and NCCL [6].

2. KokkosComm Functionality. The Kokkos Comm prototype 1 establishes a frame-
work for future research and development within the Kokkos ecosystem, particularly in the
realm of efficient and flexible inter-node communication. This work also builds on and com-
plements prior work and experience with integrating an MPI subset, ExaMPI, with Kokkos
as described in Suggs et al. [10] [9].

Initial work in Kokkos Comm is primarily concerned with MPI interoperability. Fig-
ure 2.1 shows the template specification of Kokkos Comm’s MPI Send interface. Kokkos
Comm’s operations are ordered with respect to a Kokkos execution space instance, so many
operations take both a Kokkos execution space instance and an MPI communicator as argu-
ments. To allow Kokkos Comm to flexibly handle various shapes of multidimensional data,

∗Tennessee Technological University, cnavans42@tntech.edu
†Sandia National Laboratories, jciesko@sandia.gov
‡Sandia National Laboratories, cwpears@sandia.gov
§Tennessee Technological University, esuggs@tntech.edu
¶Sandia National Laboratories, slolivi@sandia.gov
∥Tennessee Technological University, askjellum@tntech.edu
1Available at https://github.com/kokkos/kokkos-comm.

216 CSRI Summer Proceedings 2024

template<typename SendMode , KokkosExecutionSpace ExecSpace , KokkosView SendView>
void KokkosComm : : Send (const ExecSpace &space , const SendView &sv , int dest , int tag

, MPI Comm comm) ;

Fig. 2.1. Example Kokkos Comm specification

Table 2.1
Feature Table

Feature Current Capability
Point-to-Point Functions Send, Recv,

Isend, Irecv

Collective Functions Allgather, Reduce,

Barrier

Packing Strategy Temporary buffers and
MPI Datatypes

Requests Extend the lifetime of Kokkos::Views

communication routines accept Kokkos::Views rather than pointers, datatypes, and counts.
Current capabilities of the Kokkos Comm library are outlined in Table 2.1.

All experimentation was conducted on the Weaver testbed; some features of that cluster
are presented in Table 3.1. All results reported reflect the average of data collected over ten
runs.

3. OSU Latency Benchmarks. The Ohio State University (OSU) provides a com-
prehensive suite of microbenchmarks for testing a variety of host and device code. We
adapted one of these tests, a ping-pong point-to-point program designed to capture MPI la-
tency. In this microbenchmark, a message is sent back and forth while latency is measured
[7]. Experimentation revealed only modest increases in latency when employing Kokkos
Comm as compared to vanilla MPI, specifically the OpenMPI implementation. These re-
sults are depicted in Figure 3.1. This demonstrates the performance viability of Kokkos
Comm despite the necessary additional overheads that come with wrapping MPI functions.

4. 3D Slicer Microbenchmark. Kokkos Comm aims to provide a set of tools for
users to more easily manage communication of non-contiguous data, including efficient but
error-prone non-blocking communication. One of the key features Kokkos Comm provides
is the abstraction of packing and unpacking of data away from the user. Kokkos Comm may
handle it automatically through one of two currently implemented packing methods: Deep
Copy and MPI Datatypes. One method utilizes a contiguous scratch-buffer and leverages
Kokkos deep copy to efficiently marshal, pack, and transmit data. The alternative method
takes the approach of leveraging MPI derived datatypes, as outlined in the MPI Standard
[4].

Performance is a critical consideration. To measure and compare performance of these
methods, a 3D Slicer microbenchmark was developed. The program generates a cubic
Kokkos::View, and then communicates either one- or two-dimensional subviews, or ’slices’,
of the cube that are composed of non-contiguous data. Figure 4.1 depicts the results of
these comparisons. Interestingly, communication of the two-dimensional subviews performed
better than communication of one-dimensional subviews on smaller data sizes. Further
research is required to confirm the root cause(s) of the optimization, current hypotheses
revolve around parallelization and cache.

C.N. Avans, J. Ciesko, C. Pearson, E.D. Suggs, S.L. Olivier, & A. Skjellum 217

Fig. 3.1. Latency Comparison

Table 3.1
Weaver System Components

Feature Description
CPU Dual IBM Power0 (20 core)
GPU Dual NVIDIA Tesla V100
Cores per Accelerator 5120 cores
Interconnect Mellanox EDR Infiniband

5. Heat3D Halo Exchange Mini-Application.

δu

δt
= α(

δ2u

δx2
+
δ2u

δy2
+
δ2u

δz2
) (5.1)

Term Definition
u temperature distribution function
t time
α thermal diffusivity of material

x, y, z spatial coordinates
Table 5.1

Heat3D Terms

Heat3D refers to the three-dimensional heat equation (shown as Equation 5.1, terms
laid out in Table 5), a partial differential equation. This problem provides the opportu-
nity to measure performance of a common and useful operation for distributed computing,
halo exchange. Execution of a three-dimensional heat equation also presents a deeper and
more realistic picture of performance, as it is closer to a mini-application in scale than a
microbenchmark.

218 Performance Insights Into Supporting Kokkos Views In The Kokkos Comm MPI Library

Fig. 4.1. Packing Methods Comparison

Figures 5.1 and 5.2 show two implementations of communication in the context of a
3D heat-diffusion stencil in C++, first utilizing vanilla MPI and then alternatively with
Kokkos Comm. In Kokkos Comm, the buffer pointer, size, and datatype parameters are
replaced with a single view. Furthermore, this example illustrates that, rather than an
explicit pack step, a potentially non-contiguous subview representing the boundary data is
provided directly to the Kokkos Comm function. Internally, Kokkos Comm can query the
Kokkos::View and handle non-contiguous data appropriately. This is relevant as on GPU
platforms, choosing an appropriate non-contiguous data strategy is crucial to performance.

Figure 5.3 compares the average real time of each implementation for a variety of con-
figurations. Two configurations shown are with only the Serial backend of Kokkos enabled,
once with two ranks on one node, and once with two nodes and one rank per node. Perfor-
mance is comparable, with even a slight unexpected speed up when utilizing Kokkos Comm
with the deep copy packing method.

The interesting results appear when the CUDA backend of Kokkos is enabled. There
we see more significant overheads introduced when using Kokkos Comm generally, and a
relatively drastic performance hit when using the derived MPI Datatype packing method
specifically. The difference between the average real time using MPI and using Kokkos
Comm with MPI Datatype packing is 33.9 milliseconds; MPI alone is over 10 times faster.
This is likely the result of the overheads incurred when transferring data into GPU memory.
These results are not unexpected, performance concerns surrounding derived MPI datatypes
have persisted. Importantly, MPI performance and Kokkos Comm with Deep Copy packing
performance are comparable while room for further optimization remains.

6. Future Opportunities and Challenges. New communication libraries afford the
opportunity to improve correctness and ergonomics, but adoption will be hindered if the
abstractions degrade performance. Microbenchmarks are included in the library’s standard
test suite to keep performance as a first-class concern.

Kokkos Tools [3] provided the framework to gather trace data on runs, which was

C.N. Avans, J. Ciesko, C. Pearson, E.D. Suggs, S.L. Olivier, & A. Skjellum 219

// Halo data
using bu f f e r t = Kokkos : : View<double∗∗ , Kokkos : : LayoutLeft , Kokkos : :

DefaultExecutionSpace >;
b u f f e r t T l e f t , T l e f t o u t ;
// . . .
void setup subdomain () {

// incoming halos
i f (X lo != 0)

T l e f t = bu f f e r t (”System : : T l e f t ” , Y hi − Y lo , Z hi − Z lo) ;
// . . .

}

void pack T halo () {
mpi a c t i v e r eque s t s = 0 ; int mar = 0 ;
i f (X lo != 0) {

Kokkos : : deep copy (E l e f t , T l e f t ou t , Kokkos : : subview (T, 0 , Kokkos : : ALL,
Kokkos : : ALL)) ;

mar++;
}
// . . .

}

template <class ViewType>
void i s e n d i r e c v (int partner , ViewType send bu f f e r , ViewType r e cv bu f f e r ,

MPI Request∗ reques t send , MPI Request∗ r e qu e s t r e cv) {
MPI Isend (s end bu f f e r . data () , s end bu f f e r . s i z e () , MPI DOUBLE, partner , 1 , comm

, reque s t s end) ;
// . . .

}

Fig. 5.1. Heat3D with MPI

// Halo data
using l r b u f f e r t = Kokkos : : Subview<Dataview , int , deca l type (Kokkos : : ALL) ,

deca l type (Kokkos : : ALL)>;
l r b u f f e r t T l e f t , T l e f t o u t ;
// . . .
void setup subdomain () {

// incoming halos
i f (X lo != 0)

T l e f t = Kokkos : : subview (T, T. extent (0) −1, Kokkos : : ALL, Kokkos : : ALL) ;
// . . .

}

template <typename ExecSpace , class ViewType>
void i s e n d i r e c v (const ExecSpace &space ,

const ViewType &sv , ViewType &rv , int src , int dest , int tag , KokkosComm : : Req &
request send , KokkosComm : : Req &r eque s t r e cv) {

r eque s t s end = KokkosComm : : i s end (space , sv , dest , tag , comm)
// . . .

}

Fig. 5.2. Heat3D with Kokkos Comm

illuminating to problems other performance evaluation methods had left obscured. A trace
of the Heat3D miniapplication is depicted in Figure 6.1, it shows a Heat3D application run
three ways, once with vanilla MPI, once with Kokkos Comm using the deep copy packing
method, and again with Kokkos Comm using the MPI derived datatypes packing method.
Effort was expended to add custom profiling regions to Kokkos Comm to provide more
granular information, and there is further room for optimization. Notably, the vanilla MPI
implementation of Heat3D lacks a lot of the detail when compared to the Kokkos Comm
implementations.

We will implement new MPI-style APIs as motivated for our application test cases. We
expect to implement a similar interface for ISO C++ mdspan, a non-owning multidimen-

220 Performance Insights Into Supporting Kokkos Views In The Kokkos Comm MPI Library

Fig. 5.3. Heat 3D Comparison

Fig. 6.1. Heat3D Application, Traced with Kokkos Tools

sional data structure.
A key objective of Kokkos Comm is to research communication APIs. We will use

NCCL as our second transport layer to verify we can successfully abstract over non-MPI
transports. We will also begin to investigate “stream-triggered” and device-initiated com-
munication APIs, such as the HPE one-sided GPU triggering API [5], Intel’s GPU-initiated
communication feature [2], and MPICH’s GPU triggering support [13].

Acknowledgment. This project wishes to acknowledge the fruitful collaboration with
our colleagues at Université Paris-Saclay: Gabriel Dos Santos, Cédric Chevalier, Hugo
Taboada, and Marc Pérache and their paper, KokkosComm: Communication Layer for
Distributed Kokkos Applications.

REFERENCES

[1] A. Bienz, D. Schafer, and A. Skjellum, MPI Advance : Open-Source Message Passing Optimiza-
tions, 2023.

C.N. Avans, J. Ciesko, C. Pearson, E.D. Suggs, S.L. Olivier, & A. Skjellum 221

[2] Intel Corp., Intel MPI Library Developer Reference for Linux: GPU Buffers Support, June 2024.
[3] S. N. Laboratories, Kokkos tools, 2024. Accessed: 2024-08-29.
[4] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard Version 4.0, June

2021.
[5] N. Namashivayam, K. Kandalla, J. B. W. I. au2, L. Kaplan, and M. Pagel, Exploring Fully

Offloaded GPU Stream-Aware Message Passing, 2023.
[6] NVIDIA Corporation, NVIDIA Collective Communications Library (NCCL), 2024. Version 2.22.3.
[7] Ohio State University, MVAPICH::Benchmarks. https://mvapich.cse.ohio-state.edu/

benchmarks/.
[8] OpenFabrics Interfaces Working Group, libfabric: High-Performance Fabric Interface, 2024. Ver-

sion 1.22.0.
[9] A. Skjellum, M. Rüfenacht, N. Sultana, D. Schafer, I. Laguna, and K. Mohror, Exampi: A

modern design and implementation to accelerate message passing interface innovation, in High
Performance Computing, J. L. Crespo-Mariño and E. Meneses-Rojas, eds., Cham, 2020, Springer
International Publishing, pp. 153–169.

[10] E. Suggs, S. Olivier, J. Ciesko, and A. Skjellum, View-aware Message Passing Through the
Integration of Kokkos and ExaMPI, in Proceedings of the 30th European MPI Users’ Group
Meeting, 2023, pp. 1–10.

[11] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Ellingwood, R. Gaya-
tri, E. Harvey, D. S. Hollman, D. Ibanez, N. Liber, J. Madsen, J. Miles, D. Poliakoff,
A. Powell, S. Rajamanickam, M. Simberg, D. Sunderland, B. Turcksin, and J. Wilke,
Kokkos 3: Programming Model Extensions for the Exascale Era, IEEE Transactions on Parallel
and Distributed Systems, 33 (2022), pp. 805–817.

[12] UCX Consortium, Unified Communication X (UCX), 2024. Version 1.17.0.
[13] H. Zhou, K. Raffenetti, Y. Guo, and R. Thakur, MPIX Stream: An Explicit Solution to Hy-

brid MPI+X Programming, in Proceedings of the 29th European MPI Users’ Group Meeting,
EuroMPI/USA ’22, New York, NY, USA, 2022, Association for Computing Machinery, p. 1–10.

222 Performance Insights Into Supporting Kokkos Views In The Kokkos Comm MPI Library

ANALYSIS OF MODERN TOOLS FOR COMMUNICATION IMPACTS

NICHOLAS BACON ∗, SCOTT LEVY† , PATRICK BRIDGES‡ , AND KURT B. FERREIRA§

Abstract.

As applications scale to larger and larger processor counts, network communication performance can
become a potential bottleneck. In this paper, we examine the ability of modern performance tools and anal-
yses to measure the impact of communication on strong scaling of high-performance computing benchmarks
and applications relevant to Sandia National Laboratories focus benchmarks and applications. Specifically,
we evaluate the ability of Caliper communication instrumentation capabilities and Hatchet performance
analyses to measure communication scaling costs in three mini-apps: MiniFE, MiniAero, and AMG2023.
Our results show that existing tools can be used to profile communication performance and predict how
changes in communication performance would impact application scaling. We also identify directions for
future work, including quantifying the accuracy of these profiling-based predictions and creating additional
communication performance analyses.

.

1. Introduction. As high-performance computing (HPC) systems and their workloads
grow in complexity and size, network communication performance can become a potential
bottleneck. For example, when strong scaling a workload (increasing the number of proces-
sors for a fixed amount of work), the serial costs of communication limit the potential speed
up as described by Amdahl’s Law [1]. Because of this, accurately measuring and predicting
communication performance in HPC workloads is important for, for example, identifying
communication operations that are worth optimizing.

In this paper, we describe and evaluate an approach to using state-of-the-art sample-
based profiling tools and associated analyses to measure and give insight into the growth
of communication overheads when strong scaling workloads. Specifically, we use Caliper [3]
to sample and profile communication overheads and Hatchet [2] to analyze the resulting
profiles. This profiling-based approach is in contrast to the trace and simulation-based
techniques, e.g., LogGOPSim [6].The workloads chosen for this research are representative
of scientific computations on HPC systems, including those at Sandia in particular – MiniFE
[9], MiniAero [4], and AMG2023 [8] have been choose in part their ability to scale and/or
their common style in other HPC workloads.

In this paper, we make the following contributions:

• A Python-based analysis of communication performance costs using Caliper-collected
data;

• An initial quantitative evaluation of this approach on three workloads relevant to
scientific computations on HPC systems; and

• An Identification of next steps to do qualitative analyses to evaluation the ca-
pabilities of sample-based profiling and analysis tools to predict communication
performance impacts.

The remainder of this paper is organized as follows. Section 2 begins with a discussion of
the state-of-the-art techniques in network analysis. Section 3 then follows with a discussion
of the challenges of using sampling tools and the quality of there outputs. Section 4 describes
the experimental setup used to evaluate the measurement approach on modern systems,
and Section 5 presents and discusses the results of these experiments. Finally, Section 6
summarizes paper results and discusses directions for future work.

∗ University of New Mexico, nbacon@unm.edu
†Scalable System Software Department, sllevy@sandia.gov
‡University of New Mexico, patrickb@unm.edu
§Scalable System Software Department, kbferre@sandia.gov

CSRI Summer Proceedings 2024 223

2. Background. Our proposed approach uses three related tools, the Kokkos tools
framework [10], Caliper [3], and Hatchet [2], profile and analyze a workload’s communication
performance. This section to describes these tools and discusses their application to HPC
workloads.

We use the Kokkos Tools extension library and the Caliper performance monitoring tool
to gather performance information from HPC workloads in the work described in this paper.
Kokkos Tools is a performance monitoring extension for workloads and libraries written us-
ing the Kokkos [11] framework. It provides programmers a consistent library for integrating
Kokkos workloads with a range of performance monitoring and debugging tools, includ-
ing exporting information on Kokkos parallel regions and functions to HPC performance
monitoring tools to make those tools easier to use and their results understandable.

Caliper is one such performance monitoring tool, and we chose to use it for performance
monitoring because it supports a large range of data-collection approaches such as interrupt-
based sampling and tracing of communication calls. In addition, Caliper and Kokkos allow
programmers to manually annotate code regions of interest, and Caliper provides additional
mechanisms for extracting and merging performance data from workloads such as call-
stack unwinding and merging performance data across multiple processes. Finally, Caliper
includes multiple output formats that are human(tree) and computer readable(spot, JSON).

Hatchet complements Caliper by providing a Python-based library for analyzing Caliper
performance data. Specifically, Hatchet allows Caliper performance data to be imported into
Python pandas DataFrames. These DataFrames are associated with a secondary Graph-
Frame, allowing indexing by structured tree and graph data. GraphFrame makes it easier
to work with data with both structured and complex relationships. In addition, Hatchet
provides functions for analyzing Caliper performance data and visualizations such as tree
views, flame graphs, and directed acyclic graph views to aid in understanding collected
performance data.

3. Approach. Our overall goal was to make a quantitative analysis of Caliper’s ability
to capture communication costs and impacts on workload performance. We chose Python,
Caliper, and Hatchet for this purpose because they a focus on ease of use, with Caliper
providing flexible performance monitoring and the combination of Python and Hatchet
providing a rich ecosystem of data analyses and visualisations through pandas and seaborn.
In the remainder of this section, we describe: (1) the high-level sequence of steps of our
approach to understanding communication impact on performance, (2) the communication
analyses we created to prototype this approach, and (3) additional features that would be
useful to add to Hatchet to make designing similar analyses easier.

3.1. Overall Workflow. The general workflow we propose for analyzing communica-
tion costs in HPC workloads is:

1. Annotate the source code with Caliper or Kokkos code regions to group or name
specific functionality, therefore making it easier to profile or analyze performance
of these regions.

2. Use the command in Listing 1 to collect Caliper with ’spot’ data for each run of the
HPC workloads. In this study, we strong scale each workload by fixing the problem
size and doubling the compute resources available until reaching 16 nodes on Sandia
Nations Labs Glinda cluster. The result in five .cali files for each program.

export CALI_CONFIG=spot(output=$1.cali),time.exclusive,profile.
mpi,mem.highwatermark,cuda.gputime,profile.kokkos

Listing 1: Use Caliper with Spot on the command line

224 Analysis Of Modern Tools For Communication Impacts

3. Use Hatchet to import each programs .cali file collected by Caliper into Python
pandas DataFrames.

4. Merge the pandas DataFrames into a single DataFrame,
5. Separate the pandas data into two distinct DataFrames: one for exclusive times

and the other for inclusive times with key being row[’name’] in both.
6. Within the exclusive times DataFrame, utilize built-in pandas methods to consoli-

date similar functions to a row name (as shown in Listing 2) to one common name.
Finally aggregated rows these rows with with common names adding execution
times (Listing 3). These methods are used to combine ‘like’ work (example the
mutligrid function in AMG2023) and the MPI libary calls. This process only applies
to exclusive times as Caliper’s inclusive times represent the cumulative execution
time of all helper’ function calls within a function plus the work done in the function
itself. Exclusive times measure, in contrast, the time spent only within the function
itself, excluding any time consumed by helper functions.

def filter_function_name(row):

if "mpi" in row['name'].lower():
#Group all row that have the names that contain 'mpi'
return "MPI"

elif "kokkos" in row['name'].lower():
#Group all row that have the names that contain 'kokkos'
return "kokkos"

#no name change

return row['name']

...

dataframe.apply(filter_function_name,axis=1)

Listing 2: Use Caliper with Spot on the command line

dataframe.groupby('name').agg([np.sum]).reset_index()

Listing 3: Use Caliper with Spot on the command line

7. Perform the analysis on data with and without the cost of using the network.
8. Make data visualizations

3.2. Developed Analyses and Visualizations. To support this overall approach,
we enhanced existing Hatchet analyses system previously described in Section 2 to better
target communication performance. Specifically, we created an analyses that focuses on the
“what if” speed-up graph that shows how removing communications cost would directly

increase the speed of the program. This analysis computes speedup f(1)
f(n) on the normal run

times f(n) reported by Caliper and the compared to the computed times by removing all

networking costs from the speed up using formal f(1)
f(n)−networking time . This analysis was used

done in conjunction with four visualizations described below that help identify performance
bottlenecks related to communication overheads.

The visualizations include:
1. Stratigraphy View: Stacks functions to provide a layered representation of perfor-

mance per function over time.

N. Bacon, S. Levy, P. Bridges, & K.B. Ferreira 225

2. Stacked Time View: Displays the distribution of time spent in various functions,
offering a clear comparison of execution times.

3. Speedup View: shows the relative speedup achieved across different runs. 5.1b,5.3b,5.2b
4. min,max, average View: Stacks functions with a min-max-average to easily spot

irregularities and bottlenecks.
These visualizations allowed clearer understanding of the changing cost different functions
especially the networking like MPI functions.

3.3. Potential Approach Extensions. As part of creating these analyses, we also
identified functionality missing in Hatchet for working with Caliper-generated data that
would have made constructing new analyses easier.

First analyses frequently needed to group together related functions from different parts
of the profile tree, and we ended up coding this grouping by hand. Hatchet and Caliper
functionality that made it easier to tag and merge such performance data would make con-
structing analyses such as the ones we designed easier. Similarly, the ability to filter data
based on execution times, call structure, and function names would enhance the flexibil-
ity and efficiency of these analysis. The filtering performed to create custom speedup for
AMG2023 [5] based off the Figure Of Merit (FOM) if there was no network cost was done
mixing exclusive and inclusive times, and was awkward. The FOM for AMG2023 is simple
by nnz AP

Setup + Solve calulation in units of inverse seconds, requiring using the Caliper region
name Setup and Solve in inclusive times and subtracting MPI exclusive times for them.
These FOMs could have been calculated by using a function that gave all rows that were
sub-child and post-parent instead, easing its implementing and writing similar analyses .

4. Experimental Setup. We evaluated the challenges and approach described in the
previous section by studying if the results of the analysis described in the previous corre-
sponded qualitatively with the expected impact of removing communication overheads from
three different HPC workloads; a quantitative comparison of this analysis with a validated
simulation is planned for future work.

To do so, for each workload we:
1. Determined the largest size problem that would run on one compute node.
2. Ran the program on this problem with Caliper profiling enabled from 1 to the

largest number of nodes that the program would run on the test system
3. Performed the communication scalability impact analysis using the process de-

scribed in Section 3
4. Visualized the resulting data in a speedup graph

We ran our tests on the Sandia National Laboratories Glinda cluster, an HPC cluster
composed of compute nodes built around AMD EPYC 2.80 GHz CPUs, NVIDIA A100 GPU,
and NVIDIA Mellanox ConnectX-6 2xHDR InfiniBand network interface cards.gdrcopy
support is not provided on these nodes. The list of modules and libraries we used on this
system is provided in Appendix A. The workloads we chose to study are representative
of common scientific computations on HPC systems and are relevant to the lab mission
and have relevant communication patterns. Specifically, we measured the performance of
MiniFE [9], MiniAero [4], and AMG2023 [8] benchmarks, described in more detail below.
AMG2023 [8] is a mini-application developed by Lawrence Livermore National Labo-

ratory (LLNL) and successor of the AMG2013 [5] benchmark. It uses a parallel
algebraic multi-grid solver built on the hypre library [7]. AMG2023 solves two dif-
ferent diffusion problems on with that differ by the preconditioner problem one uses
preconditioned conjugate gradients (PCG) while problem 2 uses generalized mini-
mum residual method (GMRES). For our study, we chose problem 1 because PCG
has a lager amount of network traffic when compared to the GMRES in problem 2.

226 Analysis Of Modern Tools For Communication Impacts

This is the default problem when running AMG2023, it is 3D diffusion problem on
a cuboid with a 27-point stencil.
For this experment we used “19bc10c925c4434da72a9cbb4fa1a009dbc52f33” variant
of AMG2023. The configuration is different from the other workloads in this study,
because AMG2023 is a weak scaling miniapp. If problem is kept the same, the input
the problem size will be spreed out over the available nodes. To keep the problem
size the same we need to use the system of equations:

p = # of process
a ∗ b ∗ c = p
max(a, b, c)/min(a, b, c) ≤ 2
a ≤ b
b ≤ c
a ≤ c

(4.1)

in the following:

amg -P a b c -n 240/a 240/b 240/c -problem 1

Listing 4: AMG2023 input

The 240 numerator is largest problem size that fits on one node of Glinda without
causing a segmentation fault while also being dividable by 16 our maximum run
size on Glenda.

MiniAero is a mini-app from Mantevo project. This code is written in kokkos and uses
MPI for commutation. The problem that this code is try to solve is the compressible
Navier-Stokes equation by using a explicit unstructured finite volume solve.
For this paper we used the code of “f46d135479a5be19ec5d146ccaf0e581aeff4596”.
The problem for miniAero is a modification of the “FlatPlate Parallez” input deck
to fit onto a single A100.

1

2.0 0.002 1.0 0.0

512 512 32

1600

1e-8

1

100

1

1

Listing 5: miniaero.inp file use as input in MiniAero

MiniFE is another mini-app out of the Mantevo project developed by Sandia National
Laboratories (SNL). MiniFe is a proxy application for unstructured implicit finite el-
ement codes. For this project we are using a fork that has be updated to kokkos/4.3
hash b520fae9b1cff6d965d574e87816d85d6ab1f159. We have chosen the size to be a
400 by 400 by 400 cubic space.

miniFE.kokkos -nx 400 -ny 400 -nz 400

Listing 6: Command line to run miniFE on the kokkos varrent

N. Bacon, S. Levy, P. Bridges, & K.B. Ferreira 227

(a) In this graph the Mpi time seem to be
grow and dominating causing poor speed up.

(b) In this graph results demonstrates a poor
ability to strong scale but seem hopeful with
networking removed.

Fig. 5.1: AMG2023: These graphs show the performance of AMG2023 over multiple runs.

5. Results. Figures 5.1, 5.2, and 5.3 present (1) the sampled Caliper breakdown of
exclusive times spent in different portions of the relevant benchmarks as the number of
processes is increased, (2) the measured strong scaling speedup of the program with and, (3)
the projected strong scaling if MPI communication were removed. In the breakdown graph,
the solid lines represent the average exclusive time for that function across all processes
while the shaded area shows the minimum and maximum times spent in that function by
some process. In the speedup graph, measured speedup and projected speedup are shown
along with the a reference ideal speedup line.

5.1. Analysis of AMG2023. The results in Figure 5.1a, the AMG2023 time break-
downs, have lines with performance trends in three distinct groups. The first group contains
the top 3 lines, MG (red), Interpolation (green) and hypre (green) with signifcant computa-
tion at small process counts that decease significantly as the number of processes increases.
The second group contains multiple lines near the X axis with little computation time and
a constant or slightly decreasing amount of time as the number of processes grows. The
last group, the purple line and lavender shaded region, is the time spent in MPI networking
calls and grows signicantly and with high variance.

These results correspond with the results of the analysis shown in Figure 5.1b that
compute the speedup if AMG2023, which is known to be communication sensitive, had
infinitely fast communication. Specifically, this graph computes a substantial speedup from
removing communicaiton time of over 60%. The results also shows that AMG2023 would not
scaling ideally even with communication time removed because other non-communication
methods are not scaling perfectly. For instance in Figure 5.1a the MG function (red) takes
the longest and the highest proportion of times on a single node, but time in this function
does not reduce by half when doubling the node count.

228 Analysis Of Modern Tools For Communication Impacts

(a) In the graph, MPI time grows slightly,
causing the application to not reach ideal
speed up.

(b) In the graph,the results demonstrate a
odd phenomenon were removing all network-
ing cost gave better then ideal.

Fig. 5.2: These graphs show the performance of MiniFE over multiple runs.

(a) In this graph we can see the idea strong
scaling situation were all function times are
decreasing in time.

(b) In the graph,the results demonstrate the
sane odd phenomenon as the miniFE were re-
moving all networking cost gave better then
ideal. This result of non-linear scaling is odd.

Fig. 5.3: These graphs show the performance of miniaero over multiple runs.

N. Bacon, S. Levy, P. Bridges, & K.B. Ferreira 229

5.2. Analysis of Miniaero and MiniFE. Figures 5.3 and 5.2, show the time break-
down and speedup of MiniAero and MiniFE, both of which are compute-bound and demon-
strate good strong scaling at larger problem sizes. This is clear in the breakdowns in Fig-
ures 5.3a and 5.2a which show the time in two compute methods rapidly dropping by half on
when doubling the number of nodes. Both codes spend minimal time in MPI; the exception
is an increase in the time spent in MPI in MiniFE when running on 8 nodes; this change
could be due to variance in experimental performance, as this variance in performance is
lower when running on 16 processes.

The communication-free analysis, shown in Figures 5.3b and 5.2b, correctly corresponds
to these results. In particular, when MPI times are removed we get only slightly better per-
formance than with MPI. However, these figures also predict slightly super-linear speedup;
we have not yet diagnosed the cause or correctness of this prediction.

5.3. Results Summary. These results provide an initial demonstration of the useful-
ness of Caliper and Hatchet for measuring communication performance in HPC applications
and their ability to support novel analyses on how communication cost changes would im-
pact application performance. The ease of data collection and the creation of new analyses,
in particular, are worth noting.

6. Conclusions and Future Work. The data from the scaling study highlight the
influence of network performance on application performance, and the ability to profile these
costs with Caliper and analyze and visualize them with Hatchet. The analysis of benchmark
data from AMG2023 on Glinda, for example, shows that there is significant overhead when
it comes to the communication, about 60%, which is consistent with what was expected
when selecting this benchmark. In contrast, MiniAero and MiniFE performance improved
by now more than 15% when removing communication time, again as expected.

We have identified multiple directions for future work as part of this work. First,
extending this work to larger-scale runs, more workloads that are communication sensitive,
and more workloads in general is a key direction for future work. In addition, we also want
to perform quantitative students that compare the accuracy and expense of the predictions
from this sampling-based approach to validated simulation-based approaches; to do so, we
plan to compare the performance and accuracy of the analyses from the approach described
in this paper with those predicted by the LogGOPSim tool [6].

Appendix A. System modules used

.

system modules version
cmake 2.27.7
cuda 12.0.0
GCC 12.3.0
OPENMPI 4.1.6
Python 3.11.6

Appendix B. Github software with hashes
.

library version Hash
Kokkos-tools 2.5.00 58258bd6666dc6d11cb748441f62e68f9d22ba27
Kokkos 4.3.00 486cc745cb9a287f3915061455105a3ee588c616
hypre 2.31.0 7e7fc8ce09153c60ae538a52a5f870f93b9608ca
Caliper v2.11.0 e5934eab072bcc2e5784a62783b16fc37e3d0cd1
Hatchet v2024.1.2 a91e194f06ffe4c2b6604704541f46862844ab58

REFERENCES

230 Analysis Of Modern Tools For Communication Impacts

[1] G. Amdahl, Validity of the single processor approach to achieving large scale computing capabilities,
reprinted from the afips conference proceedings, vol. 30 (atlantic city, n.j., apr. 18–20), Solid-State
Circuits Newsletter, IEEE, 12 (2007), pp. 19 – 20.

[2] A. Bhatele, S. Brink, and T. Gamblin, Hatchet: pruning the overgrowth in parallel profiles, in Pro-
ceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’19, New York, NY, USA, 2019, Association for Computing Machinery.

[3] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez, M. LeGendre, O. Pearce,
and M. Schulz, Caliper: performance introspection for hpc software stacks, in Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis,
SC ’16, IEEE Press, 2016.

[4] T. C. Fisher, T. C. Fisher, S. W. Bova, S. W. Bova, P. Lin, P. Lin, K. J. Franko, and K. J.
Franko, Cfd for next generation hardware: Experiences with proxy applications., (2015).

[5] V. Henson and U. Yang, Boomeramg: A parallel algebraic multigrid solver and preconditioner,
Applied Numerical Mathematics, 41 (2002), pp. 155–177.

[6] T. Hoefler, T. Schneider, and A. Lumsdaine, LogGOPSim - Simulating Large-Scale Applications
in the LogGOPS Model, in Proceedings of the 19th ACM International Symposium on High Per-
formance Distributed Computing, ACM, Jun. 2010, pp. 597–604.

[7] hypre: High performance preconditioners. https://llnl.gov/casc/hypre, https://github.com/

hypre-space/hypre.
[8] R. Li, U. M. Yang, and U. N. N. S. Administration, Amg2023, version 1.0.0, 3 2023.
[9] P. Lin, M. Heroux, R. Barrett, and A. Williams, Assessing a mini-application as a performance

proxy for a finite element method engineering application, Concurrency and Computation: Prac-
tice and Experience, (2015).

[10] C. Trott, L. Berger-Vergiat, D. Poliakoff, S. Rajamanickam, D. Lebrun-Grandie, J. Mad-
sen, N. Al Awar, M. Gligoric, G. Shipman, and G. Womeldorff, The kokkos ecosystem:
Comprehensive performance portability for high performance computing, Computing in Science
Engineering, 23 (2021), pp. 10–18.

[11] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Ellingwood, R. Gaya-
tri, E. Harvey, D. S. Hollman, D. Ibanez, N. Liber, J. Madsen, J. Miles, D. Poliakoff,
A. Powell, S. Rajamanickam, M. Simberg, D. Sunderland, B. Turcksin, and J. Wilke,
Kokkos 3: Programming model extensions for the exascale era, IEEE Transactions on Parallel
and Distributed Systems, 33 (2022), pp. 805–817.

N. Bacon, S. Levy, P. Bridges, & K.B. Ferreira 231

SUM OF SQUARES BOUNDS ON THE PERFORMANCE OF THE
QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM

AIDAN EPPERLY∗, KEVIN THOMPSON† , AND OJAS PAREKH‡

Abstract.
The quantum approximate optimization algorithm (QAOA) [3] is a commonly cited variational quantum

algorithm for solving combinatorial optimization problems. While rigorous upper bounds on the performance
exist for single layer QAOA [6], [7], such results are not easily extended to higher numbers of layers due to
the potentially exponential growth of the light cone size. We propose a variety of methods based on sum
of squares optimization to provably upper bound the performance of QAOA when applied to the max-cut
problem. We show that for some classes of graphs, the approximation ratio of two layer QAOA is worse
than the best known classical approximation ratio for max-cut. These preliminary results lend support to
usefulness of sum of squares optimization in bounding QAOA performance.

1. Introduction. The quantum approximate optimization algorithm (QAOA) [3] is a
prototypical and widely cited example of a variational quantum algorithm (VQA). VQAs
take advantage of classical techniques to optimize parameterized quantum circuits. Many
classical optimization algorithms treat the evaluation of the objective function as a black-
box operation. In a VQA, these black-box operations are performed using a quantum circuit
that depends on the optimization parameters. Since the evaluation of the objective function
is often the most time and space intensive aspect of the optimization, this is a natural
division of labor.

QAOA, in particular, was designed to solve combinatorial optimization problems. Fol-
lowing in the footsteps of the original QAOA paper [3], we will focus on one such problem:
graph max-cut. Given a graph G on n vertices, a cut S of G is a subset of the vertices of
G. The associated cut-value Cut(S) is given by

Cut(S) = |{ij ∈ E(G) | i ∈ S, j ∈ Sc}| . (1.1)

As the name suggests, the objective of max-cut is to find a cut S∗ ⊆ V (G) maximizing
Cut(S∗). There is a well-known method to turn max-cut into a quadratically constrained
quadratic program. To do this, we first assign to each vertex i of G a weight xi. Given a
cut S, we will let xi = 1 if i ∈ S and xi = −1 otherwise. This yields the formula for the cut
value

Cut(S) =
∑

ij∈E(G)

1− xixj
2

, (1.2)

and the reformulation of the max-cut problem as

max
xi

∑

ij∈E(G)

1− xixj
2

, s.t. x2i = 1. (1.3)

This quadratic program can be turned into a local Hamiltonian problem by replacing xi with
Zi, the Pauli Z operator on the ith qubit, in the formula. This yields the local Hamiltonian
problem

max
s
⟨s|H |s⟩ , H :=

∑

ij∈E(G)

1− ZiZj

2
. (1.4)

∗Sandia National Laboratory, acepper@sandia.gov
†Sandia National Laboratory, kevthom@sandia.gov
‡Sandia National Laboratory, odparek@sandia.gov

232 CSRI Summer Proceedings 2024

A priori, we might expect this to be a relaxation of max-cut as ⟨s|Z |s⟩ can attain any value
in the interval [−1, 1]. However, as the Hamiltonian is diagonal in the Z basis, it is clear that

the maximizer s∗ will be such that ⟨s∗|Zi |s∗⟩ ∈ {−1, 1}, or, equivalently, (⟨s∗|Zi |s∗⟩)2 = 1.
We will proceed with this final formulation of the max-cut problem.

1.1. QAOA for Max-Cut. QAOA can be described by the application of successive
“layers”. A single QAOA layer, Uℓ, consists of two parameterized unitary operations

UH(θℓ) := exp(iθℓH), (1.5)

UX(γℓ) := exp(iγℓX̄), (1.6)

X̄ :=
∑

i∈V (G)

Xi, (1.7)

so that Uℓ(θℓ, γℓ) = UX(γℓ)UH(θℓ). The full p-layer QAOA circuit is then given by the
unitary

U(θ, γ) := Up(θp, γp) · · ·U2(θ2, γ2)U1(θ1, γ1). (1.8)

We will use Ulc(θ, γ) to denote the unitary arising from the light cone. From this, we can
express p-layer QAOA as the optimization problem

max
γ=(γ1,...,γp)
θ=(θ1,...,θp)

⟨t|U(θ, γ)†HU(θ, γ) |t⟩ , |t⟩ :=
∣∣+⊗n

〉
. (1.9)

The convergence of QAOA follows from the quantum adiabatic theorem and the Trot-
ter product formula [3]. In particular, the p-term Trotterization of adiabatic evolution is
always a valid QAOA circuit. While the Trotter product formula guarantees convergence
in the limit, it does not tell us that the p-term Trotterization is in any sense optimal. The
goal of QAOA is in some sense to find what the optimal p-term unitary with roughly the
same structure as the Trotterization would be, where optimality to judged by the objective
function.

2. Bounding QAOA. Despite the popularity of VQAs and QAOA in particular,
bounds of the performance of these algorithms, particularly for small, fixed circuit depth,
are rare [2]. To our knowledge, there is no known nontrivial bound on the performance of
QAOA for p > 1 layers. As such, it is unknown how many layers one should expect to
have to use to approximate max-cut on a given graph G to a higher degree of accuracy
than classical methods. We aim to find such an upper bound on the performance of p-layer
QAOA.

Let QAOAp(G) denote the optimal value of Equation (1.9). While the objective function
in Equation (1.9) has been computed exactly for p = 1 layers in the form of trigonometric a
trigonometric polynomial as in [7], [6], similar expression have not been computed for higher
p values. This makes it difficult to establish a priori estimates of QAOA performance. By
establishing an upper bound on QAOAp(G) for a given value of p, we can then lower-bound
the number of layers needed for noiseless QAOA to perform above a certain threshold.
We set our desired threshold at roughly 0.878, by which we mean that we want to find
the smallest value p such that the ratio between QAOAp(G) and the true max-cut value
MaxCut(G) is greater than roughly 0.878. We chose this specific constant as it is the
expected approximation ratio of the best-known classical, polynomial-time approximation
algorithm for max-cut, the Goemans-Williamson randomized rounding algorithm [4].

A. Epperly, K. Thompson, & O. Parekh 233

2.1. Sum of Squares and the Method of Moments. Much like Goemans and
Williamson, we turn to sum of squares (SoS) relaxation as our method of choice for bounding
QAOAp(G). In a great and lasting irony, when working with sum of squares, we almost
always work with the dual problem of moments instead. We follow this course here as well.
In particular, we will use a modification of a method first put forward by Lasserre [5] in
order to obtain a hierarchy of semidefinite programs each of which provides a tighter bound
on QAOAp(G).

The general idea is as follows. Suppose |s⟩ = U(θ, γ) |t⟩ is some state resulting from
QAOA. By virtue of its construction, the state |s⟩ will have some non-trivial algebraic
constraints on its entries. The easiest such constraint is that ⟨s | s⟩ = 1, but there are
many others. These algebraic constraints actually uniquely define the set of all possible
QAOA states, which is the feasible set for our optimization problem. Unfortunately, there
are so many of these relations that it would be intractable to enforce them all. Even if
we took the convex hull of our feasible set, it would still be computationally difficult to
optimize over. As such, we seek a tractable, convex relaxation of the feasible set. The
method of moments provides us with an infinite family of such relaxations by deriving and
enforcing smaller sets of nontrivial polynomial relations that can be efficiently enforced via
a semidefinite constraint. Since we are relaxing the feasible set, the resulting value of the
objective function will be an upper bound on the true optimal value.

Note that the Zi’s form a commutative algebra and satisfy the additional condition
Z2
i = 1. This latter condition requires additional consideration. For instance, given a Pauli

monomial q, how do we determine the degree of q? With generic commutative monomials,
the degree is the same as the string length of the monomial. So, for instance, the degree
of xyzx is exactly equal to 4. However, the monomial q = Z1Z2Z1 = Z2

1Z2 = Z2 can be
written with a string length of 1 or 3. Going too far further in this discussion would require
a lengthy description of Gröbner bases and minimal reduced words, but the following lemma
sums up the results that we need.

Lemma 2.1. Every monic Pauli Z monomial, q, can be written uniquely in the form

q = Zi1Zi2 · · ·Zik , (2.1)

i1 < i2 < · · · < ik. (2.2)

Moreover, if q =
∏

i∈S Zi, then |S| ≥ k. In particular, the definition deg(q) := k is well
defined.

Henceforth, all monomials will be assumed to be in this standard form. With the issue
of degree settled, let Bd be the ordered list of Pauli Z monomials of degree at most d. We
order Bd first by degree and then, within each degree, lexicographically. So, for instance,
Z5 < Z2Z3 < Z2Z4 < Z3Z4 < Z1Z2Z3. This is often called graded lexicographic order.
Let M2d := BdB†d, by which we mean that M2d is a matrix indexed by Bd such that
M2d(q1, q2) = q1q2. So, for example, if n = 2, then

M2 =

1 Z1 Z2

Z1 1 Z1Z2

Z2 Z1Z2 1

 . (2.3)

By an abuse of notation, given a state |s⟩, we denote by ⟨s|M2d |s⟩ the matrix

⟨s|M2d |s⟩ (q1, q2) = ⟨s| q1q2 |s⟩ . (2.4)

This is the so-called Gram matrix of the set of vectors q |s⟩ for q ∈ Bd and it is thus positive
semidefinite. We aim to compute a tight outer approximation on conv({⟨s|M2d |s⟩ | |s⟩ =
U(θ, γ) |t⟩}).

234Sum Of Squares Bounds On The Performance Of The Quantum Approximate Optimization Algorithm

2.2. Näıve Approach. For the duration of this section, by |s⟩, we mean a possible
state |s⟩ = U(θ, γ) |t⟩ resulting from the QAOA circuit. We start with the innocuous
observation that any convex combination of matrices of the form ⟨s|M2d |s⟩ can be described
elementwise as a convex combination of matrix entries. Thus, we restrict ourselves to
studying the values ⟨s| q |s⟩ for q some Pauli Z monomial. The simplest possible observation
we can make is that ⟨s| 1 |s⟩ will always take the value 1. Moreover, the diagonal ofM2d is
identically 1 which implies that the diagonal of ⟨s|M2d |s⟩ is identically 1. Now, suppose
that we made no further attempt to exploit the algebraic structure of |s⟩. Then, for q ̸=
1, the value of ⟨s| q |s⟩ would be essentially arbitrary and the tightest approximation to
conv({⟨s|M2d |s⟩}) would be given by the matrix inequality

M∼triv

2d (q1, q2) = αq1q2 , α1 = 1, M∼triv

2d ⪰ 0. (2.5)

So, for instance, if n = 3, we would have

M∼triv

2 =

1 αZ1
αZ2

αZ3

αZ1
1 αZ1Z2

αZ1Z3

αZ2 αZ1Z2 1 αZ2Z3

αZ3 αZ1Z3 αZ2Z3 1

 ⪰ 0. (2.6)

This turns out to be equivalent to the Goemans-Williamson relaxation for max-cut, which is
actually a big problem. The Goemans-Williamson SDP will always upper bound the value
of max-cut, while the output of QAOA will always be a lower bound. So, this relaxation
will tell us essentially nothing about the performance of QAOA.

2.3. Tighter Relaxation Via Graph Isomorphisms. Why did this happen? We
did not enforce enough of the algebraic structure of |s⟩. To remedy this, we will first consider
two different approaches involving graph isomorphisms. Firstly, suppose that we have p-layer
QAOA and consider a fixed monomial q = Zi1 · · ·Zik . An examination of the QAOA unitary
reveals that the only two-qubit gates are of the form exp(iθℓ(1+ZiZj)/2). The 1 only adds
a global sign, and can thus be ignored, while the factor of 1/2 can easily be absorbed into
θℓ, so it is equivalent to consider gates of the form exp(iθℓZiZj) = cos(θℓ)+ i sin(θℓ)ZiZj . In
particular, this means that the value of ⟨s| q |s⟩ depends only on supp(q) := {i1, i2, . . . , ik}
and the p-neighborhood of supp(q) where the p-neighborhood of a set P ⊂ V (G) is the
graph containing all length at most p paths containing at least one element of P . The
dependence on supp(q) is very important. Consider, for instance, the cycle graph C10 and
two monomials q1 = Z1Z2Z4, q2 = Z1Z2Z3Z4. Then, the 1-neighborhood of supp(q1) and
supp(q2) are identical, but ⟨s| q1 |s⟩ is always zero and ⟨s| q2 |s⟩ need not be. We will explore
why ⟨s| q1 |s⟩ = 0 in a later section. All of this can be summed up in the following lemma.

Lemma 2.2. Suppose we have a p-layer QAOA circuit U(θ, γ) on a graph G. Given
monic Pauli Z monomials q1 and q2, consider Q1, Q2 ⊂ G, the p-neighborhood of supp(q1)
and supp(q2) respectively. Color each vertex i of Q1 (resp. Q2) blue if i ∈ supp(q1) (resp. q2)
and red otherwise. If there exists a vertex-color preserving graph isomorphism ϕ : Q1 → Q2,
then ⟨s| q1 |s⟩ = ⟨s| q2 |s⟩.

Proof. Given subgraphs G1, G2 ⊂ G, any graph isomorphism φ : G1 → G2 induces
a unique permutation Pφ of vertices of G where Pφ(i) = φ(i) if i ∈ V (G1) and Pφ(i) = i
otherwise. By an abuse of notation, we will also let Pφ denote the corresponding permutation
on qubits. Note that Pφ |t⟩ = Pφ |+⊗n⟩ = |t⟩. Because of this, we can freely apply any
permutation as follows

⟨s| q |s⟩ = ⟨t|U(θ, γ)†qU(θ, γ) |t⟩ (2.7)

= ⟨t|P †
φUlc(θ, γ)

†Pφ P
†
φqPφ P

†
φUlc(θ, γ)Pφ |t⟩ , (2.8)

A. Epperly, K. Thompson, & O. Parekh 235

Where Ulc denotes the unitary restricted to the light cone. Taking φ = ϕ, we obtain the
equality

⟨s| q1 |s⟩ = ⟨t|P †
ϕUlc(θ, γ)

†Pϕ q2 P
†
ϕUlc(θ, γ)Pϕ |t⟩ . (2.9)

Note that P †
ϕq1Pϕ = q2 relies on the fact that ϕ is a color-preserving isomorphism. By using

the fact that ϕ is a graph isomorphism and thus is also edge-preserving, we arrive at the
desired equality

⟨s| q1 |s⟩ = ⟨s| q2 |s⟩ (2.10)

as every exp(iγℓxj) gate will be mapped to exp(iγℓxϕ(j) and every exp(iθℓZiZj) correspond-
ing to the edge ij will get mapped to exp(iθℓZϕ(i)Zϕ(j) corresponding to the edge ϕ(ij).

We can exploit this result to achieve a tighter relaxation. We do this by defining an
equivalence relation, ∼iso on monic Pauli Z monomials by q1 ∼iso q2 if a vertex-color
preserving isomorphism ϕ exists between the colored p-neighborhoods Q1, Q2 as in the
lemma. Denote by [q]iso the equivalence class of q under∼iso. Then, we obtain the relaxation

M∼iso

2d (q1, q2) = α[q1q2]iso , α[1]iso = 1, M∼iso

2d ⪰ 0. (2.11)

For instance, if G = C3, the cycle on 3 vertices, and p = 1, then

M∼iso

2d =

1 α[Z1]iso α[Z1]iso α[Z1]iso

α[Z1]iso 1 α[Z1Z2]iso α[Z1Z2]iso

α[Z1]iso α[Z1Z2]iso 1 α[Z1Z2]iso

α[Z1]iso α[Z1Z2]iso α[Z1Z2]iso 1

 ⪰ 0. (2.12)

Notably, this method requires solving a number of graph isomorphism problems. While the
asymptotic runtime of the graph isomorphism problem is not yet known, the only known
algorithms are non-polynomial time. However, for a family of graphs F with uniformly
bounded vertex-degree d, such as the family of all d-regular graphs, the size of the subgraphs
in question is bounded by dp and is independent of n.

The method above can be generalized. In particular, given any equivalence relation ∼
on monic Pauli Z monomials such that q1 ∼ q2 implies ⟨s| q1 |s⟩ = ⟨s| q2 |s⟩, we can obtain
a relaxation

M∼
2d(q1, q2) = α[q1q2]∼ , α[1]∼ = 1, M∼

2d ⪰ 0. (2.13)

We have already seen this method applied to the trivial equivalence relation q1 ∼triv q2 ⇐⇒
q1 = q2 and the p-neighborhood graph isomorphism relation. There is, however, another
natural equivalence relation arising from the graph automorphism group Aut(G).

In particular, given the graph automorphism group Aut(G), we define q1 ∼Aut(G) q2

if there exists ϕ ∈ Aut(G) such that P †
ϕq1Pϕ = q2. Note that the equivalence classes

of this relation are exactly the orbits of the group action ϕ · q = P †
ϕqPϕ. This method

has a few notable drawbacks. First of all, this equivalence relation is weaker than ∼iso

as any ϕ ∈ Aut(G) mapping q1 to q2 will restrict to a graph isomorphism as in ∼iso.
Second of all, the graph automorphism problem is harder than the graph isomorphism
problem. In light of these two issues, this method should only be applied in cases where the
graph automorphism group, or at least subgroup, are well understood. Complete k-partite
graphs, polytope graphs, circulant graphs, grid graphs, and many other families of graphs
have very well understood automorphism groups, and there often exist fast algorithms for
finding a canonical representative of each orbit. The complete graph Kn, for instance, has
automorphism group Aut(Kn) = Sn the symmetric group on n elements. Despite this group
containing n! elements, the orbits of Aut(Kn) are simply the monomials of equal degree.

236Sum Of Squares Bounds On The Performance Of The Quantum Approximate Optimization Algorithm

2.3.1. Numerical Results. Here, we demonstrate the sum of squares relaxation de-
scribed above applied to max-cut on the cycle graph. On the cycle in particular, both of
the graph isomorphism methods will actually yield exactly the same relxation, so we need
not worry about the distinction here.

Fig. 2.1. Degree 2d = 4 SoS Upper Bound on QAOA on the n-vertex cycle graph. Each set of 5
columns corresponds to one value of n, ranging from 8 to 20, and each column corresponds to a different p
value. In blue is the exact max-cut value.

A. Epperly, K. Thompson, & O. Parekh 237

Fig. 2.2. Degree 2d = 4 SoS Upper Bound on QAOA approximation ratio on the n-vertex cycle graph.
Each set of 4 columns corresponds to one value of n, ranging from 8 to 20, and each column corresponds
to a different p value. Note that for all p > 1, the approximation ratio is better than 0.878.

Of importance is that in these tests, a level d = 2 relaxation was used. Had we used
a higher level relaxation, we would have obtained tighter bounds on QAOA performance.
This choice was primarily made out of practical considerations for runtime.

2.4. Polynomial Entries. So far every relaxation we have explored has produced
a constraint matrix with monomial entries. In order to get a better approximation, we
must generalize to a constraint matrix with polynomial entries. Towards this, we must first
establish a number of preliminary results.

Lemma 2.3. Suppose q is a non-zero Pauli monomial. Then,

⟨t| q |t⟩ = 0 ⇐⇒ degZ(q) = 0

Proof. Note that Xi |t⟩ = |t⟩. So, without loss of generality, we can assume q has no X
degree. Then, note that ⟨t|Zi |t⟩ = ⟨t| |+ · · ·+−+ · · ·+⟩ = 0. Thus, ⟨t| q |t⟩ = 0. For the
reverse, suppose degZ(q) = 0. Then, q = αXi1 · · ·Xik for α, k ̸= 0. Then ⟨t| q |t⟩ = α ̸= 0.

Lemma 2.4. Suppose q is a Pauli Z monomial with odd degree. Then, we have

⟨s| q |s⟩ = 0.

Proof. Note that while deg(q1q2) does not necessarily equal deg(q1) deg(q2), these two
values must be equal modulo 2. This is because the only relation that decreases the string
length of a monomial is Z2

i = 1, which maintains parity. Thus, if we expanded U(θ, γ) in
terms of X and Z, the Z degree of each monomial in the expansion would be even. So, if
we fully expanded U(θ, γ)†qU(θ, γ) in terms of X and Z, the Z degree of each monomial in
the expansion would be odd and thus non-zero. So, by Theorem 2.3, we are done.

Lemma 2.5. Given the p-layer QAOA circuit on graph G, for any Pauli Z monomial
q, the value ⟨t|U(θ, γ)†qU(θ, γ) |t⟩ is a trigonometric polynomial in θ and γ. Moreover, the

238Sum Of Squares Bounds On The Performance Of The Quantum Approximate Optimization Algorithm

non-zero terms of this trigonometric polynomial correspond to tuples

(Hℓ
1, H

r
1 , H

ℓ
2, H

r
2 , . . . ,H

ℓ
p, H

r
p)

of subgraphs Hh
i ⊂ Ni(supp(q)), the i-neighborhoods of supp(q), such that for all i ∈

supp(q), the sum
∑p

j=1(degHℓ
j
(i) + degHr

j
(i)) is odd, but for all i not in supp(q) the sum∑p

j=1(degHℓ
j
(i) + degHr

j
(i)) is odd.

Proof. We first note that exp(iθℓZiZj) = cos(θℓ) + i sin(θell)ZiZj and exp(iγℓXj) =
cos(γℓ)Xi. So, expanding U(θ, γ)†qU(θ, γ) in terms of X and Z will yield a Pauli polynomial
with trigonometric coefficients. Call this q∗. Thus, distributing ⟨t| q∗ |t⟩ will yield only a
sum of the trigonometric coefficients, which is a trigonometric polynomial. Note that the
coefficients of this trigonometric polynomial must be real integers. To see this, note that

(
U(θ, γ)†qU(θ, γ)

)†
= U(θ, γ)†q†U(θ, γ) = U(θ, γ)†qU(θ, γ), (2.14)

as each Zi is self-adjoint and commutes with every other Zj . Thus, ⟨t|U(θ, γ)†qU(θ, γ) |t⟩
must be real. We will call this real trigonometric polynomial q∗∗.

We now aim to characterize the nonzero terms in q∗. Note by Theorem 2.3, a non-zero
monomial term of q∗ will contribute a non-zero value to q∗∗ if and only if it has no Z degree.
Thus, it is sufficient to study which conditions yield zero-Z-degree monomials. Towards
this, we follow the classic combinatorialist’s proof of the binomial theorem. For simplicity,
we will first consider the case p = 1. Consider the unexpanded form of q∗

∏

ij∈Elc(G)

(cos(θ1)− i sin(θ1)ZiZj)
∏

j∈Vlc(G)

exp(−iγ1Xj) Zi1 · · ·Zikh.c. (2.15)

where by Elc and Vlc we mean the edges and vertices in the p-neighborhood of supp(q) and
by h.c. we mean the Hermitian conjugate of the left-hand unitary.. Expanding this product
can be expressed as a sum over all monomials generated by a given string of choices of either
cos(θ1) or i sin(θ1)ZiZj . The monomials in this sum with zero-Z-degree, thus, correspond
to monomials where each Ziℓ appears in an odd number of choices of sin(θ1)ZiZj and all
other Zi terms occur an even number of times. We can encode these choices in a “left”
and “right” subgraph of N(supp(q)), Hℓ

1, H
r
1 , where an edge ij appear in Hℓ

1 if we pick
i sin(θ1)ZiZj on the left-hand side and the edge ij appearing in Hr

1 if we pick i sin(θ1)ZiZj

on the right. Thus, the parity condition described above can be checked by checking the
parity of degHℓ

1
(i) + degHr

1
(i).

To generalize to p > 1, we simply use a list (Hℓ
1, H

r
1 , H

ℓ
2, H

r
2 , . . . ,H

ℓ
p, H

r
p) of left and right

subgraphs to encode our decision instead of just one. Each Hh
i is a subgraph of Ni(supp(q)),

the i-neighborhood of supp(q). To check that the resulting monomial with have Z degree of
zero, we simply check that for all i ∈ supp(q), the sum

∑p
j=1(degHℓ

j
(i) + degHr

j
(i)) is odd,

but for all i not in supp(q) the sum
∑p

j=1(degHℓ
j
(i) + degHr

j
(i)) is odd.

Given a subgraph tuple as described in Theorem 2.5, it does not take much more work
to obtain the corresponding trigonometric monomial exactly in terms of cos(θℓ), sin(θℓ)
and exp(iγℓ). The two observation necessary are that exp(iγℓXj) |t⟩ = exp(iγℓ) |t⟩ and
Zj exp(iγℓXj) = exp(−iγℓXj)Zj . We can further expand exp(iγℓ) = cos(γℓ) + i sin(γℓ) to
obtain q∗∗. Once we have q∗∗ in full, expanded form, we can proceed in a number of ways.
Firstly, we could simply apply a preexisting trigonometric sum of squares technique such as
the one described [1]. Alternatively, we can simply replace every trigonometric monomial
with a corresponding arbitrary commuting variable and proceed as in previous sections.
In particular, suppose Cd is a monomial basis of all the degree-at-most d trigonometric

A. Epperly, K. Thompson, & O. Parekh 239

polynomials in θ and γ, and we associate to every c ∈ Cd a variable xc with x1 = 1. If
x := (xc)c∈C , the resulting relaxation would have the form

M2d(q1, q2) = b†q1q2x, b1 = (δ1,c)c∈CD
, M2d ⪰ 0, (2.16)

where D is the smallest degree necessary to represent every trigonometric monomial that
occurs in q∗∗.

2.4.1. Future Directions. While the method described above is powerful, it is also
the most computationally intensive. The restriction to the light cone does mean that the
complexity does not grow with n, the size of the graph, the complexity is doubly expo-
nential in d, the degree of the graph, and p. As such, a hybrid method employing both
polynomial replacement based on subgraph enumeration and monomial replacement based
on graph isomorphisms is a strong candidate for a happy medium between accurate and
computationally tractable. We do not currently have any numerical results to demonstrate
the accuracy of such a hybrid method, but it is a promising future direction as it should
enable us to tractably compute upper bounds for larger graphs.

REFERENCES

[1] F. Bach and A. Rudi, Exponential convergence of sum-of-squares hierarchies for trigonometric poly-
nomials, SIAM Journal on Optimization, 33 (2023), pp. 2137–2159.

[2] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean,
K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, Variational quantum algorithms, Nature
Reviews Physics, 3 (2021), p. 625–644.

[3] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, 2014.
[4] M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming, Journal of the ACM, 42 (1995), pp. 1115–
1145.

[5] J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM Journal on
Optimization, 11 (2001), pp. 796–817.

[6] C. Ryan-Anderson, Quantum algorithms, architecture, and error correction, UNM Physics and As-
tronomy ETDs, (2018).

[7] Z. Wang, S. Hadfield, Z. Jiang, and E. G. Rieffel, Quantum approximate optimization algorithm
for maxcut: A fermionic view, Phys. Rev. A, 97 (2018), p. 022304.

240Sum Of Squares Bounds On The Performance Of The Quantum Approximate Optimization Algorithm

EXPERIENCE REPORT ON OBSERVABILITY AND ITS EFFECT ON
SECURITY AND USABILITY IN SOFTWARE SYSTEMS

ANAGHA KRISHNA∗ AND REED MILEWICZ†

Abstract.
This report delves into the concept of observability for software systems, focusing on its role in enhancing

security and usability—two fundamental attributes of high-quality software. Through an analysis of two
case studies, ECMF and PROVERS, it illustrates how observability facilitates critical insights into software
operations and control mechanisms, despite facing challenges in environments where comprehensive oversight
of the codebase and infrastructure is not feasible. While observability mechanisms can significantly enhance
system security by identifying vulnerabilities and monitoring for anomalies, they also introduce risks related
to the potential exposure of sensitive data. Additionally, the report demonstrates that observability is
instrumental in measuring usability, highlighting how specific metrics, traces, and logs can help gain a
deeper understanding of user interactions with software features. This data-driven approach allows for
informed design decisions that enhance user experience.

1. Introduction. Modern software systems are becoming increasingly complex, highly
scalable, and are transitioning towards a microservices-based architecture [30]. Multiple
cross-functional teams work on different components that are integrated seamlessly. It is
difficult for a single person or team to have a deep technical understanding of the entire
system. Therefore, it would be extremely beneficial to keep track of everything that is
happening in the system internally, and this can be achieved by enabling observability or
by having an observable software system. Reflecting on observability in relation to the two
projects we worked on during the summer, two other characteristics of software systems
that stood out were security and usability.

Software security refers to the degree to which software protects information and system
resources, providing access only to authorized users as intended. The goal is to prevent,
detect, and recover from attacks and unintended weaknesses that could compromise confi-
dentiality, integrity, and availability of software systems and data. Software security seeks
to build in protections proactively to avoid having to react to threats. It involves vigilance
across requirements, design, coding, testing, deployment, and maintenance [14].

According to ISO/IEC 25010:2011, usability refers to the ability of users of a software
system to “achieve specified goals with effectiveness, efficiency, and satisfaction” within
the intended context of use [18]. Usability encompasses not only the user’s experience
(i.e., “quality in use”, including effectiveness, efficiency, satisfaction, freedom from risk, and
context coverage) but also how well software is intrinsically designed (i.e., “product quality”,
including appropriateness recognizability, learnability, operability, use error protection, and
user interface aesthetics). For a software application, usability indicates the ease with
which users can interact with and navigate through an application to accomplish their tasks
effectively and efficiently. It encompasses various aspects such as user interface design,
navigation, responsiveness and error handling, thus impacting the overall user experience
[16].

Both security and usability are important features for maintaining a high-quality soft-
ware system. Consequently, we have chosen to address the following research questions:

• RQ1 How does implementing observability intersect with security in a software
system?

• RQ2 Can enabling observability in a software system help with measuring its us-
ability?

∗Sandia National Laboratories, ankrish@sandia.gov
†Sandia National Laboratories, rmilewi@sandia.gov

CSRI Summer Proceedings 2024 241

The remainder of this experience report is as follows. Section 2 provides an overview
of observability. In section 3, there is a description of the projects I worked on during
the summer, along with a list of tasks I completed for each project. Section 4 summarizes
related work. Section 5 provides an analysis for the research questions based on related
work. Section 6 is a discussion on observability and lessons learned during the summer
internship. Section 7 concludes the report.

2. Background. “Observability” was originally coined by Rudolf E. Kálmán for con-
trol theory to refer to how well internal states of a system can be inferred from knowledge
of its external outputs. A system is considered “observable” to the extent that the current
state can be estimated by only using information from output it generates [12]. Some char-
acteristics of an observable application are: (1) One can understand any system state the
application may have gotten itself into, even new ones that weren’t encountered before and
couldn’t have been predicted (2) One can understand the inner workings and system state
solely by observing and interrogating with external tools.

Observability offers the tools and practices necessary to comprehend and control com-
plex software systems, providing visibility into how different parts of the system interact.
Through this, organizations can gain insights into their applications and infrastructure per-
formance, identifying bottlenecks, inefficient code paths, and resource utilization patterns.
When incidents occur, observability tools assist teams in quickly pinpointing the root cause
of the problem. The goal of observability is to provide a level of introspection that helps
people reason about the internal state of their systems and applications [24].

A necessary component of observability is the creation of useful instrumentation. Instru-
mentation is process of adding or enhancing code to measure certain aspects of its execution,
such as performance, resource usage, or to detect and diagnose complex issues like memory
leaks or concurrency problems. In practice, instrumenting code involves emitting traces,
metrics, or logs. And, the instrumented data is generally sent to an observability backend,
which is a service that receives trace information and metrics from instrumented apps for
analysis [13]. Logs, metrics, and traces are often known as the three pillars of observability.
Engineers or developers should strive to instrument their code such that they can answer
these questions as soon as it’s deployed:

• Is your code doing what you expected it to do?
• How does it compare to the previous version?
• Are users actively using your code?
• Are any abnormal conditions emerging?

A popular observability framework used for instrumenting code is OpenTelemetry [13].
It is an open-source observability framework that provides a set of tools, APIs, and SDKs.
It is designed to standardize the collection, processing, and transmission of telemetry data
(metrics, logs, and traces) across cloud-native applications and services. OpenTelemetry
provides two primary ways for instrumenting code: (1) code-based instrumentation and (2)
zero-code instrumentation.

• Code-based solutions offer the opportunity to get deeper insight and rich teleme-
try directly from the software application. These solutions make use of the Open-
Telemetry API to generate telemetry, which acts as a complement to the telemetry
generated by zero-code solutions.

• Zero-code solutions are great for getting started, or when there is no access to the
application source code, or when the application code can not be modified. These
solutions provide rich telemetry from the libraries present in the source code or from
the environment used for running the application [6].

Observability helps with getting the complete picture of what is going on in the software

242Experience Report On Observability And Its Effect On Security And Usability In Software Systems

system, hence making it easier to identify performance issues, understand dependencies and
interactions between different services and components in the system. Since, DevOps [11]
and Site reliability engineering (SRE) [15] teams are required to understand production
systems and tame complexity, observability is both a consequence and an integral part of
the DevOps, SRE, and cloud native movements [9, 24].

Due to the characteristics and requirements for telemetry data (metrics, traces, logs)
discussed below, it is challenging to have one universal observability solution for all kinds of
software systems. Telemetry data is immutable and append-heavy. Since, most observable
systems run in dynamic distributed environments, the volume of data generated over time is
highly variable. Data generated more recently (fresh data), needs to be more accessible and
available than older data (historical data), because the former is more likely to be queried
than the latter. While fresh data needs better accessibility and availability, you may never
know when you might require older historical data. Hence, telemetry data must be managed
in such a way that there is low query latency, low operational complexity while maintaining
appropriate infrastructural costs [22].

3. Experiential Context.

3.1. The Engineering Common Modeling Framework (ECMF). The ECMF
project is a platform for computational model sustainment at Sandia National Laborato-
ries. A model registered on ECMF can be discovered, reused, extended and evaluated over
time. This is helpful because current computational models are developed manually, making
them difficult to maintain, share, curate and collaborate on. ECMF’s architectural design
is microservices-based and has Docker containers for its components: database, user inter-
face, API, authentication and scheduler. Some of the tools and technologies used in ECMF
are: MongoDB for the database; React and Next.js for the frontend; Starlette and Kuber-
netes python client for the RESTful APIs [10] that communicate between the frontend and
OpenShift (platform where the ECMF containers are deployed). The workflow results and
artifacts are stored in a Sandia-hosted instance of Amazon’s Simple Storage Service (S3)
[19].

During the summer, I worked on backend (server-side) and frontend (client-side) [4]
tasks. I had the opportunity to learn about docker compose, yaml files, Kubernetes API,
Fast API, Starlette and more. I created a docker compose file that helps with spinning up
multiple Docker containers with one command, thereby reducing the time spent on bringing
them up individually. I developed two more RESTful API endpoints for the ECMF API
component, the first one being an API for downloading a pre-signed URL generated by
ECMF’s S3 implementation. Since all S3 objects are private by default, the object owner
can create a pre-signed URL that provides limited time permission to download the object
[8]. I also built a download button on the frontend for calling that API and downloading
the pre-signed URL locally. The second RESTful API endpoint is to obtain a streaming
download of a file that contains workflow results.

3.2. Pipelined Reasoning of Verifiers Enabling Robust Systems (PROVERS).
The objective of the PROVERS program is to:

• Develop automated, scalable formal methods tools that are integrated into tradi-
tional software development pipelines.

• Enable traditional software developers to incrementally produce and maintain high-
assurance national security systems.

Different entities involved in PROVERS are:

• TA1 (Technical Area 1), Proof Engineering [7]: is responsible for developing Proof
engineering tools

A. Krishna & R. Milewicz 243

• TA2 (Technical Area 2), Platform Development [2, 3]: provide publicly available
and national security system platforms and use tools developed by TA1

• TA3 (Technical Area 3), Red Team: perform a security assessment with a high-
quality red team that conducts baseline assessments before any modifications and
then reexamines each high-assurance version at each consecutive phase of the project

• Quantitative Evaluation and Evidence Curation: perform periodic quantitative
technology assessment of TA1 technologies, leveraging TA2 traditional engineer
personnel in support of usability assessment

PROVERS tools are intended to achieve the following:

• Provide scalable automation targeted at traditional software developers
• Integrate into standard software workflows
• Enable incremental maintenance processes
• Be refined via a continuous feedback process
• Create demonstrably more secure software based on red-team analysis [1]

To support Quantitative Evaluation and Evidence Curation, during the summer, I explored
tools like OpenTelemetry and Jaeger, learned about observability, instrumentation and dif-
ferent telemetry data types. I also instrumented some sample python programs with Open-
Telemetry to generate traces and exported them to Jaeger for further analysis.

4. Related Work. The intersection of telemetry data (such as metrics and logs) and
security in software systems has been explored across various studies, revealing both its
strengths and limitations. Upon considering software systems similar to ECMF which have
implemented observability to understand the kind of impact an observable system can have
on its security, the following was found: System and application logs present important
data such as timestamps, file sizes, and CPU usage [23]. These logs are crucial for both
scientific research and industrial analysis. While there’s a growing need to share these logs
with external analysts to improve system performance, companies are often hesitant due to
concerns about information leakage. Logs can inadvertently reveal sensitive details about
the systems, applications, or even future products, especially when the logs are linked to
real-world production workloads. Long et al. [23] also present a framework can prevent
sensitive information leakage while maintaining acceptable levels of information loss and
processing time.

Avila et al. [33] talk about using logs for detecting data leaks, their critical role in
identifying cyber attacks, and proposes a novel classification of information leaks that aligns
with GDPR [5] principles, emphasizing the importance of data privacy and protection. The
paper mentions that logs are a crucial tool for detecting and responding to threats in real-
time, although they also present challenges such as large data volumes and heterogeneity.
Medeiros et al. [25] provide an analysis on software metrics in different architectural levels of
five different software projects; they state that there is a strong correlation between several
project-level metrics and the number of reported vulnerabilities, and that it is possible
to use a group of metrics to distinguish vulnerable and non-vulnerable units of code with
a high level of accuracy. Medeiros et al. [26] presented a comprehensive study on the
use of software metrics and machine learning algorithms for the detection/prediction of
vulnerable code. The most important observation is that using machine learning algorithms
on top of software metrics helps identifying vulnerable code units with relatively high level
of confidence for security-critical software systems but they are not helpful for low-critical
or non-critical systems due to the relatively high number of false positive alarms reported
when compared to the number of true positive cases.

Zhi et al. [31] provide a study on sensitive information exposure through logging, they
state that, about two-third vulnerabilities can be exploited via the network, and a signifi-

244Experience Report On Observability And Its Effect On Security And Usability In Software Systems

cant number of vulnerabilities can be exploited with low efforts. About half of the exploits
can be used by malicious users and insiders without any expertise to launch attacks. The
authors further claim that, the top 3 common root causes for the vulnerabilities are inse-
cure whole-object logging, incorrect permission assignment, and improper implementation
of sanitization. Inadequate logging practices can significantly compromise security by leak-
ing sensitive data. In mobile applications, improper logging often leads to the exposure
of sensitive information, such as passwords or location data, through log files; 72 percent
of apps with identified taint flows were affected by poor logging, resulting in substantial
data leakage [32]. Vulnerabilities like local file inclusion (LFI) can allow attackers to inject
malicious code into log files, which can be executed if these logs have improper permissions.
This can lead to unauthorized access or persistent threats, such as backdoors, compromising
the security of the system. Consequently, without appropriate safeguards, logs can become
a significant security risk rather than a protective measure [27]. The reviewed papers collec-
tively highlight that logs and metrics can both support and undermine security, depending
on their management and implementation. While logs provide critical insights for security,
they also present risks if not adequately protected. Metrics are valuable for monitoring
and detecting anomalies but require careful management to be effective. Hence, a balanced
approach that involves taking proactive measures and secured telemetry data management
is essential for leveraging observability to enhance security.

For use cases similar to PROVERS where the system is made observable to further
evaluate another attribute like usability, a brief high-level summary of related work is dis-
cussed below. Grossman et al. [20] provide a comprehensive survey of the definitions,
metrics and evaluation methodologies used for software learnability, which is an important
aspect of usability. The authors conducted a survey of existing research, developing a tax-
onomy to better understand how learnability can be assessed. The paper introduces a new
question-suggestion protocol for usability testing, comparing it with the traditional think-
aloud method. Seffah et al. [28] highlight the challenges in applying usability measurement
standards due to inconsistent definitions and frameworks across different models; and pro-
poses the Quality in Use Integrated Measurement (QUIM) model, which combines various
usability metrics and criteria, supports the idea that observability data can be systemat-
ically analyzed to assess usability. By consolidating metrics and providing a structured
approach to their application, the QUIM model demonstrates how observability can help
in measuring usability effectively. Burton et al. [17] demonstrate the value of integrat-
ing various data collection methods, such as server logs and client-side logs and usability
testing to enhance Web design. While these approaches can be resource intensive for pro-
fessional designeers, they provide a solid understanding of user interactions and can lead to
design improvements, which can in-turn make the system more usable. User Interface (UI)
events, naturally generated during software usage can give valuable insights into usability
by capturing end-user interactions with an application. These events, which include actions
like mouse clicks, keyboard presses and menu selections, can be analyzed to identify usage
patterns, detect usability issues and understand user behavior. Usability teams in large
software development organizations are often approached by design and development team
members with questions like “how often do users do X?” or “how often does Y happen?”
[21].

5. Analysis.

5.1. RQ1: How does implementing observability intersect with security in
a software system?. Here, the objective is to identify whether observability has a posi-
tive/negative/neutral effect on security for software appliactions. Evidently, from the related
work, there are software systems where metrics and logs have been found to be both fa-

A. Krishna & R. Milewicz 245

vorable and detrimental. For a system like ECMF, there is a trade-off between the risk
of possibly exposing sensitive data and the benefit of obtaining internal system data for
understanding the system better or detecting vulnerabilities. From section 2 and section
4, it is understood that there is no “one size fits all” solution for observability; and the
security implications of an observable system is subjective and depends on each particular
use case. The same feature (log or metric) that poses as a potential security risk can be
used to identify vulnerabilities when used properly by taking necessary precautions.

5.2. RQ2: Can enabling observability in a software system help with mea-
suring its usability?. The aim here is to understand if one can determine how usable a
software system is, from its internal telemetry data. From section 4, it can be summarized
that the integration of server and client-side logging, along with automated event analysis
and traditional usability testing methods can contribute towards a robust framework for
measuring usability in software systems. Telemetry data can be used to obtain ordinal data
such as the number of times a particular action is performed by the user, it can also be
used to measure performance metrics such as the degree to which users can accomplish a
task successfully [29]. Enabling observability involves continuous monitoring, real-time data
collection and provides insights into user behaviours, hence, offering a more comprehensive,
data-driven approach to understanding how users interact with the system.

6. Discussion. In the context of an in-house software system like ECMF, where de-
velopers have access to and can modify the source code, (after making necessary consid-
erations and getting necessary approvals from management), an implementation strategy
for observability would probably involve using appropriate APIs and SDKs (provided by an
observability framework) to instrument code, gathering the telemetry data and exporting
it to other supporting tools (which serve as observability backends) for additional analysis
and visualization. However, in the case of PROVERS, specifically for Sandia’s role in the
project, the tools will be developed and instrumented by other parties. There is no control
over the source code and telemetry data will be given for analysis. Formulating a strat-
egy for enabling observability in contexts where there is no software ownership, brings out
a different kind of challenge and clearly, the previously mentioned approach for in-house
projects will not hold good. Therefore, there is a need for more tailored guidelines to ad-
dress observability in different contexts. A future direction would be to investigate how such
guidelines can be developed to effectively navigate the complexities of observability across
various software environments.

7. Conclusion. In this paper, an overview on observability has been provided, ob-
servability has been looked at, in the perspective of two real-world projects: ECMF and
PROVERS, and with respect to “security” and “usability”, which are two prominent as-
pects of high-quality software systems. Observability, while offering profound insights and
control over software environments, is not without its challenges. It thrives in scenarios
where there is comprehensive control over the codebase and infrastructure, highlighting a
limitation in environments where such control is not feasible. Despite these constraints,
the implementation of observability mechanisms remains invaluable. The extent to which,
an application must be made observable is a key factor to consider. The ability to collect
telemetry data, even with potential risks of exposing sensitive information, plays a pivotal
role in enhancing system security when managed with due diligence. Many usability studies
involve understanding how frequently a user interacts with certain features in a software
application or how much time a user spends on a certain feature, and such information can
be obtained from telemetry data.

246Experience Report On Observability And Its Effect On Security And Usability In Software Systems

REFERENCES

[1] https://www.darpa.mil/program/pipelined-reasoning-of-verifiers-enabling-robust-systems.
[2] Computing platform - Wikipedia — en.wikipedia.org. https://en.wikipedia.org/wiki/Computing_

platform.
[3] Development Platform - an overview — ScienceDirect Topics — sciencedirect.com. https://www.

sciencedirect.com/topics/computer-science/development-platform.
[4] Frontend and backend - Wikipedia — en.wikipedia.org. https://en.wikipedia.org/wiki/Frontend_

and_backend.
[5] General Data Protection Regulation - Wikipedia — en.wikipedia.org. https://en.wikipedia.org/

wiki/General_Data_Protection_Regulation.
[6] Instrumentation — opentelemetry.io. https://opentelemetry.io/docs/concepts/instrumentation/.
[7] Proof Engineering — proofengineering.org. https://proofengineering.org/.
[8] Sharing objects with presigned URLs - Amazon Simple Storage Service — docs.aws.amazon.com.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/ShareObjectPreSignedURL.html.
[9] The Cloud Native Movement — linkedin.com. https://www.linkedin.com/pulse/

cloud-native-movement-ryan-perkins.
[10] What is a REST API? — redhat.com. https://www.redhat.com/en/topics/api/

what-is-a-rest-api.
[11] What is DevOps?? — about.gitlab.com. https://about.gitlab.com/topics/devops/.
[12] What is Observability? An Introduction — Splunk — splunk.com. https://www.splunk.com/en_us/

blog/learn/observability.html.
[13] What is OpenTelemetry? — opentelemetry.io. https://opentelemetry.io/docs/

what-is-opentelemetry/.
[14] What is software security and why is it important? — computer.org. https://www.computer.org/

resources/software-security.
[15] What is SRE? — redhat.com. https://www.redhat.com/en/topics/devops/what-is-sre.
[16] What Is Usability And Why Does It Matter In App Development? — ux4sight.com. https:

//ux4sight.com/blog/what-is-usability-and-why-does-it-matter-in-app-development.
[17] M. C. Burton and J. B. Walther, The value of web log data in use-based design and testing, Journal

of Computer-Mediated Communication, 6 (2006), pp. 0–0.
[18] I. O. for Standardization, ISO/IEC 25010:2011, systems and software engineering — systems and

software quality requirements and evaluation (square) — system and software quality models,
Tech. Rep. ISO/IEC Standard No. 25010:2011, 2011.

[19] C. Gilbertson, R. Milewicz, E. Berquist, A. Brundage, J. Engelmann, B. Evans, N. Fran-
cis, E. Fridman-Hill, S. Grayson, E. Harvey, E. Ho, E. Hoffman, K. Irick, A. Krishna,
A. Moreno, and J. Teves, Towards long-term scientific model sustainment at sandia national
laboratories (under review), 2024.

[20] T. Grossman and R. Fitzmaurice, George amd Attar, A survey of software learnability: metrics,
methodologies and guidelines, in Proceedings of the SIGCHI COnference on Human Factors in
Computing Systems, CHI ’09, Association for Computing Machinery, 2009, pp. 649–658.

[21] D. M. Hilbert and D. F. Redmiles, Extracting usability information from user interface events,
ACM Computing Surveys, 32 (2000), pp. 384–421.

[22] S. Karumuri, F. Solleza, S. Zdonik, and N. Tatbul, Towards observability data management at
scale, SIGMOD Rec., 49 (2021), p. 18–23.

[23] Y. Long, L. Xu, and C. A. Gunter, A hypothesis testing approach to sharing logs with confidence,
in Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy,
CODASPY ’20, New York, NY, USA, 2020, Association for Computing Machinery, p. 307–318.

[24] C. Majors, L. Fong-Jones, and G. Miranda, Observability Engineering, ” O’Reilly Media, Inc.”,
2022.

[25] N. Medeiros, N. Ivaki, P. Costa, and M. Vieira, Software metrics as indicators of security vulner-
abilities, 10 2017.

[26] N. Medeiros, N. Ivaki, P. Costa, and M. Vieira, Vulnerable code detection using software metrics
and machine learning, IEEE Access, 8 (2020), pp. 219174–219198.

[27] H. Noman, O. Abu-Sharkh, and S. Noman, Log poisoning attacks in iot: Methodologies, evasion,
detection, mitigation, and criticality analysis, IEEE Access, PP (2024), pp. 1–1.

[28] A. Seffah, M. Donyaee, R. B. Kline, and H. K. Padda, Usability measurement and metrics: A
consolidated model, Software Quality Journal, 14 (2006), pp. 159–178.

[29] T. Tullis and W. Albert, Measuring the User Experience, Second Edition: Collecting, Analyzing,
and Presenting Usability Metrics, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2nd ed., 2013.

[30] Y. Wang, H. Kadiyala, and J. Rubin, Promises and challenges of microservices: an exploratory

A. Krishna & R. Milewicz 247

study, Empirical Software Engineering, 26 (2021).
[31] C. Zhi, J. Yin, J. Han, and S. Deng, A preliminary study on sensitive information exposure through

logging, in 2020 27th Asia-Pacific Software Engineering Conference (APSEC), IEEE, Dec. 2020.
[32] R. Zhou, M. Hamdaqa, H. Cai, and A. Hamou-Lhadj, Mobilogleak: A preliminary study on data

leakage caused by poor logging practices, in 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2020, pp. 577–581.

[33] R. Ávila, R. Khoury, R. Khoury, and F. Petrillo, Use of security logs for data leak detection: A
systematic literature review, Security and Communication Networks, 2021 (2021), p. 6615899.

248Experience Report On Observability And Its Effect On Security And Usability In Software Systems

ANALYZING QUBIT-RUNTIME TRADEOFFS IN PARALLELIZING
UNARY ITERATION

C. O’NEIL,∗, M. D. PORTER,† , AND S. K. SERITAN‡

Abstract.
As the development of scalable, fault-tolerant quantum computers progresses, optimizing quantum re-

sources in circuit design remains a critical challenge. Traditional efforts have focused on minimizing qubit
count and the number of resource-intensive T gates (T count). Unary iteration is a critical subroutine in
several state-of-the-art quantum algorithms. In this work, we demonstrate how to parallelize unary iteration
to reduce T depth at the cost of more qubits and analyze the resulting qubit-runtime tradeoffs. Prelimi-
nary results demonstrate constant factor speedups over the serial algorithm with minimal additional qubit
overhead while preserving linear T count. We also study several partial parallelization techniques and show
in which regimes each strategy yields a better speedup. Our ongoing research explores the full potential
of employing dirty qubits and seeks to refine qubit routing and scheduling techniques for further speed
improvements.

1. Introduction. Quantum computers are heralded for their potential to surpass clas-
sical computers in solving specific, complex problems, particularly in the realm of quantum
simulation. A prime example within material science is the calculation of the ground state
energy of an atomic ensemble. On classical computers, this task becomes increasingly un-
tenable as the size of the ensemble grows, primarily due to the general exponential growth of
entanglement between electrons. This challenge, first put forth by Richard Feynman [4, 5],
suggested that quantum computers could offer a viable solution, a notion that has since
captivated the interest of researchers across multiple fields including physics, chemistry, and
material science. Feynman’s theoretical proposition laid the groundwork for what would
later be formalized by Lloyd as ”Universal Quantum Simulators” in his seminal 1996 arti-
cle [2, 10]. This foundational concept underscores the transformative potential of quantum
computing in simulating complex quantum systems, a capability that extends across multi-
ple scientific disciplines.

Circuit-based quantum computers perform computations through sequences of quantum
gates, with the Clifford + T gate set being a popular choice for enabling universal quantum
computing [14]. This particular set is known for its compatibility with error detection and
correction codes—a critical component for realizing fault-tolerant quantum computing [1,
6, 14–16]. The implementation of the Clifford + T gates allows for versatile and reliable
quantum computing, addressing a significant challenge in the field.

Circuit-based quantum computers will require certain physical resources to carry out
a given computation. In the literature, resources are typically quantified in terms of the
number of qubits and the T count (number of T gates in the circuit) [2]. Previously, T
gates have been considered excessively resource-intensive, both in terms of their demand
on physical resources and their impact on computational runtime. However, some recent
studies have indicated that the costs may not be as exorbitant as once thought [9, 15].
Despite this reassessment, Ref. [15] notes that T gates will still be more expensive than
other gates and should therefore be used as little as possible.

In addition to qubit number and T count, runtime considerations are also essential. For
quantum circuits employing the Clifford + T gate set, the runtime is primarily determined
by the T depth, a metric quantifying the number of T gates that can be implemented
sequentially. Thus, optimizing quantum circuit efficiency involves minimizing both the T

∗New Mexico State University, coneil@nmsu.edu
†Sandia National Laboratories, mdport@sandia.gov
‡Sandia National Laboratories, sserita@sandia.gov

CSRI Summer Proceedings 2024 249

count and the T depth wherever feasible.

In 2017, Babbush et al. [2] introduced a method known as“unary iteration,” a subroutine
within the qubitization protocol [11] to construct quantum circuits capable of encoding the
spectra of correlated electrons with linear T complexity. Qubitization requires a block
encoding of the Hamiltonian, which is often achieved through the linear combination of
unitaries (LCU) technique [3]. The unary iteration subroutine achieves linear T count
and requires only logarithmic auxiliary qubits. The method executes the multicontrolled
Hamiltonian terms by first computing the multicontrolled Toffoli onto an auxiliary qubit,
performing a singly-controlled operation for the Hamiltonian term, and then iterating to
the next multicontrolled term. Through clever storage of partial AND computations on
log2(N) − 1 auxiliary qubits, the iterative computation of all multicontrolled Toffolis the
auxiliary qubit that controls the singly-controlled operations can be done with only N − 1
Toffoli computations (where each Toffoli requires 4 T gates, as shown in Fig. 2.1a). Although
the possibility of parallelizing the unary iteration method was noted by Babbush et al. [2],
such an approach has yet to be thoroughly explored or analyzed.

In this study, we explore the prospect of enhancing quantum circuit efficiency through
both full and partial parallelization of the unary iteration method. While achieving full par-
allelization results in the most significant reduction in T depth, leading to optimal speedup,
it also incurs a substantial increase in the number of required auxiliary qubits, especially as
the number of terms in the Hamiltonian grows. To address this issue, we propose a balanced
approach via partial parallelization, aiming to optimize the trade-off between computational
speedup and qubit economy.

Our investigation delves into two distinct strategies for circuit organization: a serial-
then-parallel approach and a parallel-then-serial approach to unary iteration. We carefully
calculate the necessary resources for each, focusing on both the T depth and the auxiliary
qubit count. Here, “serial” refers to the unary iteration in its conventional form, as initially
presented by Babbush et al. [2]. Our findings reveal that partial parallelization not only
achieves consistent speed improvements but also effectively curtails the exponential increase
in auxiliary qubit requirements, presenting a viable path forward for the efficient design of
quantum circuits.

Our analysis further reveals that the effectiveness of each parallelization technique in
achieving speedup is influenced by several factors: N , the number of terms in the Hamilto-
nian, Np a parameter representing the degree of parallelization within the circuit; and the
total number of available qubits. Specifically, we observe that the serial-then-parallel ap-
proach yields greater speedup when the qubit count is low, whereas the parallel-then-serial
strategy becomes more advantageous as the number of qubits increases. This relation-
ship defines a “crossover” point that shifts with the size of N , beyond which the preferred
method may oscillate between the two approaches before the parallel-then-serial method
consistently emerges as the more effective strategy for larger systems. This dynamic un-
derscores the importance of carefully selecting the parallelization technique based on the
specific computational and resource context of the quantum circuit in question.

In the Methods section, we first overview the unary iteration method, and then move on
to determining the resources for full circuit parallelization. Next, we will examine the partial
parallelization methods: serial-then-parallel and parallel-then-serial circuit organizations
mentioned in the previous paragraph. The Results section will include a discussion on T
depth and speedup. Additionally, we will also examine the “crossover” behavior between
the two methods, as well as emphasize the importance of choosing the optimal degree of
parallelization, i.e. choosing a good Np, needed to get the best speedup for the number of
available auxiliary qubits.

250 Analyzing Qubit-runtime Tradeoffs In Parallelizing Unary Iteration

2. Methods. In this study, we delve into the parallelization strategies of the unary
iteration technique, a method initially introduced by Babbush et al. [2]. Unary iteration
efficiently executes controlled operations based on an index register, boasting a linear T gate
count of 4(N − 1), where N represents the number of terms in the Hamiltonian [2].

Additionally, we introduce a segment tree representation to further elucidate the struc-
ture of unary iteration. Moving forward to Subsection 2.2, we explore the implications of
adopting a fully parallel approach to unary iteration, focusing on the associated resource
requirements and potential speedup benefits. Subsection 2.3 is dedicated to examining two
distinct strategies for partial parallelization: serial-then-parallel and parallel-then-serial. For
each strategy, we calculate the requisite number of auxiliary qubits, the T depth, and the
resultant speedup, with these findings systematically compiled in Table 3.1.

|T ⟩
=

T † T T † H S†

(a) AND computation with T-count/depth 4.

= Z

H

(b) AND uncomputation
with 0 T-count.

|T ⟩
|0⟩

= =
T † T T † H S†

∧

(c) 1-to-2 AND computation with T-count and T-depth 4.

|T ⟩
|0⟩
|T ⟩
|0⟩

=
T † T T † H S†

T † T T † H S†

∧

(d) 2-to-4 AND computation with T-count 8 but T-depth 4. Offset control lines link input qubits
to their respective output qubits.

Figure 2.1: Circuits for AND computations/uncomputations. Note that T gates can be
stacked in the parallel case, leading to a T-depth reduction with no additional T-count.
Parallel AND uncomputation can be done by using CNOTs to uncompute the second aux-
iliary qubit of each pair, and then performing (b) on the remaining auxiliary qubits.

2.1. Unary Iteration. Unary iteration is a quantum algorithmic technique designed
to efficiently perform controlled operations on an index register. The core idea behind
unary iteration is to sequentially apply controlled operations corresponding to each term
in the Hamiltonian, using a minimal number of auxiliary qubits while avoiding using any
multicontrolled gates besides Toffolis. Specifically, for a Hamiltonian with N terms, unary

C. O’Neil, M.D. Porter, & S.K. Seritan 251

iteration achieves a linear T gate count of 4(N − 1) and log2(N) auxiliary qubits, making
it a resource-efficient approach in terms of gate complexity and qubits [2]. In the unary
iteration method, Toffolis are used to perform partial AND computations and storing these
values on auxiliary qubits (one per qubit in the index register). The final auxiliary qubit is
then “on” for a single state of the index register and can be used to do a singly-controlled
operation (in our case, a term of the Hamiltonian) on the system register. One can then
uncompute and recompute some of the auxiliary qubits to “iterate” to the next Hamiltonian
term without have to redo all of the AND computations. This means we have to perform
fewer non-Clifford Toffoli gates, resulting in a lower overall T count.

Fig. 2.1 illustrates how unary iteration is applied to controlled operations. In the context
of quantum computing, the AND operation can be implemented with a Toffoli gate. In Fig.
2.1, the AND operation controlled by the top two qubits is represented as a corner shape.
The AND computation, shown in Fig. 2.1a has a T count of 4 and since the operations are
done sequentially, the T depth is also 4. On the other hand, the uncomputation depicted in
Fig. 2.1b requires no T gates. Fig, 2.1c shows a 1-2 AND computation, and again the T
count and T depth is 4. However, in the 2-4 AND computation in Fig. 2.1d, the T depth is
8, but the T depth is now halved due to the parallelization in the circuit.

To further illustrate the structure of unary iteration, we refer to a segment tree repre-
sentation which has been used previously in the literature [7]. This representation provides
a visual framework for understanding how the algorithm iterates through the terms of the
Hamiltonian. The segment tree in Fig. 2.2b corresponds to the circuit in Fig. 2.2a. Following
the color-coded arrows, we see that in serial unary iteration, the segment tree is traversed
in a depth-first-search fashion. Only arrows traveling to a left child adds 4 T gates, while
arrows going to the right or up the tree add no T gates. The leaves (bottom row) correspond
to the final auxiliary qubit that will control our Hamiltonian terms.

ctrl
l1

l0

Ψ U0 U1 U2 U3

(a) Serial unary iteration with N = 4.

*

1

11

U3

10

U2

0

01

U1

00

U0

(b) Representation of serial unary iteration as
depth-first traversal of a segment tree.

Figure 2.2: Serial unary iteration circuit and segment tree. Each arrow in a colored path
corresponds to a gate in the highlighted section of matching color in the circuit, and the
value of each node represents the partially computed bitstring of the |l⟩ register stored on
the targeted auxiliary qubit at that time in the circuit.

This visualization is also useful for resource estimation. For estimating T count, recall
that only the first traversal to a child results in a Toffoli. The number of times we have to
perform one of these traversals is equal to the number of internal nodes, i.e. excluding the
leaves, of the tree. In a complete binary tree with N leaves, there are N − 1 internal nodes.
If we also include the cost of 4 T gates for each Toffoli from Fig. 2.1a, then we recover the

252 Analyzing Qubit-runtime Tradeoffs In Parallelizing Unary Iteration

4(N − 1) T count. For estimating qubit resources, we see that no two nodes on the same
level are ever visited at the same time. This means we only need one auxiliary qubit to store
that partial AND computation per level. For a complete binary tree with N leaves, there
are log2(N) levels. We also don’t need a qubit for the root node of the tree, so we recover
the log2(N)− 1 auxiliary qubit cost of serial unary iteration.

2.2. Fully Parallel Unary Iteration. In contrast with the depth-first-search traver-
sal of the serial unary iteration tree, one could carry out a parallel traversal of the tree by
level. This is depicted in Fig. 2.3b with the corresponding parallel unary iteration circuit
shown in Fig. 2.3a. This time, the 0 and 1 branches are explored simultaneously, and the
tree is traversed layer by layer. Thus we achieve logarithmic T depth: 4log2(N). Although
our exponential decrease in T depth is great, we pay the price by the increase in auxiliary
qubits. We now require an auxiliary qubit for every internal node. Excluding the root node,
we obtain 2(N − 1). So while parallel unary iteration offers great speedup and maintains
the linear T count from [2], the number of auxiliary qubits has grown exponentially.

This motivates one to embrace a trade-off strategy in which we parallize part of the
circuit to capitalize on speed gains, but also limit the number of auxiliary qubits needed.
In the next subsection, we will examine two distinct strategies: serial-then-parallel and
parallel-then-serial circuit organizations.

ctrl
l1

l0

Ψ U0 U1 U2 U3

∧ ∧

∧ ∧

(a) Parallel unary iteration with N = Np = 4.

*

1

11

U3

10

U2

0

01

U1

00

U0

(b) Representation of parallel unary iteration as
breadth-first-like traversal of a segment tree.

Figure 2.3: Fully parallel unary iteration circuit and segment tree. All arrows of the same
color going to the left child will have overlapping T gates, and all arrows going to right
children have no T gates.

2.3. Partial Parallelization. Instead of settling for linear order T depth and loga-
rithmic order qubits in serial unary iteration or for linear order qubits and logarithmic order
T depth in parallel unary iteration, partial parallelization strategies offer a suitable balance
between qubit numbers and T depth (and therefore the speedup). We consider two tree
traversal orderings: serial-then-parallel (Fig. 2.4) and parallel-then-serial (Fig. 2.5).

In the case of serial-then-parallel unary iteration in Fig. 2.4b, we can imagine breaking
up the segment tree into a serial subtree at the top starting with the node giving Ns = 2
serial-type leaves. Each of these leaves acts as roots for the parallel subtrees with Np = 2
parallel-type leaves each. We can use the formulas already found for serial and parallel
unary iteration T depth and qubit number and sum them up for each of the serial and
parallel subtrees. We will define Np – the number of leaves in a single parallel subtree – as

C. O’Neil, M.D. Porter, & S.K. Seritan 253

ctrl
l1

l0

Ψ U0 U1 U2 U3

∧ ∧ ∧ ∧

(a) Serial-then-parallel circuit with N = 4 and Np = 2.

*

1

11

U3

10

U2

0

01

U1

00

U0

(b) Serial-then-parallel segment tree traversal.

Figure 2.4: Serial-then-parallel unary iteration circuit and tree. Each parallel ”subtree” is
done serially.

ctrl
l1

l0

Ψ U0 U1 U2 U3

∧ ∧

(a) Parallel-then-serial circuit with N = 4 and Np = 2.

*

1

11

U3

10

U2

0

01

U1

00

U0

(b) Parallel-then-serial segment tree traversal.

Figure 2.5: Parallel-then-serial unary iteration circuit and tree. Each serial ”subtree” is
done completely in parallel.

our parallelization factor, and note that the total number of leaves is given as N = NsNp;
therefore, we will often just use Ns = N/Np in our final formulas so that they are in terms
of number of terms and parallelization factor.

The T depth of the serial-then-parallel cases can be computed as follows: the T depth
of the serial subtree (4(Ns− 1) = 4(N/Np− 1)) and Ns copies of the T depth of the parallel
subtree (4 log2(Np)). Note that we need Ns copies because we are parallelizing within a
subtree, only one parallel subtree is being done at a time. This gives us a total T depth cost
of 4 [N/Np +N/Np log2(N)− 1]. Similar analysis can be done for the auxiliary qubits. We
need the number of auxiliary qubits for the serial subtree (log2(Ns)− 1 = log2(N/Np)− 1)
and one copy of the auxiliary qubits for a parallel subtree (2(Np− 1)). The fact that we are
doing one parallel subtree at a time hurt us in terms of T depth (the Ns factor above), but
helps us here because we can reuse auxiliary qubits between parallel subtrees.

We carry out a similar approach for the parallel-then-serial unary iteration in Fig. 2.5.
We compute T depth as follows: the T depth for the parallel subtree (4 log2(Np)) and the T
depth for one serial subtree (4(Ns − 1) = 4(N/Np − 1). We compute the number of qubits
as follows: the qubits for the parallel subtree (2(Np − 1)) and Np copies of the qubits for a
serial subtree (log2(Ns)− 1 = log2(N/Np)− 1). Note that this has the reverse trend as the

254 Analyzing Qubit-runtime Tradeoffs In Parallelizing Unary Iteration

serial-than-parallel case: we get the T depth of a single serial subtree because we are doing
them all in parallel, but conversely we need enough auxiliary qubits for each copy to run
independently.

3. Results. In this section, we explore the empirical findings that highlight the trade-
offs and efficiencies achieved through the parallelization of the unary iteration subroutine
in quantum circuits. A key focus is on understanding how these strategies affect T depth
speedup — our critical metric for quantum computation efficiency.

Table 3.1: Unary iteration resource estimation comparison.

No. Auxiliary Qubits T Depth Speedup
(Np << N)

Seriala log2(N) 4(N − 1) –

Parallel 2(N − 1) 4log2(N) O
(

N
log2(N)

)

Serial-then-parallel 2(Np − 1) + log2

(
N
Np

)
4
[

N
Np

+ N
Np

log2(Np)− 1
]
O
(

Np

1+log2(Np)

)

Parallel-then-serial 2(Np − 1) +Nplog2

(
N
Np

)
4
[

N
Np

+ log2(Np)− 1
]

O (Np)

aUnary iteration method as introduced by Babbush et al. (2018) [2].

3.1. T Depth Speedup. Our initial examination of full parallelization, detailed in
Table 3.1, demonstrates a significant reduction in T depth from linear to logarithmic, a
transformation that greatly enhances computational speed. However, this advantage comes
at the cost of increased qubit requirements, transitioning from a logarithmic to a linear scale.
Specifically, while fully serial unary iteration maintains linear T depth with logarithmic
auxiliary qubit needs [2], fully parallel unary iteration achieves logarithmic T depth but
necessitates a linear number of qubits. According to the results in Table 3.1, the speedup
achieved through full parallelization is quantified as (N − 1)/log2(N), yet the prohibitive
increase in auxiliary qubits renders this approach impractical for large-scale applications.

Instead we consider a balanced approach in which the circuit benefits from the speedup
gains of partial parallelization while constraining the expansion of auxiliary qubit require-
ments. We analyze two distinct configurations: serial-then-parallel and parallel-then se-
rial circuits, with their respective T depth and qubit numbers summarized in Table 3.1.
The speedup offered by serial-then-parallel unary iteration over fully serial is calculated
as (N − 1)/ [N/Np +N/Nplog2(Np)− 1], while the parallel-then-serial speedup is (N −
1)/ [N/Np + log2(Np)− 1]. The presence of the N/Np factor multiplied on the logarithmic
term in the denominator of the serial-then-parallel speedup, might lead one to naively con-
clude that the parallel-then-serial approach is optimal for all scenarios. However, as we
will make clear in the subsequent subsection, the optimal strategy is contingent upon the
interplay between the number of available qubits n, the number of terms in the Hamiltonian
N , and the degree of parallelization Np, revealing a more complex decision landscape than
is initially apparent.

3.2. Crossover. The formulas from Table 3.1 may lead one to erroneously assume that
parallel-then-serial unary iteration invariably offers the best trade-off between speedup and
qubit number. A careful study of Fig. 3.1 tells a different story. The main Fig. 3.1a depicts
the speedup for a system size of N = 230 for increasing numbers of auxiliary qubits. This
analysis, depicted through the dashed blue line with circle markers for the serial-then-parallel

C. O’Neil, M.D. Porter, & S.K. Seritan 255

(a) Speedups for parallel-then-serial (red) and serial-then-parallel (blue) unary iteration. Fully
serial (Np = 1) is the bottom-left point, while fully parallel (Np = N) is the top-right point.

(b) Inset focusing on low numbers of auxil-
iary qubits, where serial-then-parallel outper-
forms parallel-then-serial.

(c) Inset focusing on the crossover region
between serial-then-parallel and parallel-then-
serial.

Figure 3.1: Speedup as a function of auxiliary qubits for parallel unary iteration for a system
size of N = 230 ≈ 109. Insets label points with their corresponding Np values and show
auxiliary qubits in terms of multiples of log2(N), i.e. how many copies of the LCU coefficient
register would be needed.

256 Analyzing Qubit-runtime Tradeoffs In Parallelizing Unary Iteration

method and the solid red line with square markers for the parallel-then-serial method,
considers escalating degrees of parallelization (Np). Contrary to initial expectations, this
visual comparison reveals that the optimal strategy for maximizing speedup while efficiently
managing qubit resources is not so straightforward.

On the lower left portion of the plot, highlighted in the inset Fig. 3.1b the serial-then-
parallel technique initially demonstrates a higher speedup. Towards the middle portion of
the plot, detailed in inset Fig. 3.1c, a pivatol shift occurs. Between 104 and 105 qubits,
we observe the parallel-then-serial method overtake serial-then-parallel in terms of speedup,
marking a significant crossover in efficiency between the two strategies. Beyond this point,
the plot reveals a pattern of oscillation where the lead in speedup advantage shifts back
and forth between the two methods, until reaching approximately 105 qubits. Beyond this
threshold, parallel-then-serial unary iteration consistently maintains an edge over the serial-
then-parallel approach.

What underlies the observed crossover and oscillation phenomena between the two par-
tial parallelization methods? The answer lies within the detailed annotations of the Np

values in the inset Fig. 3.1b and Fig. 3.1c. Intriguingly, these annotations reveal that for a
given number of qubits, the Np values associated with the serial-then-parallel method consis-
tently exceed those of the parallel-then-serial method. The discrepancy between Np values
accounts for the observed crossover behavior and highlights the nuanced balance between
qubit availability and the amount of parallelization in the circuit, offering deeper insights
into the strategic deployment of quantum resources for optimizing circuit performance.

The complex dynamics of the crossover behavior are further illustrated in Fig. 3.2, which
marks the initial point at which the parallel-then-serial method surpasses the serial-then-
parallel method across varying system sizes (N). This point is annotated for each method,
with the serial-then-parallel approach represented by a blue dashed line and circle marker,
and the parallel-then-serial method by a red solid line and square marker. Notably, these
annotations include the corresponding Np values at the crossover point for both strategies.

When visualized on a log2-scale, a clear pattern emerges: the serial-then-parallel unary
iteration consistently necessitates larger Np values to achieve optimal speedup for the same
number of qubits. Moreover, as N increases, the disparity in the required degree of paral-
lelization (Np) at the crossover point becomes more pronounced. This observation is not
merely a quantitative detail but a qualitative insight into how the effectiveness of paral-
lelization strategies scales with system size. This analysis reveals a critical consideration for
the strategic deployment of quantum resources in optimizing circuit performance.

Contrary to what was initially anticipated by the formulas in Table 3.1, the serial-then-
parallel unary iteration strategy outperforms its counterpart at lower auxiliary qubit count.
This counterintuitive finding is captured in Fig. 3.1 where the performance advantage of
the serial-then-parallel approach becomes apparent for lower qubit count. The underlying
reason for this unexpected outcome is traced back to the disparities in Np values between the
two methods, as detailed in the inset Figs. 3.1b and 3.1c. Further, Fig. 3.2 exemplifies that
this crossover behavior stems from the larger Np values required for the serial-then-parallel
method and that it is system size-dependent. This insight not only unveils the dynam-
ics between these partial parallelization strategies but also underscores the importance of
considering the degree of parallelization in optimizing quantum circuit designs for efficiency.

4. Discussion/Conclusion. In this study, we explored the use of various strategies
for parallelizing unary iteration as initially described in Babbush et al. [2]. Our investigation
found that full parallelization offers significant speedup over serial unary iteration - transi-
tioning from linear T depth to logarithmic, but at the cost of transitioning from logarithmic
order auxiliary qubits to linear order. We discovered that partial parallelization methods:

C. O’Neil, M.D. Porter, & S.K. Seritan 257

Figure 3.2: Values ofNp where parallel-then-serial (red) first outperforms serial-then-parallel
(blue) for various system sizes. Note that the values of Np get larger, i.e. serial-then-parallel
is favorable for longer and the crossover point shifts to the right on plots like Fig. 3.1a, as
N increases.

serial-then-parallel and parallel-then-serial offer a suitable trade-off between T depth and
qubit costs as is quantified in Table 3.1.

While the T depth formulas in Table 3.1 mght suggest the parallel-then-serial method
as universally superior, the speedup outcomes prove to be more complex as is apparent from
Fig. 3.1. The serial-then-parallel approach offers better speedup for low qubit count while
parallel-then-serial unary iteration is best for higher qubit numbers. This can be traced
back to the disparity between the Np values of the two methods. The serial-then-parallel
approach consistently requires larger Np values for the same number of qubits. At some
threshold point which depends on the system’s size, the parallel-then-serial approach first
overtakes the serial-then-parallel method as can be seen from Fig. 3.2. Beyond this point the
optimal speedup shifts back and forth between the two methods until the parallel-then-serial
approach eventually triumphs for larger qubit numbers. Thus, the Np value is a key factor
which must be considered when assessing resource requirements in the quantum circuit.

For future work, we will investigate additional avenues for developing efficient quantum
circuits. This includes optimizing the organization, routing, and scheduling of the auxiliary
qubits similar to the resource estimates in Lee et al. [8]. We are also interested in making
use of dirty [12] and conditionally clean qubits [7, 13] to realize additional circuit efficiency.
In its current form, unary iteration makes use of “clean” auxiliary qubits meaning that
they have been initialized to a known state. “Dirty” qubits are those which are initialized
in unknown states which must be restored upon completion of the computation [7]. To

258 Analyzing Qubit-runtime Tradeoffs In Parallelizing Unary Iteration

summarize Khattar and Gidney [7], a “conditionally clean” qubit on the other hand, is one
whose state is either dirty or clean conditioned by a subset of other system qubits.

In conclusion, this study contributes to the ongoing discourse on optimizing quantum
circuits in terms of physical resources and speedup. Our findings highlight the intricate
balance required in the parallelization of unary iteration. As this field continues to evolve,
this study will undoubtedly contribute to the refinement of strategies aimed at harnessing
the full potential of quantum computing.

References.
[1] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, A meet-in-the-middle al-

gorithm for fast synthesis of depth-optimal quantum circuits, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 32 (2013), pp. 818–830.

[2] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler,
A. Fowler, and H. Neven, Encoding electronic spectra in quantum circuits with
linear t complexity, Phys. Rev. X, 8 (2018), p. 041015.

[3] A. M. Childs and N. Wiebe, Hamiltonian simulation using linear combinations of
unitary operations, Quantum Info. Comput., 12 (2012), p. 901–924.

[4] R. Feynman, Quantum mechanical computers, Foundations of Physics, 16 (1986),
pp. 507–531.

[5] R. P. Feynman, Simulating physics with computers, International Journal of Theo-
retical Physics, 21 (1982).

[6] C. Jones, Low-overhead constructions for the fault-tolerant toffoli gate, Phys. Rev. A,
87 (2013), p. 022328.

[7] T. Khattar and C. Gidney, Rise of conditionally clean ancillae for optimizing quan-
tum circuits, 2024.

[8] J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R. McClean, N. Wiebe,
and R. Babbush, Even more efficient quantum computations of chemistry through
tensor hypercontraction, PRX Quantum, 2 (2021), p. 030305.

[9] D. Litinski, Magic State Distillation: Not as Costly as You Think, Quantum, 3 (2019),
p. 205.

[10] S. Lloyd, Universal quantum simulators, Science, 273 (1996), pp. 1073–1078.
[11] G. H. Low and I. L. Chuang, Hamiltonian Simulation by Qubitization, Quantum,

3 (2019), p. 163.
[12] G. H. Low, V. Kliuchnikov, and L. Schaeffer, Trading T gates for dirty qubits

in state preparation and unitary synthesis, Quantum, 8 (2024), p. 1375.
[13] J. Nie, W. Zi, and X. Sun, Quantum circuit for multi-qubit toffoli gate with optimal

resource, 2024.
[14] M. A. Nielsen and I. L. Chuang, Quantum Computing and Quantum Information:

10th Anniversary Edition, Cambridge University Press, 2011.
[15] F. Orts, E. Filatovas, G. Ortega, J. F. SanJuan-Estrada, and E. M.

Garzón, Improving the number of t gates and their spread in integer multipliers on
quantum computing, Phys. Rev. A, 107 (2023), p. 042621.

[16] H. Thapliyal, T. S. S. Varun, E. Munoz-Coreas, K. A. Britt, and T. S.
Humble, Quantum circuit designs of integer division optimizing t-count and t-depth,
in 2017 IEEE International Symposium on Nanoelectronic and Information Systems
(iNIS), 2017, pp. 123–128.

C. O’Neil, M.D. Porter, & S.K. Seritan 259

STORAGE SYSTEM CHARACTERIZATION IN VIRTUALIZED TESTBED

JOHN SHAWGER∗ AND MATTHEW L. CURRY†

Abstract. Emerging workloads have broadened the requirements for data I/O systems. Prior work has
focused on the characterization of workloads and their performance on production systems. We develop a
set of tools for characterizing the behavior of storage systems in a virtual testbed environment, and compare
the behavior of a parallel file system, BeeGFS, and an object store, Minio, on a synthetic deep learning
workload.

1. Introduction. Data I/O is a challenge for large-scale systems. Researchers have
long seen the need to properly characterize application I/O demands and develop realistic
benchmarking tools to evaluate I/O performance. As a result, storage systems for highly
parallel high performance clusters have evolved over the past several decades in response to
application needs. Parallel file systems are understood by the HPC systems community to
have good support for typical application I/O patterns such as checkpoint and restart.

Within the past decade, a new class of data-intensive applications has emerged. In
particular, data analytics and deep learning applications have become important in many
scientific domains and are recognized as a growing class of workloads in HPC systems [26].
Over the same time period, cloud-based [17] storage offerings have expanded to include
object stores [22, 35] and key-value stores [29, 30]. These storage systems have simple inter-
faces and do not support all of the guarantees of the POSIX file interface, but application
developers have found them attractive [8, 13, 33] for data intensive and ML applications.

Recent HPC storage research has attempted to characterize the I/O patterns of deep
learning workloads [10, 27]. Workload characterization studies have yielded valuable insights
into the I/O usage of HPC applications on existing flagship clusters and storage systems.
However, any performance evaluation performed on existing systems is colored by the be-
spoke nature of each system – clusters have unique hardware, networking, and scale. Work
of this nature does not answer the question of whether an application would perform better
on a different type of storage system.

Using archetypal workloads identified in characterization studies, we propose character-
izing storage system daemons. We consider a daemon running on a storage node to be an
agent that processes messages sent by clients and generates actions in the form of system
calls which perform I/O on local storage. By measuring the input messages and output
actions of the daemon, we can gain understanding of the workings of the storage system.
This type of measurement is unaffected by optimizations which do not fundamentally change
the nature of the storage system, such as RDMA [37, 36], accelerator offload [18, 20], or
increased asynchrony [19]. We approach our work with several research questions.

• Are certain workloads fundamentally suitable or unsuitable for storage system
types?

• Can we infer storage system policies by measuring the behavior of storage daemons?
• Are there properties of storage systems which are not discernable solely by looking

at the inputs and outputs of their daemons?
In this paper, we create a virtual machine testbed and use it to compare BeeGFS, a

parallel file system, and Minio, an S3-compatible object store. For each system, we wrote an
instrumentation framework using eBPF to log the activity generated by the storage system
on each member node. Finally we compare the behavior of the two systems while running
a synthetic deep learning workload.

∗University of Wisconsin-Madison, shawgerj@cs.wisc.edu
†Sandia National Labs, mlcurry@sandia.gov

260 CSRI Summer Proceedings 2024

2. Background.

2.1. Parallel File Systems. Parallel file systems stripe data across collections of
storage nodes – the number of storage targets for a file is known as the stripe width, the
amount of data written in each chunk is known as the block size. By striping data across
multiple targets, the file system uses the aggregate bandwidth of the storage targets for
reads and writes. Parallel file systems generally provide POSIX guarantees, such as strict
consistency amongst processes interacting with files. To ensure global consistency, parallel
file systems have a centralized metadata service, which controls placement of data and write
ordering. Clients of the file system communicate directly with the storage nodes for the
data path. Storage nodes run user-level daemons which store chunk data atop a local file
system, commonly XFS ldiskfs, a fork of ext4.

2.2. Object Stores. Object stores organize data into buckets, where each bucket is a
flat namespace for objects stored in it. Objects are addressed via their bucket name and a
unique identifier. While complex POSIX-style file system may be implemented on top of an
object store [35], object stores have a much simpler interface (GET and PUT) for accessing
an objects. Commonly, objects are accessed atomically, although a GET command may
take a byte offset to support reading a partial object. The absence of a strongly consistent
POSIX model alleviates the need for a standalone metadata service. Due to their simplicity,
object stores have become widely used for data-intensive workloads where data can easily
be mapped to objects, just as training a deep learning model on an image dataset.

2.3. HPC Workload Characterization. Designers of I/O systems have a strong
interest in understanding the workloads running on top of them. Traditionally [31], HPC
applications where believed to be write-intensive, perform infrequent random I/O, and per-
form N-N I/O using the POSIX interface. More recent work [9] has used the Darshan tool to
profile applications directly, and has found that read-intensive workloads are more common
than previously thought. Recent years have seen an explosion of activity in training deep
learning models, which requires reading a dataset over a number of epochs. Tensorflow [2],
a popular machine learning library, has been characterized [10] while running the ImageNet
training workload. While reads are random over the entire dataset, Tensorflow reads sample
files within the dataset sequentially. We believe the demands being placed on I/O systems
have evolved substantially in recent years, and storage systems should be evaluated in light
of these new workloads.

3. Experimental Setup. Distributed storage systems are complex pieces of software
with many system requirements necessary for their deployment. They may require unique
build environments, direct access to storage devices, kernel modules, specialized dependen-
cies, and other environmental peculiarities. Creating the right environment on production
HPC systems is a difficult problem, as it is important that the environment built for the
storage system not interfere with the HPC system environment. Furthermore, the storage
system may require privileged access to install and run, that may not be feasible to grant
for exploratory research.

We have developed a method for deploying storage systems for research purposes which
avoids these difficulties. Sandia has developed a set of tools for large-scale cyber experimen-
tation, known within Sandia as Emulytics [15] (a portmanteau of emulation and analytics).
Emulytics tools support emulating large-scale networks using virtual machines (VMs) and
software-defined network topologies. In particular, we use the Carnac [16] cluster, which
provides bare-metal-as-a-service for Emulytics workloads. Carnac nodes run a minimal in-
stance of Ubuntu 18.04 and have ample memory (512GB) for VMs. The Minimega [24]
project is a Sandia tool which can orchestrate VMs, providing an API to start and stop

J. Shawger & M.L. Curry 261

individual VMs and run executables within them. Minimega balances VM allocation over a
set of physical nodes. Lastly, the Firewheel system manages the experimental runtime as a
set of Python scripts, using Minimega to control VMs. Our experiments are defined as a set
of resources scheduled and executed by Firewheel – (1) VM images, (2) software source and
packages, (3) package configuration and runtime scripts, (4) workload runtime scripts, and
(5) the Firewheel configuration script, which defines the experiment topology and sched-
ules the execution of all resources within the experiment. Firewheel can push resources to
running VMs, run arbitrary executables, and pull data from VMs at the conclusion of a
workload.

Here is a list of requirements for our experimental setup and a short description of how
Carnac and Firewheel satisfy each requirement.

1. Administrative flexibility. We launch custom VMs with Firewheel and have admin-
istrative access to the VMs once they are booted. Firewheel can also create complex
network topologies, although for our experiment, a single switch with no network
delay has been sufficient.

2. Scale experiment up and down easily. Firewheel orchestrates VMs across a set of
physical nodes. Creating more or fewer VMs is trivial within Firewheel.

3. No source code modification. Storage system codebases are large and complex, and
we sought to avoid direct modification of system code to introduce instrumentation.
Root privileges on Firewheel VMs allow us to use eBPF uprobes, tracepoints, and
load custom libraries with LD PRELOAD to instrument our target storage systems.

4. Automated and repeatable experimentation. We define our entire experiment, in-
cluding VM setup and configuration, using Firewheel scripts, which are written in
Python. Experiments are thus easily run and repeated.

While the Emulytics platform satisfies our administrative goals for our experiments, one
lingering question is whether or not the virtualized environment in which we run our exper-
iments meaningfully alters the results compared to a bare-metal approach. In this work, we
are interested in relative access patterns of data in a parallel file system and object store, not
the absolute performance of each system. While a thorough performance evaluation of each
system would necessitate quantifying the overhead, if any, of the virtualized environment,
the traces of data accesses on each storage node remain unchanged.

3.1. Firewheel-Beegfs. A BeeGFS installation consists of a set of storage nodes, a
manager node, and one or more client nodes. Using Firewheel, we launch a separate Ubuntu
22.04 VM for each node, and connect them using a software-defined switch. Our BeeGFS
experiment is shown in Figure 3.1. The manager node is given IP 10.0.0.1, clients are given
IPs 10.0.0.2 through 10.0.0.9, and storage nodes are given IPs 10.0.0.10 and higher.
We can launch up to nine client nodes and an arbitrary number of storage nodes. For ease
of setup and teardown, we give each storage node 128GB of memory and create a 96GB
ramdisk which is assigned to the storage daemon. We can scale up the capacity of BeeGFS
by creating more storage nodes – the only limitation here is the amount of physical RAM
available to Firewheel. Carnac nodes have 512GB of memory each, thus we can comfortably
scale BeeGFS by 288GB of storage per physical node.

Client nodes are equipped with the BeeGFS client kernel module, which is used to
mount the BeeGFS file system. We use BeeGFS 7.4.3. We have configured OpenMPI on
the clients in order to run our benchmark programs, IOR 4.0 [31] and DLIO [12].

3.1.1. eBPF and uprobes. Recall that one of our goals in instrumenting storage
services was to avoid direct source code modification of the service. We use eBPF [14] and
uprobes [11] to interpose methods in the BeeGFS storage daemon which handle incoming
messages. Our library, which is written in Rust and uses aya-rs [6], has three components

262 Storage System Characterization In Virtualized Testbed

Storage Nodes

Client Nodes

Manager Node

beegfs
daemon

user

kernel

user

kernel

Antenna
(LD_PRELOAD)

syscalls

messages

eBPF/
uprobe

ebpf
tracing
(user)

Management
Service

Metadata
Service

antenna
server

pread
pwrite
open
close
seek

WriteFile
ReadFile
Create
Delete
Mkdir

IOR DLIO

beegfs-client

Fig. 3.1. Firewheel-BeeGFS. Purple denotes user-level benchmark programs, yellow denotes S3-
compatibility layers, gray denotes BeeGFS services, green denotes instrumentation services.

– (1) eBPF programs which are attached to uprobes and run in the kernel, (2) a user-
space program which logs data captured by eBPF, and (3) a library defining common data
structures used by both the kernel and user-space components.

Uprobes are a tracing capability included in the Linux kernel. Given an offset within
an executable file, the kernel creates a special copy of the page containing the offset. At
the offset, the kernel inserts a breakpoint instruction. When the breakpoint is reached, the
uprobe handler within the kernel launches the eBPF program associated with the offset. As
eBPF allows arbitrary code to run within the kernel, eBPF programs are subject to many
constraints and must undergo static verification [25] prior to execution. In particular, eBPF
programs are limited to a 512 byte stack. In order to manipulate larger amounts of data,
eBPF provides different types of maps, which are mmap-ed regions of memory which can
be accessed within the kernel or in userspace.

In particular, we use uprobes to trace incoming messages to each storage daemon.
Tracing at the application level allows us to introspect the exact file name, offset, and length
of reads and writes requested from storage daemons, but we must know precisely where this
data is stored in memory in the instrumented function in order to read it with the uprobe.
In BeeGFS, each message type has an associated C++ class. We ran BeeGFS under gdb
separately to record the offsets of data fields within the class data hierarchy using the ptype
/o command. eBPF programs have access to probed function’s arguments, because those
arguments are placed on the execution stack. In C++ programs, class methods have an
implicit first argument, a pointer to the instance of the class known as the this pointer.
Our eBPF programs access data members for each class by following the this pointer for
traced methods. Given the data gathered from gdb, we were able to access all the relevant
class data for tracing storage requests in BeeGFS.

3.1.2. Antenna. Inspired by Darshan [32], we wrote a library to intercept system calls
being made by the storage daemon. The BeeGFS storage daemon makes system calls, as do
most C/C++ programs compiled in a Linux environment, by calling wrapper functions in
libc. We use LD PRELOAD to wrap the libc functions with our own functions which capture
relevant data about the system call being made. We focus our library on system calls which

J. Shawger & M.L. Curry 263

Storage Nodes

Client Nodes
minio

HTTP Server

user

kernel

syscalls

messages

eBPF/
uprobe +
tracepoints

ebpf
tracing
(user)

IOR DLIO

S3
mountpoint

tensorflow
S3 compat

Fig. 3.2. Firewheel-Minio. Purple denotes user-level benchmark programs, gray denotes Minio ser-
vices, green denotes instrumentation services.

interact with the file system – open, close, read, write, pread, pwrite, and seek. Using
strace [1], we verified that the BeeGFS storage daemon uses these system calls for its file
system operations. For each system call, we capture it’s arguments and record the time
at which it was called. We then send that data via UDP to the antenna-server process
running on the manager node. UDP was chosen to improve the scalability of the Antenna,
as it could be used for large-scale experiments in the future. Sending messages over the
network to a long-running server process avoids a problem we observed when trying to log
the messages locally. When logging locally, we found that output buffering was causing
incomplete log output – the BeeGFS storage daemon process would end prior to all the
output being flushed from the buffer, causing a loss in logging data. We have not observed
the same problem after logging the messages remotely.

3.2. Firewheel-Minio. Minio is an S3-compatible object store. Clients communicate
with Minio nodes using HTTP, as shown in Figure 3.2.

3.2.1. eBPF tracing HTTP REST. Clients communicate with Minio via HTTP,
using an S3-compatible REST protocol. For example, a client might check for the existance
of an object using HEAD, upload an object to the object store using PUT, and download an
object using GET, with each command followed by a uniform resource locator (URI), which
corresponds to the bucket and object name.

Because HTTP requests are sent via the network, we can trace them within the kernel
by monitoring sockets opened by Minio rather than probing Minio code directly. We used
strace to verify that Minio opens sockets using accept4, which returns a file descriptor. All
data read and written to the file descriptor between accept4 and close are HTTP messages.
To capture HTTP data read and written on the socket, we use an eBPF tracepoint to record
data on file descriptors opened by accept4. When data is read from the socket, we send a
small amount (1KB) of the data to userspace via a circular buffer. A process in userspace
polls the buffer and parses the HTTP headers within the data read from the socket. The
headers of each HTTP request contain all the necessary information for tracing S3 storage
requests (request type, URI, content-length).

264 Storage System Characterization In Virtualized Testbed

Fig. 4.1. DLIO workload running on Beegfs. BeeGFS client requests.

3.2.2. eBPF tracepoints. Minio is written in Go, and discovered that Go applica-
tions running on Linux do not follow the typically convention of linking to libc and using
libc system call wrappers. Since our Antenna framework relies on LD PRELOAD to interpose
libc functions, it unfortunately does not work with Minio. Therefore, we must instrument
system calls inside the kernel. To do this, we use the tracepoint functionality within the
Linux kernel. There are tracepoints defined for each system call enter and exit. Using eBPF,
we record the arguments passed to each system call we are interested in tracing on enter,
and the return value from each system call on exit. Similarly to the data intercepted on
sockets, we pass the data back to userspace for logging.

4. Experimental Results.

4.1. ML Training. We use the DLIO benchmark to simulate a machine learning
training workload. We run DLIO with the resnet50 tensorflow workload, which generates
synthetic data similar to an imagenet dataset, and then “runs” the workload over a course of
five epochs. DLIO simply sets a sleep timer for the training phase to simulate computation.
We generate 50 data files, each 137MB large, for a total size of 6.8GB. The DLIO client
runs as a single process with eight threads. Tensorflow has both a POSIX interface and an
S3 interface. We use these interfaces unmodified – there is no extra connector used for S3.

4.1.1. Beegfs. Using our Ebpf-uprobe tracing system, we trace the requests made
from the DLIO client process to BeeGFS storage nodes (OSDs) during the DLIO resnet50
workload. Figure 4.1 shows the results. It is clear from the graph that there are two distinct
phases in the workload - a write (data generation) phase, and a read (training) phase. The
resnet50 workload generates 50 sample files – we plot each file by it’s number on the y-axis
of the graph. Reads to different OSDs are slightly vertically offset so that parallel reads to
different OSDs are visible on the graph. All reads appear to be done in parallel from the

J. Shawger & M.L. Curry 265

Fig. 4.2. DLIO workload running on Beegfs. BeeGFS write and read system calls on OSD-1.

Total Data Written OSD-0 OSD-1 OSD-2
multipart 38MB 141MB 190MB

tmp 2.9GB 1.6GB 1.8GB
resnet50 2.8GB 2.4GB 3GB

Fig. 4.3. Total data written to Minio OSDs, by file type

three OSDs, and eight files are read concurrently, which corresponds to the eight threads in
the DLIO client process.

We plot the system calls generated on a single BeeGFS OSD in Figure 4.2. The system
calls match closely with the requests from the client, and are similar on each OSD.

4.1.2. Minio. Figure 4.4 shows the write phase of our DLIO workload on the Minio
object store. We find that Minio writes to three types of files – “multipart” files, “tmp” files,
and “resnet50” files. Summing the total amount of data written to each type of file gives
some clues as to how they are used. Comparatively little data is written to “multipart”
files, so we hypothesize these files are used for internal metadata relating to the objects and
their placement. Large amounts of data corresponding to the size of the dataset are written
to both “tmp” and “resnet50” files, and the read phase (Figure 4.5) operates exclusively on
“resnet50” files.

In Figure 4.4, we plot write operations occurring on each type of file over time. There
is an initial phase of writes, when only “multipart” and “tmp” files are written to (the
activity is similar on each OSD; we only plot the writes for OSD-0). Surprisingly, writes
to “resnet50” happen during the read phase of the workload, following the initial phase
in which all workload data is written to “tmp” files. More study of Minio’s internals is
needed to understand this behavior, but the presence of heavy write activity during the
read phase is unexpected and shows the utility of characterizing storage daemons when
seeking to understanding storage system behavior.

Figure 4.5 shows the read (training) phase of the DLIO workload running on Minio.
While all OSDs are utilized during the read phase, even without using a load balancer,
this graph shows a different access pattern than the same workload on BeeGFS. The client

266 Storage System Characterization In Virtualized Testbed

Fig. 4.4. DLIO workload running on Minio. Write system calls over time separated by file type.

Fig. 4.5. DLIO workload running on Minio. Read system calls over time on resnet50 image files.

accesses resnet50 files from OSDs, but reads each file from a single OSD, rather than in
parallel from several OSDs.

5. Related Work. Storage systems are notoriously difficult to evaluate at scale. The
David emulator [4] makes the observation that data blocks may be compressed out of a stor-
age workload within losing information about the storage system access pattern. Exalt [34]
compresses away application data and was used to find bugs in the HDFS metadata server
at large scale. We use an Emulytics platform to evaluate our target systems at scale.

An abundance of prior work has utilized strace to gain information about program
correctness [28] and record traces for performance and stress testing [3, 7]. Our work uses
strace and eBPF to trace read/write patterns. We analyze the traces to correlate storage
daemon inputs with system call outputs, but we do not use the traces to evaluate raw
performance.

Application tracing has long been an active field of research. Two earlier systems,
TraceFS [5] and TRACE [23] have been used to trace applications, and make different
tradeoffs in performance overhead vs. the amount of tracing data collected. More recently,
Darshan [32] has been widely [9, 10, 21] used to characterize application I/O access patterns.

J. Shawger & M.L. Curry 267

Darshan instruments applications and generates traces of POSIX, HDF5, and MPI-IO activ-
ity. Our Antenna system generates traces of POSIX system calls, but we use it to instrument
storage daemons rather than applications.

6. Conclusion. High performance I/O requirements have diversified in recent years.
It is important to continually evalute the design space of I/O systems with an eye on emerg-
ing workloads, such as deep learning. We have developed a testbed and instrumentation
framework which runs BeeGFS, a parallel file system, and Minio, an object store. Our
choices in developing a set of instrumentation tools reflect a desire to balance general ap-
proaches with the need to capture application-specific information. By instrumenting at
the source-code level with eBPF, we can capture information with a high degree of fidelity
compared to more generic approaches at the cost of higher development complexity.

Examining the data from our experiments reveals differences between the two systems.
We observe that BeeGFS uses storage nodes in parallel for reads and writes, while Minio
does not, although separate client threads may read from more than one storage node
concurrently. Instrumentation can reveal system policies which are not clearly documented
– for example, we find that Minio copies data from temporary files during read operations,
possible as part of read compaction operation. We are optimistic that further work could
provide insight into other system policies such as write coalescing and caching behaviors.

REFERENCES

[1] strace. http://strace.io. Accessed: Aug 28, 2024.
[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irv-

ing, M. Isard, et al., Tensorflow: a system for large-scale machine learning, in 12th USENIX
symposium on operating systems design and implementation (OSDI 16), 2016, pp. 265–283.

[3] N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, Generating realistic impressions
for file-system benchmarking, ACM Transactions on Storage (TOS), 5 (2009), pp. 1–30.

[4] N. Agrawal, L. Arulraj, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, Emulating goliath
storage systems with david, ACM Transactions on Storage (TOS), 7 (2012), pp. 1–21.

[5] A. Aranya, C. P. Wright, and E. Zadok, Tracefs: A file system to trace them all., in FAST, 2004,
pp. 129–145.

[6] aya-rs. https://github.com/aya-rs/aya, 2024.
[7] E. F. Boza, C. San-Lucas, C. L. Abad, and J. A. Viteri, Benchmarking key-value stores via

trace replay, in 2017 IEEE International Conference on Cloud Engineering (IC2E), IEEE, 2017,
pp. 183–189.

[8] Z. Cao, S. Dong, S. Vemuri, and D. H. Du, Characterizing, modeling, and benchmarking rocksdb
key-value workloads at facebook, in 18th USENIX Conference on File and Storage Technologies
(FAST 20), 2020, pp. 209–223.

[9] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and R. Ross, Understanding
and improving computational science storage access through continuous characterization, ACM
Transactions on Storage (TOS), 7 (2011), pp. 1–26.

[10] S. W. Chien, A. Podobas, I. B. Peng, and S. Markidis, tf-darshan: Understanding fine-grained i/o
performance in machine learning workloads, in 2020 IEEE International Conference on Cluster
Computing (CLUSTER), IEEE, 2020, pp. 359–370.

[11] J. Corbet, Uprobes in 3.5. https://lwn.net/Articles/499190/, May 2012.
[12] H. Devarajan, H. Zheng, A. Kougkas, X.-H. Sun, and V. Vishwanath, Dlio: A data-centric bench-

mark for scientific deep learning applications, in 2021 IEEE/ACM 21st International Symposium
on Cluster, Cloud and Internet Computing (CCGrid), IEEE, 2021, pp. 81–91.

[13] S. Dong, A. Kryczka, Y. Jin, and M. Stumm, Rocksdb: Evolution of development priorities in a
key-value store serving large-scale applications, ACM Transactions on Storage (TOS), 17 (2021),
pp. 1–32.

[14] ebpf. http://ebpf.io.
[15] Sandia emulytics. https://www.sandia.gov/emulytics. Accessed: Aug 28, 2024.
[16] J. F. Floren, J. A. Friesen, C. D. Ulmer, and S. T. Jones, A reference architecture for emulyticstm

clusters, tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2017.

268 Storage System Characterization In Virtualized Testbed

[17] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V. Shankar,
J. Carreira, K. Krauth, N. Yadwadkar, et al., Cloud programming simplified: A berkeley
view on serverless computing, arXiv preprint arXiv:1902.03383, (2019).

[18] J. Kim, I. Jang, W. Reda, J. Im, M. Canini, D. Kostić, Y. Kwon, S. Peter, and E. Witchel,
Linefs: Efficient smartnic offload of a distributed file system with pipeline parallelism, in Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, 2021, pp. 756–771.

[19] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson, Strata: A cross media
file system, in Proceedings of the 26th Symposium on Operating Systems Principles, 2017, pp. 460–
477.

[20] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and L. Zhang, Kv-direct:
High-performance in-memory key-value store with programmable nic, in Proceedings of the 26th
Symposium on Operating Systems Principles, 2017, pp. 137–152.

[21] Z. Liu, R. Lewis, R. Kettimuthu, K. Harms, P. Carns, N. Rao, I. Foster, and M. E. Papka,
Characterization and identification of hpc applications at leadership computing facility, in Pro-
ceedings of the 34th ACM International Conference on Supercomputing, 2020, pp. 1–12.

[22] M. Mesnier, G. R. Ganger, and E. Riedel, Object-based storage, IEEE Communications Magazine,
41 (2003), pp. 84–90.

[23] M. P. Mesnier, M. Wachs, R. R. Simbasivan, J. Lopez, J. Hendricks, G. R. Ganger, and D. R.
O’hallaron, //trace: parallel trace replay with approximate causal events, (2007).

[24] Minimega. https://www.sandia.gov/minimega. Accessed: Aug 28, 2024.
[25] L. Nelson, J. Van Geffen, E. Torlak, and X. Wang, Specification and verification in the field:

Applying formal methods to {BPF} just-in-time compilers in the linux kernel, in 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), 2020, pp. 41–61.

[26] S. Neuwirth and A. K. Paul, Parallel i/o evaluation techniques and emerging hpc workloads: A
perspective, in 2021 IEEE International Conference on Cluster Computing (CLUSTER), IEEE,
2021, pp. 671–679.

[27] A. K. Paul, A. M. Karimi, and F. Wang, Characterizing machine learning i/o workloads on lead-
ership scale hpc systems, in 2021 29th International Symposium on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems (MASCOTS), IEEE, 2021, pp. 1–8.

[28] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, All file systems are not created equal: On the complexity of crafting {Crash-
Consistent} applications, in 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 14), 2014, pp. 433–448.

[29] Redis. http://redis.io.
[30] Rocksdb. http://rocksdb.org.
[31] H. Shan, K. Antypas, and J. Shalf, Characterizing and predicting the i/o performance of hpc appli-

cations using a parameterized synthetic benchmark, in SC’08: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, IEEE, 2008, pp. 1–12.

[32] S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood, and N. J. Wright, Modular hpc i/o
characterization with darshan, in 2016 5th workshop on extreme-scale programming tools (ESPT),
IEEE, 2016, pp. 9–17.

[33] I. Stoica, D. Song, R. A. Popa, D. Patterson, M. W. Mahoney, R. Katz, A. D. Joseph, M. Jor-
dan, J. M. Hellerstein, J. E. Gonzalez, et al., A berkeley view of systems challenges for ai,
arXiv preprint arXiv:1712.05855, (2017).

[34] Y. Wang, M. Kapritsos, L. Schmidt, L. Alvisi, and M. Dahlin, Exalt: Empowering researchers to
evaluate large-scale storage systems, in 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), 2014, pp. 129–141.

[35] S. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, Ceph: A scalable, high-
performance distributed file system, in Proceedings of the 7th Conference on Operating Systems
Design and Implementation (OSDI’06), 2006, pp. 307–320.

[36] J. Yang, J. Izraelevitz, and S. Swanson, Orion: A distributed file system for {Non-Volatile}
main memory and {RDMA-Capable} networks, in 17th USENIX Conference on File and Storage
Technologies (FAST 19), 2019, pp. 221–234.

[37] B. Zhu, Y. Chen, Q. Wang, Y. Lu, and J. Shu, Octopus+: An rdma-enabled distributed persistent
memory file system, ACM Transactions on Storage (TOS), 17 (2021), pp. 1–25.

J. Shawger & M.L. Curry 269

SCALABLE APPLICATION-ORIENTED BENCHMARKING OF
QUANTUM COMPUTERS

NOAH D. SIEKIERSKI∗, AIDAN Q. WILBER-GAUTHIER† , AND STEFAN K. SERITAN‡

Abstract. Benchmarking quantum applications is an essential part of tracking progress towards
quantum advantage and comparing different quantum devices on real-world problems. However, current
application-oriented benchmarking approaches often lack scalability due to the need for expensive classi-
cal computation or are limited to testing full problem instances that may be too large to run on current
devices. Here, we show how subcircuit volumetric benchmarking using mirror circuit fidelity estimation
can be used to design scalable benchmarks from any quantum algorithm that uses only unitary operations.
We demonstrate how to generate subcircuit volumetric benchmarks from an existing application-oriented
benchmarking suite and show how a real quantum device performs on one such benchmark.

1. Introduction. Quantum computers promise to dramatically reduce the resources,
both spatial and temporal, required to accomplish certain tasks of practical interest [6, 20, 1].
This promise is hampered in the present noisy intermediate-scale quantum (NISQ) era [14]
by complex errors that make it infeasible to reliably run these tasks on a quantum computer.
It is critical to utilize well-defined, accurate protocols to assess the performance of quantum
hardware to track progress and compare between different devices and technologies. We
call such assessment schemes benchmarks, and many have been developed. IBM’s quantum
volume benchmark [3] and randomized benchmarking (RB) [8, 12] have been used to capture
the general performance of a quantum device by running classes of random circuits. It is
also desirable to run application-oriented benchmarks that interrogate the performance of a
device on circuits that represent real-world programs that users are likely to use a quantum
computer for. Various benchmarking suites have been designed with these programs in
mind [4, 13, 18, 5, 9, 11, 17]. A difficulty faced by both classes of benchmark is their
scalability to many qubits. This inability to scale beyond several qubits is due to expensive
classical pre-processing for circuit generation or expensive classical simulation to verify the
circuit output. Some application benchmark generation schemes circumvent the scalability
challenge by leveraging properties unique to the application that allow the creation of circuits
with efficiently predictable outcomes or the usage of an application-specific success metric.
However, since these approaches are application-specific, they do not provide a framework
that is easily adaptable to any application one may wish to benchmark on a quantum
computer.

Here, we show how subcircuit sampling and circuit mirroring [15] combined can be used
to create volumetric benchmarks (VBs) [2] for any application. We refer to these as sub-
circuit volumetric benchmarks (SVBs), and our technique is amenable to any application
circuit that represents a unitary evolution. We demonstrate its efficacy using selected cir-
cuits from the application-oriented benchmarking suite created by the Quantum Economic
Development Consortium (QED-C).

2. Benchmark methodology. In this section, we describe our method for taking a
high-level application circuit C̃ and transforming it into a circuit ensemble on which mirror
circuit fidelity estimation (MCFE) can be performed. We begin by performing a compilation
that maps C̃ onto the target quantum processor’s qubit graph and transpiles the circuit to
a U3-CX gate set, yielding the circuit C. C can then be expressed as a product of layers,
i.e. C = LdLd−1...L1, where d is the virtual depth (see Section 2.2 for an explanation of

∗Sandia National Laboratories, ndsieki@sandia.gov
†Sandia National Laboratories, aqwilbe@sandia.gov
‡Sandia National Laboratories, sserita@sandia.gov

270 CSRI Summer Proceedings 2024

the difference between virtual and physical depth) of the full circuit and each Li contains
either only U3 gates (a U3 layer) or only CX gates (a CX layer).

To generate the subcircuits {SC}, we first specify a list of width-depth pairs (wi, di).
For each pair, we generate subcircuits via the strategy described in Section 2.3. For each
subcircuit in {SC}, we generate a pair of compilations: an exact ”reference” compilation in
the U3-CX gate set, which in our case is simply the subcircuit itself; and a test compilation
whose process fidelity we want to assess when executed on the target quantum device. These
compilations are further discussed in Sections 2.4 and 2.5. Each reference-test compilation
pair is then used to generate three sets of mirror circuits, which are then executed on the
target device to perform MCFE. These mirror circuit ensembles are further described in
Section 2.7.

2.1. Initial compilation. The initial compilation of C̃ into C consists of two parts:
mapping the high-level circuit onto the qubit connectivity graph of the device, and stan-
dardizing the gate set. A high-level circuit is specified in terms of virtual qubits, which are
typically assumed to be directly connected to all other qubits and admit any unitary to act
on them. When mapping to hardware qubits, neither of these assumptions typically holds.
Most current quantum devices have limited connectivity and only support a particular set
of native gates that must be combined in order to synthesize any unitary that is not directly
supported. To overcome connectivity limitations, hardware qubits use SWAP operations,
which are noisy. In order to limit the number of SWAP operations needed, the classical
compiler selects a layout and routing for the circuit that minimizes the number of SWAPs
needed and utilizes the highest fidelity qubits of the device as quantified by noise calibration
data. The layout and routing induce a permutation of the virtual qubits that is easily cor-
rectable in classical post-processing. As an example, a circuit described with three virtual
qubits that is compiled for a ten-qubit device may in the initial layout map virtual qubit 0
to physical qubit 3, virtual qubit 1 to physical qubit 5, and virtual qubit 2 to physical qubit
1. Then, over the course of the circuit, physical qubit 1 is swapped with physical qubit 5.
By measuring first physical qubit 3, then physical qubit 1, and finally physical qubit 5, the
order of the measured result exactly corresponds to the virtual qubit ordering.

The quantum device we run on, ibmq brisbane, does not natively support U3 and CX
operations. However, they are easily re-expressed in terms of native operations:

U3(θ, φ, λ) = e−i
π+θ
2 RZ(φ+ π)

√
XRZ(θ + π)

√
XRZ(λ), (2.1)

CXa,b = (I ⊗X)ECRa,b([RZ(−π)
√
XRZ(−π)]⊗RZ(−π/2)), (2.2)

where a and b are the control and target qubits of the CX operation, respectively.

2.2. Physical versus virtual depth. The circuit C is composed of U3 and CX layers
of virtual depth 1. When these layers are compiled for execution on a quantum device,
these U3 and CX operations must be transpiled to the native gate set of the target device.
The transpiled depth of a circuit layer is referred to as its physical depth. In the case of
ibmq brisbane, a U3 gate requires five operations when transpiled. Only the

√
X operations

are physical, and since there are two, a U3 layer has physical depth 2. An analogous analysis
shows that a CX layer has physical depth 3. Note that the physical depth of a given unitary
operation will in general be device-dependent.

In this work, we use a modified depth metric to which each U3 layer contributes 2 and
each CX layer contributes 1. This modified depth metric is based upon the physical depth
of the U3 and CX operations on the 27-qubit generation of IBM quantum processors, and
we plan to replace it with the appropriate physical depth metric in the future. Note that
when the word “depth” is used in this paper, though, it refers to the modified depth metric.

N.D. Siekierski, A.Q. Wilber-Gauthier, & S.K. Seritan 271

q0 U U U U

q1 U U U

q2 U U U U

q3 U U U U

q4 U U U

Fig. 2.1. Subcircuit selection example. Each section of the full circuit captured in a colored box is a
subcircuit sample.

2.3. Subcircuit selection. The aim of subcircuit selection is to sample a set of sub-
circuits {SC} from the full circuit C such that {SC} is representative of C. Figure 2.1
provides shows what these subcircuits look like. Each subcircuit consists of a connected set
of qubits {qi} that are a subset of the hardware qubits utilized by C, along with a contiguous
set of layers {Li} from C that act on those qubits. Given a width-depth pair (wi, di), we
randomly select a starting layer Lstart to obtain a contiguous set of layers that has depth
di. With Lstart identified, we randomly select a {qi} of size wi. The operations in each layer
that do not act on {qi} are removed. This yields a subcircuit of width wi and depth di.

A complication arises when a subcircuit layer contains a CX gate where only one of the
qubits acted on by the gate is included in {qi}. We refer to these gates as ”dangling” and
discard them from the sampled subcircuit.

2.4. Reference compilation. A reference compilation r of a circuit s in {SC} is
created by transpiling s to the gate set needed for randomized compilation, which is discussed
in Section 2.6. The circuit r is an exact compilation, i.e. it is logically equivalent to c.
Quantum computing SDKs like IBM’s Qiskit and Quantinuum’s TKET offer approximate
compilation passes that trade off logical accuracy for less noisy operations, and these passes
are forbidden. This work uses a randomized compilation protocol that requires r to be
expressed in a U3-CX gate set, and since s is already expressed in a U3-CX gate set, we
take r = s.

2.5. Test compilation. A test compilation t of a circuit s in {SC} is created by
passing s through a full-stack quantum computer’s classical pre-processor. In this step, we
forbid certain optimizations that the classical pre-processor could make if c were being run
in isolation as a high-level circuit. These include the layout and routing steps described
in Section 2.1, along with the removal of idle operations, with the rationale that such
optimizations cannot be realized when the {SC} are executed inside C. Any layout and
routing optimization to a subcircuit would require additional SWAPs to be set up and
undone in the context of its execution inside C, which would reduce the overall quality of
the execution of C. If a qubit is idling for some layers in C and a subcircuit is selected where
the idle operations can be removed from the subcircuit, the idle operations are nonetheless
maintained because they are necessary when the subcircuit is executed inside of C. This
work uses t = s, i.e. we use the sampled subcircuit with no additional optimizations.

272 Scalable Application-Oriented Benchmarking Of Quantum Computers

2.6. Randomized compilation. Our goal is to estimate the process fidelity of each
test compilation t. If t experiences coherent errors, then embedding it in a larger circuit – as
is done in MCFE – can cause these coherent errors inside t to interact coherently with errors
in other parts of the larger circuit. Randomized compilation [19, 7] can be applied to parts
of the larger circuit to ensure they have only stochastic errors. We follow the randomized
compilation protocol of Reference [16]. Consider a circuit c = ld̃ed̃−1ld̃−1...e2l2e1l1 on n
qubits, where the li are U3 layers and the ei are CX layers. The randomized compilation
protocol requires the sampling of d̃ n-qubit Pauli operators Pi for i = 1, 2, ..., d̃. Each li
in c is then replaced by a new layer l′i that satisfies l′i = Piliei−1Pi−1e

†
i−1, where P0 is the

identity operator and e0 is an empty layer. This new circuit, denoted by frc(c), is logically
equivalent to c up to post-multiplication by a Pauli.

2.7. Mirror circuit fidelity estimation. The goal of a quantum processor tasked
with implementing an n-qubit unitary U with superoperator representation U [ρ] = UρU† is
to implement a quantum process Λ that is as close as possible to U . We measure how close
Λ is to U with the process fidelity, F :

F (Λ,U) =
1

4n
tr
(
U†Λ

)
. (2.3)

It is convenient to work with a rescaling of the process fidelity known as the effective polar-
ization γ:

γ (Λ,U) =
4n

4n − 1
F (Λ,U)− 1

4n − 1
. (2.4)

The MCFE protocol [16] is a robust fidelity estimation technique based on the Loschmidt
echo [10] that estimates the process fidelity. It combines motion reversal with randomized
compiling and multiple circuit ensembles to separate state preparation and measurement
(SPAM) errors and reference compilation errors from test compilation errors and provides
an estimate of the process fidelity of the test compilation.

Given the test compilation t and reference compilation r that correspond to a given c
in {SC}, we construct three types of mirror circuits M1, M2, and M3:

M1 = frc (prevrrev) tp, (2.5)

M2 = frc (prevrrevrp) , (2.6)

M3 = frc (prevp) . (2.7)

Here, the ”rev” subscript refers to a layer-by-layer inverse of the circuit. The circuit p
is a state preparation circuit that implements a local unitary 2-design. We generate k � 1
of each type of mirror circuit. When implemented perfectly, each mirror circuit will output
a single efficiently predictable bitstring, which is what makes MCFE scalable. To estimate
F , we compute the observed polarization of every mirror circuit Mi:

γ(Mi) =
4n

4n − 1

[
n∑

k=0

(
−1

2

)k

hk

]
− 1

4n − 1
, (2.8)

where hk is the probability the circuit outputs a bitstring that is Hamming distance k from
the target bitstring. The process fidelity for a circuit c is then estimated as

F ≈ 1− 4n − 1

4n

(
1− avg[γ(M1)]

avg[γ(M2)] avg[γ(M3)]

)
. (2.9)

N.D. Siekierski, A.Q. Wilber-Gauthier, & S.K. Seritan 273

(a) BV fidelities (b) Subcircuit fidelity histograms

Fig. 3.1. Mirror circuit process fidelities by width and depth. The VB plot in (a) shows the mean
process fidelities while (b) shows the histograms of the process fidelity estimates for the 100 subcircuits per
width-depth pair. The red horizontal bar indicates ±1σ from the mean.

3. Results and Discussion. We applied our SVB creation framework to the Bernstein-
Vazirani (BV) benchmark developed by the Quantum Economic Development Consor-
tium [11]. We generated 10 20-qubit BV circuits and generated 100 subcircuits per width-
depth pair. The width ranges linearly from 1 qubit to 9 qubits, and the depth ranges
exponentially from 2 to 32. We used 20 mirror circuit samples per subcircuit and 100
SPAM reference circuits (these correspond to the M3 circuits) per qubit subset. We ran
these circuits on ibmq brisbane, a 127-qubit quantum processor. Figure 3 shows the process
fidelity for each width-depth pair. A fidelity of 1.0 indicates that the circuit performed per-
fectly, and decreasing fidelity toward 0.0 indicates decreasing accuracy in bitstring output.
We observe that the process fidelity decreases with increasing width and depth, which is
reasonable. A greater width means there are more qubits and operations that errors can
occur on. Circuits of greater depth have more gates or idle time, both of which contribute
to errors.

We notice that many of the histograms in Figure 3.1(b) are not sharply peaked. The
depth 2, width 6 through 9 histograms appear bimodal, and many of the subcircuit shapes
with intermediate mean process fidelity have a broad process fidelity distribution. This
behavior suggests that circuit shape alone may not always be sufficient to predict process
fidelity. For instance, a depth 2 subcircuit could consist of either a single U3 layer or two
CX layers, and the error rates of the CX gates are an order of magnitude greater than their
U3 counterparts. Despite having the same shape, these two cases would likely have very
different process fidelities. We can connect the broad process fidelity distributions for the
subcircuit shapes with intermediate mean process fidelity to the capability regions described
in Reference [15]. In that work, a VB plot is partitioned into three capability regions: a high
fidelity region where all circuits succeed, a low fidelity region where no circuits succeed, and
an intermediate region where the success of a circuit depends on its structure in addition to
its shape. Our results reinforce the interpretation of the intermediate region as one where
knowledge of circuit characteristics beyond shape is required to predict success.

274 Scalable Application-Oriented Benchmarking Of Quantum Computers

4. Conclusion. In this work, we described how to create scalable benchmarks from
any application. We demonstrated the creation of such a benchmark and executed it on
current hardware. Our results agree with the effect that increasing the number of qubits or
increasing the circuit depth has on the likelihood of errors. We also observed that the shape
of a subcircuit is not sufficient to understand its process fidelity, with a more pronounced
effect for particular subcircuit shapes.

Running the same benchmark on another quantum device would provide insight into
the comparative performance of the two. Additionally, running a benchmark created from
a different application would highlight performance differences across applications on the
same device and would allow us to understand if there are cases where certain devices are
superior to others for only certain applications. Another open question is if these SVBs
are effective predictors of success on untested full problem instances. Such predictive power
would allow users to know the limits of the quantum hardware for their application without
needing to run the problem first.

REFERENCES

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo,
F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins,
W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoff-
mann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi,
J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lind-
mark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi,
K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Os-
tby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin,
D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher,
B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Marti-
nis, Quantum supremacy using a programmable superconducting processor, Nature, 574 (2019),
pp. 505–510.

[2] R. Blume-Kohout and K. C. Young, A volumetric framework for quantum computer benchmarks,
Quantum, 4 (2020), p. 362.

[3] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, Validating quantum
computers using randomized model circuits, Phys. Rev. A, 100 (2019), p. 032328.

[4] Y. Dong and L. Lin, Random circuit block-encoded matrix and a proposal of quantum LINPACK
benchmark, Phys. Rev. A, 103 (2021), p. 062412.

[5] H. Donkers, K. Mesman, Z. Al-Ars, and M. Möller, QPack Scores: Quantitative performance
metrics for application-oriented quantum computer benchmarking, arXiv, (2022).

[6] J. Kallaugher, O. Parekh, and N. Voronova, Exponential Quantum Space Advantage for Approx-
imating Maximum Directed Cut in the Streaming Model, arXiv, (2023).

[7] E. Knill, Quantum computing with realistically noisy devices, Nature, 434 (2005), pp. 39–44.
[8] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer,

R. Ozeri, S. Seidelin, and D. J. Wineland, Randomized benchmarking of quantum gates, Phys.
Rev. A, 77 (2008), p. 012307.

[9] A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, QASMBench: A Low-Level Quantum Benchmark
Suite for NISQ Evaluation and Simulation, ACM Trans. Quantum Comput., 4 (2023).

[10] J. Loschmidt, Uber den zustand des warmegleichgewichts eines systems von korpern mit rucksicht
auf die schwerkraft; ii-73, Sitzungsber. Akad. Wiss., (1876), p. 128.

[11] T. Lubinski, S. Johri, P. Varosy, J. Coleman, L. Zhao, J. Necaise, C. H. Baldwin, K. Mayer,
and T. Proctor, Application-Oriented Performance Benchmarks for Quantum Computing, IEEE
Trans. Quantum Eng., 4 (2023), pp. 1–32.

[12] E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and Robust Randomized Benchmarking of
Quantum Processes, Phys. Rev. Lett., 106 (2011), p. 180504.

[13] S. Martiel, T. Ayral, and C. Allouche, Benchmarking Quantum Coprocessors in an Application-
Centric, Hardware-Agnostic, and Scalable Way, IEEE Trans. Quantum Eng., 2 (2021), pp. 1–11.

[14] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum, 2 (2018), p. 79.
[15] T. Proctor, K. Rudinger, K. Young, E. Nielsen, and R. Blume-Kohout, Measuring the capabil-

ities of quantum computers, Nat. Phys., 18 (2022), pp. 75–79.

N.D. Siekierski, A.Q. Wilber-Gauthier, & S.K. Seritan 275

[16] T. Proctor, S. Seritan, E. Nielsen, K. Rudinger, K. Young, R. Blume-Kohout, and
M. Sarovar, Establishing trust in quantum computations, arXiv, (2022).

[17] N. Quetschlich, L. Burgholzer, and R. Wille, MQT Bench: Benchmarking Software and Design
Automation Tools for Quantum Computing, Quantum, 7 (2023), p. 1062.

[18] T. Tomesh, P. Gokhale, V. Omole, G. Ravi, K. N. Smith, J. Viszlai, X. Wu, N. Hardavellas,
M. R. Martonosi, and F. T. Chong, Supermarq: A scalable quantum benchmark suite, in
2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), IEEE
Computer Society, apr 2022, pp. 587–603.

[19] J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized
compiling, Phys. Rev. A, 94 (2016), p. 052325.

[20] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding,
Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You,
Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, Quantum computational advantage using
photons., Science, 370 (2020), pp. 1460–1463.

276 Scalable Application-Oriented Benchmarking Of Quantum Computers

M. Adams, T. Casey, B.W. Reuter 277

III. Machine Learning

Articles in this section discuss the application of machine learning techniques to problems in
computational physics and mathematics. This includes the design of neural network archi-
tectures, the efficient use of data for training and validation, or the use of machine learning
to provide insights into materials, high-energy applications, atmospheric phenomena, and
structural mechanics.

1. H. Bayat, M.A. Cusentino and J.M. Goff Charge Dependent Machine Learned
Models For Atomistic Simulations Of Divertor Materials

2. A.K. Boahen and W.L. Davis IV In Situ Machine Learning For Intelligent Data
Capture And Event Detection

3. M.C. Gaitan-Cardenas, C. Siefert and S.W. Tsai Large Language Model Accuracy
On Post-processed AI-generated Code

4. D. Deighan, J. Actor and R. Patel Mixture Of Neural Operator Experts For
Nontrivial Boundary Conditions And Model Selection

5. A. Feeney and S. Rajamanickam Exploring Machine Learning Surrogates For
Molecular Dynamics Simulations

6. I. Furrick, M. Wood, and A. Hensley Designing A Machine-learned Interatomic
Potential For Gold-promoted Nickel Catalysts Utilizing Magnetic Training Data

7. M. Gahl, W. Chapman, S. Agarwal, and F.S. Chance Event Detection Using Neural
Networks Robust To Statistically Similar Distractors

8. J.D. Gonzales-Pasion, M. Wood, and A.J. Hensley Machine Learned Interatomic
Potential Development Accelerated Via Large-language Models For Nickel-gold

9. Q. Mason and K.A. Maupin Decision Tree Machine Learning Model Construction
For Particle Simulation

10. C. Mullen, E. Salas, and J. Goff Breaking Bad Structure Generation: Methods
For Systematic, Data-driven Atomistic Structures For ML Model Training

11. P. Mutia and J. Davis Ollama-Assisted Function Calls In Leap
12. K.A. Ohene-Obeng and K. Maupin Scientific Machine Learning For Surrogate Mod-

eling
13. J. Paez and R. Patel Quantifying Aleatoric Uncertainty In Operator Learning

Using Generative Networks
14. D. Rodriguez and M. Perego Coupled Deep Neural Operators As A Surrogate

Model For Ice-sheet Dynamics

M. Adams
T. Casey

B.W. Reuter

November 4, 2024

CHARGE DEPENDENT MACHINE LEARNED MODELS FOR
ATOMISTIC SIMULATIONS OF DIVERTOR MATERIALS

HADIA BAYAT∗, MARY ALICE CUSENTINO† , AND JAMES MICHAEL GOFF‡

Abstract. We study tungsten (W) divertors in fusion reactors, focusing on the impact of implanted
atoms such as nitrogen (N), helium (He), and hydrogen (H). These elements implant in the divertor sur-
face, displace W atoms into interstitial sites, and form a ’fuzz’ that drives nanostructure growth, increasing
brittleness. We developed a charge-dependent machine-learned potential for W-N interactions, trained us-
ing FitSNAP and implemented in LAMMPS, to assess the differences between a charge-independent and
charge-dependent interatomic potential in providing a more accurate physical representation. Our charge-
dependent model demonstrated stable dynamics without needing the Ziegler-Biersack-Littmark (ZBL) po-
tential. Uniquely, it incorporates long-range interactions into the charge-dependent model, an approach
not previously explored for this system. Our charge-dependent model exhibits significantly greater stabil-
ity than a charge-independent model, displaying the importance of including charge-dependent interactions
with long-range effects. Parameters will be optimized using DAKOTA, and future work will focus on refining
the model by optimizing hyperparameters and incorporating objective functions such as formation energies,
defects, and adsorption energies. This work represents a significant step towards evaluating the impact of
charge on atomistic simulations of materials.

1. Introduction. Fossil fuels contribute significantly to global greenhouse gas emis-
sions, leading to climate change, altered weather patterns, and disruptions in natural ecosys-
tems. In the pursuit of sustainable and clean energy sources, nuclear fusion reactors present
a promising solution. Fusion technology, leveraging deuterium-tritium reactions, promises
a long-term energy solution free from the environmental drawbacks associated with green-
house gas emissions and long-lived radioactive waste. However, the deployment of fusion
technology on a large scale is contingent upon overcoming several technical challenges, par-
ticularly in enhancing the durability and performance of reactor components such as the
divertor[18, 19].

The divertor plays a crucial role in maintaining reactor integrity by facilitating heat
and ash extraction, minimizing plasma contamination, and protecting reactor walls from
thermal and neutronic loads. A critical issue affecting divertor performance is the interaction
with nitrogen, introduced within fusion reactors to improve plasma confinement and reduce
core radiation. These interactions lead to the formation of a tungsten ’fuzz,’ characterized
by nanostructure growth and increased brittleness, which significantly compromises the
divertor’s functionality[18][13].

Fig. 1.1: Diagram of a nuclear fusion reactor, highlighting the divertor (right side), which
plays a crucial role in heat extraction (reproduced from Ref. [13])

Addressing the complexities of these interactions necessitates a robust simulation ap-

∗University of California San Diego, habayat@ucsd.edu
†Sandia National Laboratories, mcusent@sandia.gov
‡Sandia National Laboratories, jmgoff@sandia.gov

278 CSRI Summer Proceedings 2024

proach. While Density Functional Theory (DFT) offers precise electronic structure calcula-
tions, its application is inherently limited by computational demands, restricting its utility
to smaller systems and shorter temporal scales. This limitation is particularly pronounced
in studying divertor surface phenomena, where the interactions span extensive spatial do-
mains and evolve over prolonged periods[11]. In conjunction with DFT, machine-learned
interatomic potentials (MLIP) can be used to model larger systems over longer timescales
with near ab-initio accuracy, offering a more comprehensive understanding of these complex
processes. Our research introduces a polarizable MLIP tailored for W-N interactions. The

Fig. 1.2: Visualization of nitrogen seeding on tungsten divetor surface. Nitrogen is intro-
duced to help effectively cool the edge plasma by radiating heat away from the reactor walls,
protecting the plasma-facing components from excessive heat loads

model significantly advances the field by incorporating variable atomic charges and dynamic
charge transfer processes. Given the limited atomic screening at the W divertor surface,
our approach is designed to capture both short-range and long-range interactions. This
nuanced approach is essential for accurately modeling nitrogen implantation on tungsten,
a process where conventional short-range focused MLIPs often fail to capture the complex
interactions and charge transfer dynamics. We will incorporate MD simulations to observe
and verify the variations between our charge-independent and charge-dependent models in
displaying accurate atomistic physics.

2. Methods. To rigorously evaluate the efficacy and accuracy of our charge-dependent
model, we will conduct a comparative analysis with two additional models: a shadow molecu-
lar dynamics (SMD) approach combined with the Atomic Cluster Expansion (ACE) method
for flexible charge models, and an independent charge model (ICM). This comparative study
not only validates the effectiveness of our range-separated MLIP but also illuminates the
strengths and limitations of each modeling approach. The introduction of this polariz-
able MLIP not only addresses the limitations inherent in previous simulation models but
also represents a substantial methodological leap forward. By enabling a more accurate
and comprehensive simulation of charge dynamics, our approach facilitates a deeper under-
standing of the material degradation processes that compromise divertor functionality. This
enhanced understanding is instrumental in exploring alternative materials and strategies to
improve divertor durability, thereby contributing to the advancement of fusion technology
as a sustainable energy solution.

Incorporating charge dynamics into our machine-learned interatomic potentials (MLIPs)
necessitates a refined, range-separated approach, particularly to account for the complexities
of long-range charge interactions. For the short-range domain, we employ a machine-learned
interatomic potential (MLIP) utilizing the Atomic Cluster Expansion (ACE), as detailed in
work conducted by Drautz (2019), Dusson et al. (2019), and Goff et al. (2024) [3, 4, 6].
To complement our handling of short-range interactions, we have modeled the long-range

H. Bayat, M.A. Cusentino, & J.M. Goff 279

Coulombic forces using the Streitz-Mintmire potential [17]. Such interactions are pivotal for
accurately capturing the charge-dependent behavior of the system, a critical aspect in sys-
tems where electrostatic forces are a dominant influence, including metals, ionic crystals, and
polarizable materials. Furthermore, to accurately simulate dynamic charge equilibration,
which is critical for understanding the charge transfer mechanisms at play, we implement
the QEq method with Streitz parameters[17] This methodological framework allows for the
dynamic adjustment of atomic charges, reflecting the charge redistribution that occurs dur-
ing the interaction processes. The contributions of each component to the overall interaction
model can be visualized in Fig.2.1 offering a clear depiction of how these elements syner-
gize to accurately represent the complex dynamics of the W-N system. The phenomenon

Fig. 2.1: Short range interactions will be incorporated within our system through the
machine-learned ACE potential, whereas long-range interactions will be accounted for
through the streitz-mintmire potential

of screening plays a significant role in our modeling approach. Screening describes how
the effective interaction between charged particles is moderated by the presence of other
charges, such as electrons or ions, thereby reducing the force experienced by each particle.
This effect is paramount in systems characterized by significant electrostatic interactions,
as it fundamentally alters the behavior of charged particles within the material.

To dynamically manage the redistribution of atomic charges, we integrate the QEq
charge equilibration method alongside the Streitz-Mintmire potential. This approach en-
sures that at every timestep, atomic charges are adjusted to minimize the system’s electro-
static energy while conserving the total charge. By doing so, we can accurately simulate the
dynamic nature of charge distribution and its impact on the system’s overall behavior[9, 17].

Moreover, the inclusion of screening in our model allows us to more accurately represent
the potential experienced by an atom. It acknowledges that this potential is not solely the
result of direct long-range interactions but is also significantly influenced by the surrounding
environmental charges. This comprehensive approach to modeling charge interactions and
screening effects underscores our commitment to capturing the intricate dynamics of the W-
N system, ensuring that our simulations reflect the complex interplay of forces that govern
material behavior at the atomic level.

The combination of short-range MLIP and the Streitz-Mintmire potential facilitates a
thorough analysis of interactions at the atomic level. Most machine-learned interatomic
potentials are developed with only short-range forces because they are the dominant con-
tributor to the total energy and dynamics of atoms. To account for long-range charge
interactions, we use the following range-separated potential:

Epot(R,Q) = EACE(R) + Estreitz(R,Q) (2.1)

where EACE(R) represents the short-range energy. In this work, EACE(R) is a linear ACE
model, which solely depends on interatomic distance R [6, 5] . In Eq. (2.1), Estreitz(R,Q) is
the long-range electrostatic potential from Ref. [17], where Q represents the atomic charges.

280 Charge Dependent Machine Learned Models For Atomistic Simulations Of Divertor Materials

The first term in Eq. (2.1) shows the traditional form of machine-learned potentials,
focusing on short-range interactions through a linear ACE model. While this is suitable
for some materials systems, it is expected that the long-range charge interaction term will
help reproduce more accurate predictions of Nitrogen embedding at tungsten surfaces. We
extend this model to include the Estreitz term, to ensure that both short-range and long-
range interactions are considered in our potential energy calculations.

2.1. Atomic Cluster Expansion. The ACE potentials are a class of ML potentials
that can be used for arbitrary body-ordered interactions and chemistries. The ACE de-
scriptors encode detailed information about atomic interactions locally around a central
atom[3]. This, along with the ability to systematically improve ACE models with higher-
order descriptors makes them an excellent method to use for the short-range term in the
range-separated potential, Eq. (2.1). The local environment around an atom is described by
the positions of its neighboring atoms Rij . The total potential energy of a system of X atoms
can be expressed as a sum of contributions from atoms, where Ei is the energy contribution
from the ith atom, calculated according to its surrounding environment. Each Ei can be
expanded in terms of cluster functions, which account for interactions using contributions
from clusters of atoms. In practice, rotation and permutation invariant ACE descriptors
(cluster functions) are used. The general potential energy function is expressed as a sum of
contributions from different atomic clusters:

Ei =
∑

ν

Biν(σ)cν (2.2)

Where Bν represents the rotation and permutation invariant ACE descriptors, σ collects the
variable the atomic neighbor positions and chemistries, while cν are linear model coefficients
to be determined. The linear model coefficients are determined within FitSNAP using linear
regression methods. We employ a ridge regression model, which calculates the coefficients
in FitSNAP by fitting against DFT energies and forces.

2.2. Streitz-Mintmire Potential. In our exploration of the W-N system, the Streitz-
Mintmire potential emerges as a pivotal component, specifically engineered to adeptly man-
age charge transfer and polarization effects prevalent in ionic systems. This empirical po-
tential is seamlessly integrated with charge equilibration methods, notably the QEq charge
equilibration technique, to dynamically modulate atomic charges. The QEq method, a com-
putational strategy, assigns partial charges to atoms within a molecular framework through
a second-order Taylor expansion, focusing on charge-dependent energy. This assignment is
crucial not only for the charge equilibration process but also serves as a foundational step
in the iterative refinement of our potential’s parameters.

Through extensive simulations conducted with LAMMPS, this iterative process has
been instrumental in identifying the sensitivity of parameters that are vital for both the
QEq calculations and the fitting of our potential. Establishing an optimal range for these
parameters is essential for ensuring the accuracy and reliability of our model, particularly in
capturing the intricate dynamics of the W-N system. We have displayed our results for the
slater exponent in Fig 2.2. These results underscore the importance of carefully selecting
ζvalues to avoid spuriously large charges from charge equilibration. This analysis has been
instrumental in determining our initial set of parameters for both fitting our model and
during charge equilibration, as displayed in table 2.1[12] . Applying the Streitz potential,
which aims to conserve the total charge within the system, results in a series of linear
equations. Solving these equations allows for determining equilibrium charges, ensuring
that the system’s charge distribution is accurately represented. The total energy EStreitz is

H. Bayat, M.A. Cusentino, & J.M. Goff 281

Fig. 2.2: ζ vs Qmax plot

Table 2.1: Set of Streitz Parameters

Type χ (eV) J (eV) γ
(

1

Å

)
ζ
(

1

Å

)
Z

N 6.57 7.98 0.00 0.70 0.60
n 6.57 7.98 0.00 0.70 0.60
W 4.34 3.52 0.00 0.60 0.50
w 4.34 3.52 0.00 0.60 0.50

the sum of long-range interactions as expressed in the following equation:

EStreitz =
1

2

∑

i ̸=j

(qi + Zi)(qj + Zj)

rijf(rij)
+
∑

i

(
χiqi +

1

2
Jiq

2
i

)
(2.3)

Here f(rij) = exp(−γrij) + 1
rij

exp(−ζrij). f(rij) represents a screening function that

modifies the effective distance between charges to account for any screening effects. The
screening function parameter γ represents the degree to which the Coulomb interactions
between charged particles are screened by the presence of other charges or the medium, ζ
is the Slater exponent, an exponential decay parameter for charge distribution, and Z is
the effective core charge of the atom of interest[12]. The Streitz potential further includes
χi, the Mulliken electronegativity of atom i, which drives the charge transfer force, and Ji
is the self-Coulomb repulsion parameter, representing the energy penalty associated with
deviating from the neutral state[3]. The functional form of the Streitz potential can be
simplified further:

EStreitz = ((χi +
∑

J

Jijqj)qi) (2.4)

The long-range nature of Coulomb forces means that interactions between distant parti-
cles and their periodic images cannot be ignored, but directly summing them leads to poor
convergence and inefficiencies. The Ewald summation method was implemented within our
model to efficiently compute the electrostatic energy. The method evaluates the problem
by splitting contributions into short-range interactions handled in real space and long-range
interactions managed in reciprocal space. The decomposition allows for the efficient calcula-
tion of electrostatic interactions in systems with periodic boundary conditions. This allows

282 Charge Dependent Machine Learned Models For Atomistic Simulations Of Divertor Materials

for the potential to focus on short-range forces, while Ewald summation handles the long-
range electrostatics, ensuring that all relevant interactions, including any screened effects,
are properly accounted for[20][1].

2.3. ACE Hyperparemter Sampling with DAKOTA. To optimize our model fur-
ther, we employed Dakota, an open-source toolkit that supports a variety of optimization
algorithms. Utilizing the Single Objective Genetic Algorithm (SOGA) and Efficient Global
Optimization (EGO) methods, we’ve been able to refine our model parameters efficiently.
SOGA and EGO’s capabilities in handling complex optimization problems and computa-
tionally expensive objective function evaluations have been instrumental in enhancing our
model’s accuracy and reliability[15][16].

EGO stands out for its integration of surrogate modeling with a global search strategy,
proving exceptionally effective for scenarios where objective function evaluations are notably
expensive. By incorporating noise into the surrogate model and utilizing an acquisition
function to pinpoint unexplored yet promising regions of the search space, EGO facilitates
an efficient exploration and identification of optimal regions[8]. This method’s probabilistic
approach is invaluable, especially when quantifying the uncertainty in objective function
evaluations and minimizing the number of necessary assessments[10][7].

Our optimization efforts using DAKOTA are not merely confined to the present but
extend into future work aimed at refining the model through hyperparameter optimization
and the integration of objective functions such as formation energies, defects, and adsorption
energies. A preliminary range of values for our ACE hyperparameters, determined through
sensitivity tests with EGO within DAKOTA, is outlined in Table 2.2. These parameter
ranges were determined after a thorough charge equilibration process and the analysis of
approximately 4,500 candidate runs.

Table 2.2: EGO Hyperparameters (hyperparameter meanings illustrated in Fig. 2.3)

Rcutfac N-N Rcutfac N-W Rcutfac W-W Lambda N-N Lambda N-W Lambda W-W α
3.052− 3.169 4.140− 4.240 4.666− 5.306 0.988− 0.989 0.808− 0.838 0.431− 0.794 −4.93

Fig. 2.3: Illustration of the cutoff radius used for Atomic Cluster Expansion (ACE) finger-
prints, which represents the radial distance considered for atomic neighbors. The lambda
parameters in the ACE functions apply importance sampling, giving more weight to closer
atomic neighbors to enhance the accuracy of the radial ACE functions for a given training
dataset.

Having established the methodologies for modeling the short-range and long-range in-
teractions and the optimization techniques employed, we now present the results of our
simulations. The following section discusses the accuracy, efficiency, and applicability of our
machine-learned model in capturing the interactions within the tungsten-nitrogen system.

H. Bayat, M.A. Cusentino, & J.M. Goff 283

(a) Charge Independent Model (b) Charge Dependent Model

Fig. 3.1: Unstable versus Stable LAMMPS NVE Simulations

(a) Charge Independent Model (b) Charge Dependent Model

Fig. 3.2: Graphs of total energy versus time for our stable and unstable dynamics systems.
We are observing energy drift; the top graph experiencing at a rate of 5 meV/ps, and the
bottom at a rate of 3 meV/ps. Current optimization is working on addressing drift and
predicting properties (such as defects with charge)

.

3. Results. We have developed a machine-learned model for the W-N system that
exhibits stable dynamics. A stable range-separated W-N potential was trained. The hy-
perparameters for ACE and Streitz terms in this model were within the range of viable
hyperparameters determined by sensitivity tests and Dakota searches. To demonstrate this
potential along with other candidates, MD simulations were performed on BCC W with N
defects in NVE ensembles at 2,000 K. Snapshots of these MD simulations were visualized
using Ovito and colored according to charge[14]. These results are presented in Figure 3.1.

The total energy of both systems was graphed as a function of time, and these plots are
displayed in Figure 3.2.

Notably, we observe that we were able to obtain a stable potential with qualitatively
accurate physics. The charge around the negative N defects is positive. Not all candidate
potentials yield realistic physics and chemistry, as seen in Fig. 3.1a. To study W-N fuzz
formation, the stable candidate will be further refined. One feature of these simulations is
that there is nonphysical drift in the energy of the system over long integration periods.
Energy drift is a phenomenon in molecular dynamics simulations where the average total
energy of the system drifts away from its initial value. While several factors can contribute
to this, it is likely due to the QEq charge equilibration in this case.

The unstable candidates experience larger drifts along with the unrealistic physics and

284 Charge Dependent Machine Learned Models For Atomistic Simulations Of Divertor Materials

(a) Charge Independent Model (b) Charge Dependent Model

Fig. 3.3: Charge Independent versus Dependent W-N models, highlighting incorrect and
correct (blue) crystal structure predictions

chemistry. The drift in Fig. 3.3 is 5 meV/ps with a large amount of fluctuation, while the
more stable potential, Fig. 3.2b with realistic physics is steady with a drift of 4 meV/ps.
To mitigate energy drift, it is crucial to carefully select and tune the simulation parameters,
such as using a more accurate integrator, reducing the time step, and ensuring proper energy
conservation techniques. In the future, shadow MD schemes will be employed to more
rigorously conserve energy during charge equilibration.[6] Despite the presence of energy
drift, the simulations remain largely stable, and the models can still produce some accurate
predictions for physical and chemical phenomena [2].

The model depicted in Figure 3.1b accurately represents physical properties, with posi-
tively charged tungsten atoms encircling negatively charged nitrogen atoms. This arrange-
ment aligns with expectations, given nitrogen’s significantly higher electronegativity com-
pared to tungsten. Furthermore, the charges observed are within a plausible range. Tungsten
possesses 6 electrons in its valence shell, whereas nitrogen has 5, allowing tungsten atoms to
carry a charge of up to +6 and nitrogen atoms up to -3. These characteristics are evident
in the model.

We examined the crystal structure to verify its adherence to the body-centered cu-
bic (BCC) orientation defined in our LAMMPS simulation. The charge-dependent model
consistently maintained this structure, while the charge-independent model deviated, trans-
forming into a mix of face-centered cubic (FCC), BCC, and other crystal structures. The
comparative analysis of these two models is presented in Fig. 3.3.

4. Conclusions. We have developed a stable machine-learned charge-dependent po-
tential for a W-N system. Our results demonstrate that including charge produces a model
that predicts correct charge transfer characteristics for W with N defects in it. This model
was obtained by making a range-separated potential with hyperparameters within reason-
able ranges. Charge-dependent potentials were obtained with more correct physical and
chemical properties compared to charge-independent potentials (before optimization). We
highlight how rapidly potentials with stable dynamics, can be produced once charge is in-
cluded. This is often a challenge with charge-independent MLIPs.

Future work will focus on incorporating additional objective functions to further fine-
tune our charge-dependent model while comparing this model to a shadow Born-Oppenheimer
potential scheme for flexible charge models, as well as conducting further comparisons to
charge-dependent simulations. Given the stable nature of our charge-dependent potential,
we anticipate observing more consistent properties, such as vacancy and adsorption energies,
in subsequent simulations.

H. Bayat, M.A. Cusentino, & J.M. Goff 285

Despite the promising results, some challenges and limitations need to be addressed. For
instance, the current model may require further refinement to effectively handle our target
system, which includes Hydrogen and Helium, due to the complexity of these elements
and the extreme conditions involved. Our developed model has potential applications in
the divertor of fusion reactors, where accurate simulations of interactions are crucial for
optimizing materials that can withstand harsh conditions while improving the efficiency
and longevity of the reactor components.

Current project efforts are focused on developing objective functions to be used within
DAKOTA to improve the behavior of our system. To achieve this, we have undertaken
detailed calculations of surface, adsorption, and formation energies. These calculations are
crucial for understanding the thermodynamic properties and stability of our system, as
well as for optimizing the parameters that govern its behavior. By accurately determining
these energies, we aim to refine our models and enhance the predictive capabilities of our
simulations, ultimately leading to more reliable and efficient designs.

5. Acknowledgments. Sandia National Laboratories is a multi-mission laboratory
managed and operated by National Technology and Engineering Solutions of Sandia, LLC,
a wholly-owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA0003525. This
paper describes objective technical results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

REFERENCES

[1] A. Brodka, Ewald type summation method for electrostatic interactions in computer simulations of a
three-dimensional system periodic in one direction, Chemical physics letters, 363 (2002), pp. 604–
609.

[2] D. Cottrell and P. Tupper, Energy drift in molecular dynamics simulations, BIT Numerical Math-
ematics, 47 (2007), pp. 507–523.

[3] R. Drautz, Atomic cluster expansion for accurate and transferable interatomic potentials, Physical
Review B, 99 (2019), p. 014104.

[4] G. Dusson, M. Bachmayr, G. Csányi, R. Drautz, S. Etter, C. van Der Oord, and C. Ort-
ner, Atomic cluster expansion: Completeness, efficiency and stability, Journal of Computational
Physics, 454 (2022), p. 110946.

[5] FitSNAP Development Team, Fitsnap: A flexible interatomic potential training and application
package, 2023. Available online: https://fitsnap.github.io/.

[6] J. M. Goff, C. Sievers, M. A. Wood, and A. P. Thompson, Permutation-adapted complete and
independent basis for atomic cluster expansion descriptors, Journal of Computational Physics,
510 (2024), p. 113073.

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-
Wesley, 1989.

[8] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Appli-
cations to Biology, Control, and Artificial Intelligence, MIT Press, 1992.

[9] J. D. Jackson, Classical Electrodynamics, Wiley, New York, 3rd ed., 1999.
[10] D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box

functions, Journal of Global Optimization, 13 (1998), pp. 455–492.
[11] J. W. Lee, R. H. Nilson, J. A. Templeton, S. K. Griffiths, A. Kung, and B. M. Wong, Compar-

ison of molecular dynamics with classical density functional and poisson–boltzmann theories of
the electric double layer in nanochannels, Journal of chemical theory and computation, 8 (2012),
pp. 2012–2022.

[12] Mendeleev, Mendeleev: A Python package for the periodic table of the elements. https://pypi.org/
project/mendeleev/0.3.1/, 2017. Version 0.3.1.

[13] P. Norajitra, S. I. Abdel-Khalik, L. M. Giancarli, T. Ihli, G. Janeschitz, S. Malang, I. V.
Mazul, and P. Sardain, Divertor conceptual designs for a fusion power plant, Fusion Engineering
and Design, 83 (2008), pp. 893–902.

286 Charge Dependent Machine Learned Models For Atomistic Simulations Of Divertor Materials

[14] OVITO Team, OVITO Manual. https://www.ovito.org/manual/python/introduction/

installation.html, 2023. Accessed: 2023-09-28.
[15] Sandia National Laboratories, About dakota. https://dakota.sandia.gov/about-dakota/, 2024.

Accessed: 2024-08-08.
[16] ScienceDirect, Single-objective optimization problem, ScienceDirect, (2024). Accessed: 2024-08-08.
[17] F. Streitz and J. Mintmire, Electrostatic potentials for metal-oxide surfaces and interfaces, Physical

Review B, 50 (1994), p. 11996.
[18] United Nations, Causes and effects of climate change, 2023. Accessed: 2024-08-08.
[19] U.S. Department of Energy, Doe explains: Deuterium-tritium fusion fuel, 2023. Accessed: 2024-

08-08.
[20] H. Yu, L. Hong, S. Chen, X. Gong, and H. Xiang, Capturing long-range interaction with reciprocal

space neural network, arXiv preprint arXiv:2211.16684, (2022).

H. Bayat, M.A. Cusentino, & J.M. Goff 287

IN SITU MACHINE LEARNING FOR INTELLIGENT DATA CAPTURE
AND EVENT DETECTION

ANDREWS KWASI BOAHEN∗ AND WARREN L. DAVIS IV†

Abstract. Capturing significant events in detailed, high-fidelity HPC simulations for scientific inves-
tigations is becoming more and more challenging because exporting the entire simulation state at each
timestep is often impractical. Important phases of events may be overlooked between checkpoints, and
transient events might be entirely missed, complicating the detection of these events afterward. In this
study, we concentrate on the in situ event detection use case of machine learning to optimize the amount
of data saved to disk and the number of events captured. We present the In situ Machine Learning (ISML)
framework which is composed from signature, measure and decision building blocks with well defined se-
mantics. We show the capabilities of our framework using a synthetic data with well-known anomalies. We
use manifold learning techniques such as Multidimensional Scaling (MDS), Isometric Mapping (Isomap),
Locally Linear Embedding (LLE) and t-distributed Stochastic Neighbor Embedding (t-SNE) to create the
signatures. Conveniently chosen measure and decision functions were used to detect the anomalies at various
timesteps. The anomaly recall and the total percentage of flagged analysis partitions were then compared
for the various methods.

1. Introduction. In the era of big data, characterised by the generation and handling
of enormous amount of data, scientific research is consistently challenged with the creation
of effective tools to handle the complexities inherent to such datasets. According to [6],
there is a notable shift from post-simulation analysis to in situ analysis in high performance
computing modelling and simulation. Unlike traditional methods that analyze data after
a simulation is complete, in situ analysis occurs concurrently with the simulation, utilizing
the same resources. This shift is driven by the impracticality of exporting the entire simu-
lation state at each timestep, which often leads to the loss of critical event details between
checkpoints and the omission of transient events. While in situ analysis offers a solution, it
presents its own challenges, particularly because conventional algorithms that rely on global
data access demand excessive communication bandwidth.

We build upon the framework presented by [6] for applying machine learning (ML)
to detect events of interest in situ within High-Performance Computing (HPC) simulation
data. We define, similar to [6], “events of interest” as local activities in a region that differ
significantly from the activities of other regions or timesteps. According to Shead et al (2023,
p.56),“ISML is fashioned for parallel and distributed computing environments, where the
data represents a space-time domain of interest, with the spatial domain distributed across
computing resources and data along the time dimension arriving in a streaming manner.”

Consider a scenario where a part of the simulation domain handled by a single processor
exhibits behavior that differs significantly from the rest of the simulation domain on other
processors. The region that exhibits this difference could be deemed interesting. These
differences may persist over time or could just occur between particular timesteps. When
changes occur from one timestep to the other at a particular location in the simulation, they
are called temporal changes and when these differences are observed between the various
regions of the simulation at a particular timestep, they are called spatial events.

At one end, an example of local dynamics persisting over time and different from the
remaining simulation domain could be a tropical cyclone that persists over many timesteps
in a weather simulation but is geographically localized. At the other end, an unanticipated
change across all processors from one timestep to the next could also be considered inter-
esting. An example of this type of event could be simultaneous ignition across an entire

∗Michigan State University, boahenan@msu.edu
†Sandia National Laboratories, wldavis@sandia.gov

288 CSRI Summer Proceedings 2024

domain in a combustion simulation.
The in situ detection of these events is crucial for optimizing data capture and analysis

in large-scale simulations, where traditional post-hoc analysis becomes impractical due to
the sheer volume of data generated. Our contribution to the ISML framework consists of
using manifold learning techniques in representing the different analysis blocks formed from
the simulation domain and taking advantage of their underlying structure in deciding which
events should be considered interesting as they occur during the simulation run.

The paper is outlined in the following sequence. Section 2 presents the Machine Learning
framework for intelligent data capture and event detection. In Section 3, a brief overview
of manifold learning and its various approaches used in this work to reduce the dimension
of the signatures is provided. We then present simulation results and discussion in Section
4, on our synthetic data. Finally, Section 5 contains our conclusion and we added Section 6
to provide suggestions for future work.

2. Machine Learning (ISML) Framework . ISML is designed for automatically
detecting spatial and temporal events of interest while running high performance computing
simulations [6]. The framework consists of three main buildings blocks: signatures, measures
and decisions as shown in Figure (2.2).

At the initial stage, we consider a simulation domain S with any number of dimensions.
We then assume that S is split into a set of P analysis partitions. The analysis partitions
pi, i = 0, ..., P − 1 are a spatially-adjacent subset of mesh points of S as shown in Figure
(2.1).

Fig. 2.1: Simulation domain (gray), split across processors (green), and divided into analysis
partitions (blue)[6]

The first building block is established by computing a low-dimensional representation
of the analysis partitions’ content. These representations are called signatures and should
contain critical aspects of the observations in the respective partitions. It is worthy to
note that signatures are stored in such a way that spatial and temporal changes can be
detected by subsequent analysis. The main objective in dividing S into analysis partitions
is in harnessing the power of parallel computing since the analysis partitions can then
be allocated to different processors, with the size and number of partitions handled by a
processor depending on the nature of the problem being solved[6].

Let M be the space of all signatures. After forming the signatures, we then define a
function f :M → R on the signatures to compute the measures. These measures can be
spatial or temporal and are used to detect either changes in each partition across different
timesteps or interesting events in S at a particular timestep. As discussed in [6], comparing
measures of a particular partition across various timesteps is a local operation and hence
does not require communication among the processors but spatial measures do require com-

A.K. Boahen & W.L. Davis IV 289

Fig. 2.2: ISML algorithm for event detection

munication among the processors as they compare signatures across analysis partitions to
spot spatial events.

Lastly, we define a decision function that maps the measures into the set {0, 1}, where
a value of 1 attributed to an analysis partition indicates the presence of an event of interest
and hence the partition will be flagged and saved to disk. It is worth mentioning that, a
particular way of defining decision functions is to flag and hence save partitions which value
are above a particular threshold.

In this study, we will use a particular class of machine learning techniques for non-linear
dimensionality reduction problems called manifold learning to form the signatures. These
methods are described in the next section.

3. Manifold Learning. Handling high dimensional data can be quite intensive. From
inference to modelling, these tasks can be extremely complex and almost impossible in some
cases. One way to deal with such issues is to project the data into a lower dimensional
space which preserves the relevant structure of the data since high dimensionality of data is
mostly assumed to be artificial and data intrinsically lie on a low dimensional space manifold
embedded in a high-dimensional space.

Manifold learning is a non-linear dimensionality reduction technique used to understand
and represent these complex, high-dimensional data by mapping it to a lower-dimensional
space for visualization, analysis and interpretation. In our framework, we use manifold
learning to reduce the dimensionality of the analysis partitions by projecting the data unto
a space of reduced dimensions, while aiming to preserve its intrinsic structure. These newly
formed partitions, now become the data points for the next step of the algorithm.

290 In Situ Machine Learning For Intelligent Data Capture And Event Detection

There is a wide range of manifold learning techniques which is still being expanded. We
then present the manifold learning methods used in this work.

Suppose X = {x1, ..., xn} and Y = {y1, ..., yn} are respectively, a data set on the N-
dimensional manifoldM and its projection on a lower dimensional space D. Let dij be the
euclidean distance between yi and yj , respective projections of xi and xj unto D. The above
notations are maintained throughout the paper unless otherwise stated.

3.1. Multidimensional Scaling. Multidimensional scaling (MDS) is a type of man-
ifold learning technique that reduces the dimensionality of data non-linearly by preserving
pairwise distances (euclidean) as much as possible on the lower dimensional space.

MDS aims to minimize the stress function defined as:

Stress(X) =
√ ∑

i̸=j=1,2,...,n

(dij − ||xi − xj ||)2 (3.1)

which incorporates the difference between the distances in the original space (mostly mani-
fold) and their corresponding distances in the lower dimensional space for all possible pairs
of points.

3.2. Isomap. Isometric mapping as an unsupervised learning technique is similar to
MDS, as it also seeks to discover underlying dimensions that could help describe differences
among features by preserving the pairwise geodesic distances as much as possible on the
lower dimensional space.[8] It also minimizes a stress function defined as :

Stress(X) = ||g(yi, yj)− d(xi, xj)||2, (3.2)

where g : M → R and d : D → R are geodesic distance functions defined respectively on
the higher and lower dimensional spaces.

3.3. Locally Linear Embedding. Various manifold learning approaches differ by
the structure of the high-dimensional manifold being preserved, reflected in the objective
function being optimized which reflects the properties of the space being learned. Locally
Linear Embedding (LLE) is an unsupervised manifold learning algorithm that computes low
dimensional, neighborhood preserving embedding of high dimensional data. LLE uses the
local symmetries of linear reconstructions to find nonlinear structure in high dimensional
data. [5]

The main assumption of this approach is that each data point and its neighbors lie on
or close to a locally linear patch of the manifold. There are two main ways to determine
the nearest neighbors:

1. We can use the k nearest neighbors per data points based on the Euclidean distance
2. Neighbors can be defined as all the points in a ball of fixed radius centered around xi.

This method aims to minimize the reconstruction error :

ϵ(W) =
∑

i

||xi −
∑

j

wijxj ||2, (3.3)

subject to

∑

j

wij = 1. (3.4)

A.K. Boahen & W.L. Davis IV 291

The linear coefficients in W constituting the solution to equation (3.3) are then used to
reconstruct each data point from its neighbors in the low dimensional space D by minimizing
the embedding cost function:

CD(Y) =
∑

i

||yi −
∑

j

wijyj ||2. (3.5)

It is important to note that the optimization in equation (3.3) and (3.5) is over W and
Y respectively.

The steps of this algorithm are as follows:

LLE algorithm

1. Compute the neighbors of each data point, xi

2. Compute the weights wij that best reconstruct each data point xi
from its neighbors, minimizing the cost in eq. (3.3) by constrained linear fits.

3. Compute the coordinate of each yi best reconstructed by
the linear coefficients wij minimizing the cost function in (3.5)

Table 3.1: Summary of the LLE algorithm

3.4. t-distributed Stochastic Neighbor Embedding . The final manifold learning
method used is the t-distributed Stochastic Neighbor Embedding (t-SNE). This approach
very well captures much of the local structures and reveals global structures (such as the
presence of clusters at several scales) of the high-dimensional data and is mostly used for
visualization [7].

t-SNE’s overall aim is to preserve local similarity structure of the data by modelling
each high-dimensional data point xi by a point in D such that if xi and xj are close in
M, then their projections should be close in D and if they are distant in M, then their
projections should be distant in D with high probability.

This approach starts by transforming the euclidean distance between the data points in
X into conditional probabilities as modelled by (3.6).

pj|i =
exp(−||xi − xj ||2/2σ2

i)∑
k ̸=i exp(−||xi − xk||2/2σ2

i)
, (3.6)

where σi is the variance of the Gaussian distribution with mean xi and pi|i = 0.
These pj|i’s called similarities represent the conditional probability that xi would pick xj
as its neighbor if neighbors were chosen proportionately to their probability density under
a normal distribution centered at xi. [7]

Since pj|i and pi|j represent different distributions, their values can be different so we
define (3.7), which is symmetric to make the optimization faster.[7]

pij =
pj|i + pi|j

2
(3.7)

292 In Situ Machine Learning For Intelligent Data Capture And Event Detection

We then model the conditional probability that yi would pick yj as its neighbor if neigh-
bors were chosen proportionately to their probability density under a Student t distribution
with one degree of freedom via (3.8)

qij =
(1 + ||yi − yj ||2)−1

∑
k ̸=l(1 + ||yk − yl||2)−1

(3.8)

Finally, the low dimension representation Y in D is found by minimizing the sum of
Kullback-Leibler divergences in (3.9)

C =
∑

i

KL(Pi||Qi) =
∑

ij

pij log
pij
qij
, (3.9)

where Pi and Qi are the respective conditional probability distribution over all other points
in X given xi and their projections in Y given yi.[2]

The signatures formed as functions of the analysis partitions are then projected onto
a lower-dimensional space using the non-linear dimensionality reduction methods described
in the previous section.

4. Simulation Results & Discussion. In this section, we present the result of our
experiments on the simulated data.

(a) t=0s

(b) t=0.526s

Fig. 4.1: Contour map of features 1 through 4 at t = 0s and t = .526s.

For the first use of our framework, we created, using Python, a synthetic dataset sitting
on a t×x× y grid of dimension 20× 50× 50, where t ∈ (0, 1) is the number of timesteps for
which the simulation runs and (x, y) ∈ [−1, 1]2. Our dataset, generated as a NetCDF file,
had 4 features represented by a product of elementary functions as follows:

A.K. Boahen & W.L. Davis IV 293

• Feature 1: y1(t, x, y) = cos(2πt) cos(πx) sin(πy)+exp

{
− [x−(1.5t−0.75)]2+[y+(1.5t−0.75)]2

0.01

}

• Feature 2: y2(t, x, y) = cos(1/2πt) sin(πx) cos(2πy)
• Feature 3: y3(t, x, y) = |x|
• Feature 4: y4(t, x, y) = y1(t, x, y)y3(t, x, y)

The difficulty in event detection problems is usually in the definition of what an inter-
esting event constitutes. Since there is mostly no ground truth or pre-defined anomaly, it is
quite arduous to determine which aspects of a simulation should be flagged as anomalous.

We added an anomaly to feature 1 to set the ground truth for the event detection
in the context of our framework. This anomaly was modeled by a negative exponential
function that depends on the position of a data point on the grid. We decided that when
the exponential function is greater than .4, it will indicate the position of an anomaly in the
feature space. Feature 4 via its dependency on feature 1 also contains an anomaly. Features
2 and 3 were respectively a plane wave and a linear function independent of time t that did
not have any injected anomaly. Figure (4.1) shows a contour map of the features at timestep
0s and 0.526s describing how the anomaly moves across the simulation region between those
two timesteps; Figure (4.2) shows an anomalous region detected in the simulation domain
at t= 0.158s.

Fig. 4.2: Plot showing an anomaly at time t=0.158s.

To form the analysis partitions, we use the framework to divide the simulation domain
into 5 × 5 contiguous rectangles. We then have 100 analysis partitions at each of the 20
timesteps. The MinMax scaling function in ISML was used to pre-process the data points
in each partition to avoid any scaling discrepancy that may mislead our analysis. Next, we
explored with different functions such as the mean per feature and percentile functions to
create signatures out of the analysis partitions. The best results in terms of our metrics was
obtained with the percentile signature function. These initial signatures are then projected
onto a lower-dimensional space using the manifold learning techniques described in Section
(3). The final form of our signatures is then measured using the mean square distance

294 In Situ Machine Learning For Intelligent Data Capture And Event Detection

(msd) function which computes the Euclidean distance between one signature and the mean
signature for all partitions as defined:

msd(si) = d1(si, < s >), (4.1)

where < s >=

∑n−1
i=0 si
n

and d1 represents the Euclidean distance.

The results of our experiment are shown in Figure (4.3) and Table (4.1). Figure (4.3)
shows the amount of data flagged by our framework as anomalous (hence will be saved
to the disk) at each of the 20 timesteps, using the different signature functions. We
decided to add the identity signature function which treats the initial signatures formed
using the percentile function as the final form of the signatures with no projection unto a
manifold. The recall value, which simply is the proportion of true anomalous cells (ground
truth) contained within each flagged anomalous partition under the various settings is also
depicted in Figure (4.3). The recall metric is a crucial way to judge our framework since
it provides us with knowledge about the false positives and false negatives discovered using
our method. To decide on the most effective combination of functions used in ISML and
which parameter values to set for these functions, we would prefer our recall value to be
high whilst the amount of data saved to disk is low.

(a) Identity (b) MDS (c) Isomap (d) t-SNE (e) LLE

(f) Identity (g) MDS (h) Isomap (i) t-SNE (j) LLE

Fig. 4.3: % of data flagged as anomalous (top) and recall percentage (bottom) for the various
manifold learning techniques

Analyzing the top graphs in Figure (4.3), we can observe that LLE saved the least
amount of data to disk at each timestep (between 5% and 70%) whereas MDS and the
identity functions saved between 60% and roughly 80% of the data at each timestep.t-SNE

On average, LLE stored 22% of the data to disk which represents roughly a 78% decrease
in the storage usage but had the worst performance in terms of recall. In fact, only 18% of
our injected ground truth was recovered on average by using LLE to create the signatures,
with the most amount of ground truth at a timestep being 68%. The identity function
had the highest recall percentage (83.33%) followed by MDS (71.67%) and t-SNE (73.33%).
Isomap flagged, on average, a little above half of the number of partitions at each timestep
as anomalous and recovered close to 60% of the ground truth. We realised from Table (4.1)

A.K. Boahen & W.L. Davis IV 295

ML methods % of flagged Recall(%)
partitions

Identity 73.65 83.33
MDS 70.7 71.67
Isomap 53 58.33
T-SNE 72.75 73.33
LLE 21.8 18.33

Table 4.1: Summary of results obtained using the various manifold learning methods

that there is a trade-off between the recall value and the amount of partitions flagged as
anomalous. The more partitions are flagged (hence the more data saved to disk), the more
accurate our framework seems to recover the ground truth.

Our experiments revealed that the manifold learning methods based in some sense
on Euclidean distances such as t-SNE and MDS performed better in terms of recall than
those based on the intrinsic geodesic distance on the manifold like Isomap and LLE. This
is not too surprising since our measure function (mean square distance) is based on the
Euclidean distance. We conjecture that by using measure functions that incorporate geodesic
information, these results will be improved in terms of the recall metric.

5. Conclusion. Our work presents the Machine Learning framework, an approach de-
signed to optimize data storage and improve decision-making while simulation and analysis
are being performed concurrently. ISML aims to optimize data capture and event detec-
tion in HPC simulations by leveraging machine learning techniques, particularly manifold
learning, to intelligently identify and preserve significant events as they occur.

Our approach is based on a well-defined semantic of signatures to measures to decisions.
These building blocks of the framework compress the information provided by the data
at each timestep, in an intelligent manner, in order to identify anomalous regions in the
simulation domain while simulations are still being run.

This paper revealed that storage disk usage can be optimized for some artificially large
and high-dimensional datasets which intrinsically lie on a low-dimensional manifold by using
manifold learning techniques to create the signatures out of the analysis partitions. These
new techniques employed in this setting require new measure functions that can efficiently
be employed on the manifold to evaluate the signatures.

6. Future work. We acknowledge some improvements that could be done to the ex-
periments performed with our current framework and propose some ideas worth exploring.

1. Due to the poor performance, in our setup, of the manifold learning techniques
that make use of the geodesic distance, we propose a measure function that tries
to mimic the mean square distance function on the manifold using the geodesic
distance instead of the Euclidean distance. We call this function geo-msd and it
is defined as:

geo−msd(si) = d2(si, µ), (6.1)

where d2 represents the Riemannian distance onM and

µ = argmin
p∈M

(
1

n

n−1∑

i=0

d2(si, p)
2

)
, (6.2)

296 In Situ Machine Learning For Intelligent Data Capture And Event Detection

considered as the mean signature on the manifold M, which is just the sample
Fréchet mean.[1]
It measures the geodesic distance between one signature and the mean signature for
all partitions on the low-dimensional space. Eq (6.2) may yield a set of solutions
onM as shown in [4][3].

2. The parameters used for the various functions were either set at their default values
in Python or hand-tuned to provide a locally optimal result as a function of the
recall value. We suggest to thrive to provide an optimal way to select the parameters
of the various functions used for the experiment.

3. Taking into account reviewers’ comments, we intend to include the relative costs
of the different methods used to create the signatures as a metric in deciding the
best method by looking at a Pareto plot of the number of correctly identified cells
(anomalous or not) vs CPU time.

REFERENCES

[1] P. T. Fletcher, Statistics on manifolds, in Riemannian Geometric Statistics in Medical Image Analysis,
Academic Press, (2020), pp. 39–74.

[2] G. Hinton and S. Roweis, Stochastic neighbor embedding, In Advances in Neural Information Process-
ing Systems, 15 (2022), pp. 833– 840.

[3] N. Miolane, A. L. Brigant, J. Mathe, B. Hou, N. Guigui, Y. Thanwerdas, S. Heyder, O. Peltre,
N. Koep, H. Zaatiti, H. Hajri, Y. Cabanes, T. Gerald, P. Chauchat, C. Shewmake, B. Kainz,
C. Donnat, S. Holmes, and X. Pennec, Geomstats: A python package for riemannian geometry
in machine learning, (2020).

[4] X. Pennec, Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements,
Journal of Mathematical Imaging and Vision, 25 (2006), pp. 127– 154.

[5] L. K. Saul and S. T. Roweis, An introduction to locally linear embedding, NYU Computer Science
Notes, (2001).

[6] T. M. Shead, I. K. Tezaur, W. L. Davis IV, M. L. Carlson, D. M. Dunlavy, E. J. Parish, P. J.
Blonigan, J. Tencer, F. Rizzi, and H. Kolla, A novel in situ machine learning framework for
intelligent data capture and event detection, in Machine Learning and Its Application to React-
ing Flows: ML and Combustion, N. Swaminathan and A. Parente, eds., Springer International
Publishing, Cham, (2023), pp. 53–87.

[7] L. van der Maaten and G. Hinton, Visualizing data using t-sne, Journal of Machine Learning Re-
search, 9 (2008), pp. 2579–2605.

[8] B. Yousefi, M. Khansari, R. Trask, P. Tallon, C. Carino, A. Afrasiyabi, V. Kundra, L. Ma,
L. Ren, K. Farahani, and M. Hershman, Density-based isometric mapping, (2024).

A.K. Boahen & W.L. Davis IV 297

LARGE LANGUAGE MODEL ACCURACY ON POST-PROCESSED
AI-GENERATED CODE

MARIA CAMILA GAITAN-CARDENAS∗, CHRISTOPHER M. SIEFERT† , AND SARAH W. TSAI‡

Abstract. Artificial intelligence (AI) and machine learning are being employed in the creation of
code, with large language models (LLMs) proving especially proficient in comprehending and producing
natural language. Open weight models, such as Mistral [1], provide advantages such as a small memory
size and the ability to operate without human involvement. Nevertheless, there are concerns about the
effectiveness of AI code generation. In this work, we evaluated AI-generated code using text-based accuracy
metrics, namely BLEU and CodeBLEU. To improve our metrics, we used post-processing techniques to
isolate relevant portions of the generated code. Two approaches based on abstract syntax trees (AST) are
employed to extract statements from both the reference code and the output code: utilizing semicolons and
automating tree-sitter searches. The recursive semi-colon technique retrieves statements by locating the
most deeply nested semi-colon in the code that is generated or referenced, whereas the tree-sitter query
uses the tree-sitter parser to search for statements. Tree-sitter produces an AST for every code snippet and
the reference. Node types are employed to compare the generated code with the reference code in order to
assess its appropriateness for evaluation metrics. It is evident that the AST cleaned BLEU outperforms the
fundamental BLEU score in the majority of cases.

1. Introduction. As human beings we have the ability to use language, allowing us to
express and communicate. This capacity begins to emerge in early childhood and continues
to expand throughout a person’s lifespan. Machines, without the aid of sophisticated artifi-
cial intelligence (AI) algorithms, are unable to comprehend and communicate using human
language. For a long time, researchers have been faced with the difficult task of enabling
computers to possess the ability to read, write, andcommunicate in a manner similar to
humans.

Large language models (LLMs) are a class of models that undergo extensive training
on vast quantities of data, enabling them to comprehend and produce natural language and
several other forms of content, hence facilitating a diverse array of activities. LLMs have
gained widespread recognition because of their pivotal role in popularizing generative AI
and serving as a focal point for enterprises seeking to implement artificial intelligence in
various business domains and application cases.

AI code generation refers to the application of machine learning (ML) techniques to
generate code in response to a user’s input. For instance, Google Gemini Code Assist [2]
provides developers with the ability to generate and complete code. Code can be produced
by following established guidelines, adhering to organizational rules, and even by providing
a description using plain language.

As the utilization of generative AI, such as ChatGPT[4], increases, AI code creation
becomes increasingly widespread. “Open Weight” models are frequently advantageous for
several reasons, including their smaller physical space requirements, ability to run on per-
sonal hardware, lack of dependence on human involvement, and provision of information
regarding the training data used by certain Language Models (LLMs). This raises the
question of whether open weight models are sufficiently effective for generating scientific
computer code.

The majority of LLM code generation primarily focuses on Python. However, in this
particular case, we examined C++ code utilizing Kokkos[3]. Kokkos is a C++ library
that provides a programming model for creating applications that may run efficiently on
various high-performance computing systems. It offers abstractions for both parallel code

∗Sandia National Laboratories, mcgaita@sandia.gov
†Sandia National Laboratories, csiefer@sandia.gov
‡Sandia National Laboratories, swtsai@sandia.gov

298 CSRI Summer Proceedings 2024

execution and data management. Kokkos is specifically developed to optimize performance
on intricate node topologies that have numerous levels of memory hierarchies and diverse
execution resources.

We examined text-based accuracy measures from existing research to evaluate the code
generated by AI. For this particular case, BLEU[5] and CodeBLEU[6] metrics were used.
Both of these are influenced by extraneous or superfluous content, which holds true for
the majority of text metrics. Abstract syntax trees were introduced because they offer the
capability to eliminate code that does not satisfy certain criteria.

The remainder of this paper is organized as follows: Section 2 discusses the motivation
behind the research, Section 3 discusses the methods and terminology used throughout the
paper, Section 5 discusses the results of the work and examines and discusses the impact.
Finally, we conclude the survey in Section 6 by summarizing the major findings and discuss
the remaining issues for future work.

2. BLEU vs. Fluff: A Motivating Example. The BLEU (Bilingual Evaluation
Understudy)[5] score measures the similarity between the candidate text and the reference
texts. Scores closer to one imply a higher degree of similarity. The BLEU metric offers
a comprehensive evaluation of the quality of a model. The BLEU metric has a numerical
range of 0 to 1. Only candidate text that is identical to a reference text will achieve a
score of 1. Therefore, it is not guaranteed that a human translator will achieve a score of
1. It is crucial to acknowledge that the greater the number of reference texts per sentence,
the higher the score will be. Therefore, it is important to exercise caution when making
comparisons across assessments that have various numbers of reference texts.

While BLEU has been highly successful in evaluating machine texts and has consid-
erably stimulated research in this field, it is not appropriate for evaluating code synthesis
unless the specific characteristics of the programming language are taken into account. A
natural language is a language that has organically developed in humans through usage and
repetition, whereas code is intentionally created to generate different types of output. The
formula for BLEU is:

BLEU = BP ∗ exp
(

N∑

n=1

wn log pn

)
(2.1)

BP = The brevity penalty is calculated by dividing the length of the machine-generated
translation by the length of the smallest source translation.

wn = The variable wn represents the weight that is assigned to the accuracy score of the
n-gram. Weights are commonly assigned as 1/n, where n represents the number of n-gram
sizes employed.

pn = The variable pn represents the precision rating for the specific n-gram size.

While BLEU is capable of assessing AI-generated code, its performance is hindered
by the inclusion of unnecessary code. In this example, we illustrate how performing post-
processing on code created by artificial intelligence might enhance evaluation metrics like
BLEU. Consider a human prompt as follows:

Prompt: Create a Kokkos View of doubles of size 10 by 3.

M.C. Gaitan-Cardenas, C. Siefert, & S.W. Tsai 299

#include <Kokkos Core.hpp>

int main(int argc, char∗ argv[]) {

Kokkos::initialize(argc, argv);

const size t N=10;
Kokkos::View<double∗[3]> v(”b”, N);

Kokkos::finalize(); return 0;

}

Figure 2.1. A hierarchy of potential LLM predictions with varying BLEU scores base on the amount
of included text. BLEU Scores: Red(0.31), Blue(0.36), Green(0.45), Yellow(0.74)

Below, we can observe the reference (desired output) and a notional LLM-generated
prediction. The AI-generated code produces a complete program, which is not necessary to
fulfill the human request.

• Reference:

const s i z e t N=10;
Kokkos : : View<double ∗ [3]> v (”b” , N) ;

• Notional Prediction:

#inc lude <Kokkos Core . hpp>
i n t main (i n t argc , char ∗ argv []) {

Kokkos : : i n i t i a l i z e (argc , argv) ;
const s i z e t N=10;
Kokkos : : View<double ∗ [3]> v (”b” , N) ;
Kokkos : : f i n a l i z e () ;
r e turn 0 ;

}
Despite producing the correct answer, the BLEU score for the above notional prediction
would only be 0.31. We refer to this extraneous code as “fluff.” In fact, depending on how
much fluff is generated, the BLEU score can be shifted almost arbitrarily. As illustrated in
Figure 2.1 all the largest set of generated code (shown by the color red) has BLEU score
was 0.31. However, as more and more of that “fluff” is removed, the BLEU score increased
by 0.43 points to reach 0.74. The example illustrates that current metrics relying solely on
text similarity are insufficient for evaluating generated code due to potential variations in
code elements, such as variables.

3. Methodology.

3.1. Tree-Sitter. CodeBLEU takes into account not just the superficial (n-gram) sim-
ilarity, but also the similarity in syntax and meaning. The n-gram match applies varying
weights to distinct n-grams. The syntactic match evaluates the score by comparing sub-trees
in the AST. The semantic match measures semantic similarity using the data-flow structure.
CodeBLEU is a composite metric that incorporates the original BLEU, the weighted n-gram
match, the syntactic AST match, and the semantic data-flow match. Tree-sitter is used by
CodeBLEU to do the AST matching.

300 Large Language Model Accuracy On Post-processed AI-generated Code

Tree-sitter[8] is a software application that generates parsers and provides a library for
parsing incrementally. The tool can construct a concrete syntax tree for a given source file
and effectively modify the syntax tree while the source file is changed. The objective of
Tree-sitter is to be:

• Capable of analyzing and interpreting any programming language in a broad man-
ner.

• Efficient enough to analyze each input in a text editor.
• Durable enough to yield valuable outcomes even when syntax errors are present.
• Runtime library, built in pure C, can be integrated in any application without any

dependencies.

Tree-sitter involves four primary categories of objects: languages, parsers, syntax trees,
and syntax nodes. The terms used in C to refer to these are TSLanguage, TSParser, TSTree,
and TSNode.

A TSLanguage is an object that is not easily understood and it specifies how to analyze a
specific programming language. Tree-sitter generates the code for each TSLanguage. Several
languages are currently accessible in distinct git repositories inside the Tree-sitter GitHub
organization. Refer to the following page for instructions on how to generate new languages.
A TSParser is an object that maintains its state and can be assigned a TSLanguage. It is
used to generate a TSTree from a given source code. A TSTree is a data structure that
describes the hierarchical structure of a source code file, capturing the syntax of the entire
file. The data structure includes TSNode objects that represent the organization of the
source code. Additionally, it has the capability to be modified and utilized for generating a
fresh TSTree if there are any alterations made to the source code. A TSNode denotes an
individual node within the syntax tree. The program monitors its initial and final places
within the source code, as well as its connections to other nodes such as its parent, siblings,
and offspring.

1. Parsers
(a) The parsing capability of Tree-sitter is accessible through C application pro-

gramming interfaces (APIs). Applications developed in higher-level program-
ming languages can utilize Tree-sitter by employing binding libraries like as
node-tree-sitter or the tree-sitter rust crate.

2. Queries
(a) The syntax highlighting mechanism of Tree-sitter relies on tree queries, which

are a versatile framework for matching patterns on the syntax trees of Tree-
sitter.
Query Examples:
i. Retrieves the contents of the main function:

CPP LANGUAGE.query (”””(function definition (compound statement)
@compound)”””)

ii. Identifies initialize and finalize statements:
CPP LANGUAGE.query (”””(call expression) @capture”””)

iii. Identifies declaration nodes inside main function:
CPP LANGUAGE. query(”””(compound statement (declaration) @declara-
tor)”””)

3.2. CodeBLEU. CodeBLEU takes into account the syntactic information by com-
paring the tree structure, in addition to the sequence-level matching. Programming lan-
guage, unlike natural language, possesses inherent tree structures, such as the AST. To
determine the accuracy of the tree-sitter parsing [7], we first extract all the sub-trees, then
compare the extracted sub-trees with the reference sub-trees. CodeBLEU [6] is defined as the

M.C. Gaitan-Cardenas, C. Siefert, & S.W. Tsai 301

weighted combination of four components: BLEU, BLEUweight, Matchast, and Matchdf .
BLEU is calculated using the standard BLEU method. BLEUweight measures the weighted
1-ngram match with a penalty for mismatching language keyworks that is five times greater
than all other tokens. Matchast focuses on the syntactic AST match, utilizing the syntactic
information of the code. Each node in the AST represents a specific construct that appears
in the source code. Matchdf considers the semantic dataflow match, taking into account
the semantic similarity between the generated code and the reference code. The weighted
ngram match and the syntactic AST match are employed for grammatical accuracy, while
the semantic data-flow match is utilized for determining logical correctness. The weight
(hyper-parameters) are α, β, γ, and δ. The formula for CodeBLEU is:

CodeBLEU = α ∗BLEU + β ∗BLEUweight + γ ∗Matchast + δ ∗Matchdf . (3.1)

α = β = γ = δ = 0.25.

3.3. Drawbacks of CodeBLEU. CodeBLEU is responsive to superfluous code or
fluff. The quality of CodeBLEU is negatively impacted by the length of the code. Put
simply, there is a negative association between the length of the code and the accuracy of
the CodeBLEU metric in reference to the ground truth. The reason for this is likely because
lengthier codes typically include a greater number of changes in their syntactic structure.
Thus, when the length of codes increases, the accuracy scores of CodeBLEU eventually
diminishes and approaches that of BLEU.

4. Proposed Abstract Syntax Tree-based Approach. The issue at hand is the
evaluation of AI-generated code by utilizing text-based accuracy measures from previous
studies. Our approach applies post-processing to the AI-generated code prior to subjecting it
to accuracy measures. By extracting statements from both the reference code and the output
code. We employed two distinct techniques to extract the statements: finding semicolons in
the code and using tree-sitter queries. The recursive semi-colon technique is used to extract
statements by searching for the deepest semi-colon in the generated code or reference code.
The tree-sitter query utilizes processes generated by the tree-sitter parser to search for
statements (see subsection 3.1). After locating the statement, it is extracted and then
compared using abstract syntax trees. After extracting statements, we employ Tree-Sitter
to generate the AST for each code snippet and the reference. Next, we employ node types to
compare the generated code with the reference code in order to determine its suitability for
evaluation metrics. We omit statements that lack a corresponding reference type. Calculate
the BLEU metric for the remaining code.

5. Results. This section provides a concise overview of the current discoveries.
The following diagrams illustrate the progress or absence thereof in relation to the

approaches above. Figure 5.1 and Figure 5.2 illustrates the visual comparison between the
raw code snippets ran through BLEU and the post-processed samples ran through BLEU.
CodeBLEU will be employed in subsequent research. As demonstrated, it is evident that
the AST cleaned BLEU outperforms the basic BLEU score for the majority of cases. There
are a few instances where the raw data samples outperform the post-processed samples,
indicating that while the AST cleaned samples may perform better in some scenarios but
there is still a need for some adjustments in the proposed approach.

In the subsequent sections, we will examine the most vs the least significant improve-
ments, taking into account the different methodologies employed.

5.1. Semicolon Approach.

302 Large Language Model Accuracy On Post-processed AI-generated Code

Biggest Improvement

Prompt:
A functor to compute the inclusive parallel prefix sum of a Kokkos::View array type.

Reference:

template <typename array type>
s t r u c t I n c l u s i v ePa ra l l e lP r e f i xSum {

typede f typename ar ray type : : va lue type idx ;
a r ray type array sum ;
In c l u s i v ePa ra l l e lP r e f i xSum (ar ray type a r r) : array sum (a r r) {}

KOKKOS INLINE FUNCTION
void operator () (const s i z e t i i , s i z e t &update , const bool f i n a l) const {

update += array sum (i i) ;
i f (f i n a l) {

array sum (i i) = idx (update) ;
}

}
} ;

Original Output:

template <c l a s s ViewType>
s t r u c t Inc lus iveScanFunctor {

ViewType view ;

Inc lus iveScanFunctor (ViewType view) : view (view) {}

KOKKOS INLINE FUNCTION
void operator () (const i n t i , i n t& update , const bool f i n a l) const {

const i n t v a l i = view (i) ;
i f (f i n a l) {

view (i) = update ;
}

Figure 5.1. Semicolon approach Figure 5.2. Query Approach

M.C. Gaitan-Cardenas, C. Siefert, & S.W. Tsai 303

update += v a l i ;
}

} ;

i n t main (i n t argc , char ∗∗ argv) {
Kokkos : : i n i t i a l i z e (argc , argv) ;
{

us ing view type = Kokkos : : View<i n t ∗>;
us ing hos t v i ew type = view type : : HostMirror ;

v iew type view (” view ”) ;
hos t v i ew type h view = Kokkos : : c r e a t e m i r r o r v i ew (view) ;

const i n t N = 10 ;
view = view type (” view ” , N) ;
h view = hos t v i ew type (” h view ” , N) ;

f o r (i n t i = 0 ; i < N; i++) {
h view (i) = i ;

}

Kokkos : : deep copy (view , h view) ;

Inc lus iveScanFunctor<view type> f unc to r (view) ;
Kokkos : : p a r a l l e l s c a n (” scan ” , N, func to r) ;

Kokkos : : deep copy (h view , view) ;

f o r (i n t i = 0 ; i < N; i++) {
p r i n t f (” h view(% i) = %i \n” , i , h view (i)) ;

}
}
Kokkos : : f i n a l i z e () ;

r e turn 0 ;
}

Modified Output:

template <c l a s s ViewType>
s t r u c t Inc lus iveScanFunctor {

ViewType view ;
Inc lus iveScanFunctor (ViewType view) : view (view) {}
KOKKOS INLINE FUNCTION
void operator () (const i n t i , i n t& update , const bool f i n a l) const {

const i n t v a l i = view (i) ;
i f (f i n a l) {

view (i) = update ;
}

304 Large Language Model Accuracy On Post-processed AI-generated Code

update += v a l i ;
}

} ;

BLEU Score Before Post-Processing: 0.12

BLEU Score After Post-Processing: 0.32

Worst Degradation

Prompt:
Create a complex number of type Kokkos::complex<double> with real part -1 and imaginary
part 3.14. Name it “z”

Reference:

Kokkos : : complex<double> z (−1 , 3 . 1 4) ;

Original Output:

#inc lude <Kokkos Core . hpp>

i n t main () {
Kokkos : : i n i t i a l i z e () ;

Kokkos : : complex<double> z (−1 , 3 . 1 4) ;

Kokkos : : f i n a l i z e () ;
r e turn 0 ;

}

Modified Output:

The AST string was empty.

BLEU Score Before Post-Processing: 0.28

BLEU Score After Post-Processing: 0.0

5.2. Query Approach.

M.C. Gaitan-Cardenas, C. Siefert, & S.W. Tsai 305

Biggest Improvement

Prompt:
Define a functor that takes a matrix row-map as a Kokkos view and finds the max degree.

Reference:

template <typename Reducer , typename o rd i na l t , typename rowmap t>
s t r u c t MaxDegreeFunctor {

us ing ReducerVal = typename Reducer : : va lue type ;
MaxDegreeFunctor (const rowmap t &rowmap) : rowmap(rowmap) {}
KOKKOS INLINE FUNCTION void operator () (o r d i n a l t i , ReducerVal &lmax) const {

o r d i n a l t deg = rowmap(i + 1) − rowmap(i) ;
i f (deg > lmax) lmax = deg ;

}
rowmap t rowmap ;

} ;

Original Output:

#inc lude <Kokkos Core . hpp>

template<c l a s s ViewType>
s t r u c t MaxDegreeFunctor {

typede f typename ViewType : : va lue type va lue type ;
ViewType row map ;
va lue type max degree ;

MaxDegreeFunctor (ViewType row map) : row map (row map) {}

KOKKOS INLINE FUNCTION
void operator () (const i n t i , va lue type &update) const {

update = Kokkos : : Experimental : : max(update , row map (i +1) − row map (i)) ;
}

KOKKOS INLINE FUNCTION
void i n i t (va lue type &update) const {

update = 0 ;
}

KOKKOS INLINE FUNCTION
void j o i n (v o l a t i l e va lue type &update , const v o l a t i l e va lue type &input) const {

update = Kokkos : : Experimental : : max(update , input) ;
}

} ;

i n t main () {
Kokkos : : i n i t i a l i z e () ;
{

306 Large Language Model Accuracy On Post-processed AI-generated Code

us ing view type = Kokkos : : View<i n t ∗>;
v iew type row map (” row map” , 5) ;
// F i l l row map with some va lues
/ / . . .

MaxDegreeFunctor<view type> f unc to r (row map) ;
Kokkos : : p a r a l l e l r e d u c e (5 , func to r) ;

s td : : cout << ”Max degree : ” << f unc to r . max degree << std : : endl ;
}
Kokkos : : f i n a l i z e () ;
r e turn 0 ;

}

Modified Output:

s t r u c t MaxDegreeFunctor {
typede f typename ViewType : : va lue type va lue type ;
ViewType row map ;
va lue type max degree ;
MaxDegreeFunctor (ViewType row map) : row map (row map) {}
KOKKOS INLINE FUNCTION
void operator () (const i n t i , va lue type &update) const {

update = Kokkos : : Experimental : : max(update , row map (i +1) − row map (i)) ;
}
KOKKOS INLINE FUNCTION
void i n i t (va lue type &update) const {

update = 0 ;
}
KOKKOS INLINE FUNCTION
void j o i n (v o l a t i l e va lue type &update , const v o l a t i l e va lue type &input) const {

update = Kokkos : : Experimental : : max(update , input) ;
}

} ;

BLEU Score Before Post-Processing: 0.12

BLEU Score After Post-Processing: 0.20

Worst Degradation

Prompt:
Impelement a templated routine for computing the dot product between two Kokkos views
x and y: routine code for real Kokkos views, where the type tScalar of the components of x
and y is neither Kokkos::complex<float> nor Kokkos::complex<double>. In such situation
it is not necessary to take the conjugate of y, and so this candidate routine 2 can just call
the candidate routine 1.

M.C. Gaitan-Cardenas, C. Siefert, & S.W. Tsai 307

Reference:

template <c l a s s tSca la r , c l a s s tVecView , c l a s s tDevice>
typename std : : e n ab l e i f< ! s td : : i s same<tSca la r , Kokkos : : complex<f l o a t >>:: va lue && ! std : : i s same<tSca la r , Kokkos : : complex<double>>:: value , tSca la r > : : type
candidateDotProduct2 (const tVecView & x , const tVecView & y) {

re turn candidateDotProduct1<tSca la r , tVecView , tDevice>(x , y) ;
}

Original Output:

#inc lude <Kokkos Core . hpp>

template <typename tSca la r , typename tExecutionSpace>
t S ca l a r dot product (Kokkos : : View<t S ca l a r ∗ , tExecutionSpace> x , Kokkos : : View<t S ca l a r ∗ , tExecutionSpace> y) {

s t a t i c a s s e r t (! s td : : i s same<tSca la r , Kokkos : : complex<f l o a t >>:: va lue &&
! std : : i s same<tSca la r , Kokkos : : complex<double>>:: value ,
” tS ca l a r cannot be Kokkos : : complex<f l o a t> or Kokkos : : complex<double >”);

t S ca l a r r e s u l t = 0 ;
Kokkos : : p a r a l l e l r e d u c e (” dot product ” , x . extent (0) ,

KOKKOSLAMBDA(const i n t& i , t S ca l a r& update) {
update += x(i) ∗ y (i) ;

} , r e s u l t) ;
r e turn r e s u l t ;

}

Modified Output:

The AST string was empty.

BLEU Score Before Post-Processing: 0.31

BLEU Score After Post-Processing: 0.00

5.3. Discussion. Based on the results, using the semi-colon technique is more efficient
in the post-processing of code snippets, resulting in higher BLEU scores. The query strategy
exhibits promise, although it needs father development. Automated post-processing research
has demonstrated the superior effectiveness of the semi-colon strategy compared to the query
approach. However, the query approach is more effective in scenarios when utilized on a
single data point at a time, instead of automating its application over the full dataset. The
semicolon technique is valuable for identifying statements in the code that do not involve
functions.

6. Conclusion. AI and LLMs play a crucial role in enabling machines to understand
and communicate using human language. LLMs, which undergo extensive training on vast
data, enable AI to produce natural language and various content forms. AI code generation,
a popular application of AI and machine learning techniques, involves generating code in

308 Large Language Model Accuracy On Post-processed AI-generated Code

response to user input. Open weight models, such as Google Gemini Code Assist, are ad-
vantageous due to their smaller physical space requirements and lack of human involvement.
However, the effectiveness of these models for generating scientific computer code remains
a question.

We employed text-based accuracy metrics, such as BLEU and CodeBLEU, to assess the
code produced by AI. Our evaluation specifically targeted abstract syntax trees in order to
remove any unnecessary or redundant content. Our findings indicate that although there is
room for improvement, applying post-processing techniques to ASTs of AI-generated code
enhances accuracy measure scores and yields a more efficient response to human requests.
As shown, it is clear that the AST cleaned code score performs better than the basic code
in most circumstances. There are a few cases where the unprocessed data samples perform
better than the post-processed samples, suggesting that although the samples cleaned by
AST may perform better in certain situations, some modifications are still necessary in the
suggested approach.

In future work, our goal is to enhance the accuracy metrics of C++ AST, particularly
by incorporating requests for functions, using statements, typedefs, and other elements.

REFERENCES

[1] M. AI, Mistral ai - large language models, 2024.
[2] G. Developers, Gemini code assist overview — gemini for google cloud, 2024.
[3] Kokkos, Kokkos: The programming model, 2024.
[4] OpenAi, Chatgpt - instant answers. greater productivity. endless inspiration., 2024.
[5] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, Bleu: a method for automatic evaluation of ma-

chine translation, in Proceedings of the 40th annual meeting of the Association for Computational
Linguistics, 2002, pp. 311–318.

[6] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou, A. Blanco, and S. Ma,
Codebleu: a method for automatic evaluation of code synthesis, 2020.

[7] N. Sobo and R. Winfrey, Tree-sitter, 2024.
[8] Tree-Sitter, Tree-sitter is a parser generator tool and an incremental parsing library, 2024.

M.C. Gaitan-Cardenas, C. Siefert, & S.W. Tsai 309

MIXTURE OF NEURAL OPERATOR EXPERTS FOR NONTRIVIAL
BOUNDARY CONDITIONS AND MODEL SELECTION

DWYER DEIGHAN∗, JONAS ACTOR † , AND RAVI PATEL ‡

Abstract. While Fourier-based neural operators are best suited to learning mappings between functions
on periodic domains, several works have introduced techniques for incorporating non trivial boundary con-
ditions. However, all previously introduced methods have restrictions that limit their applicability. In this
work, we introduce an alternative approach to imposing boundary conditions inspired by volume penalization
from numerical methods and Mixture of Experts (MoE) from machine learning. By introducing competing
experts, the approach additionally allows for model selection. To demonstrate the method, we combine a
spatially conditioned MoE with the Fourier based, Modal Operator Regression for Physics (MOR-Physics)
neural operator and recover a nonlinear operator on a disk. Next, we extract a large eddy simulation (LES)
model from direct numerical simulation of channel flow and show the domain decomposition provided by
our approach. Finally, we train our LES model with Bayesian variational inference and obtain posterior
predictive samples of flow on unseen domains.

1. Introduction. The accuracy of a traditional PDE solver depends on the resolution
of its mesh. In practice, a fully resolved simulation is prohibitively expensive for most sys-
tems, even on the largest supercomputers. Instead, one must run under-resolved simulations
and provide models for subgrid scale dynamics. This is especially true for the Navier-Stokes
equations in the turbulent regime. A common solution is to approximate the turbulent dy-
namics with a statistical approximation such as a large eddy simulation (LES) or Reynolds
averaged Navier-Stokes (RANS) model. However, these models are imperfect as they encode
various empirical assumptions and hand-tuned approximations.

Neural operators are a new class surrogate models that can learn resolution invariant
solution operators for families of PDEs from either high fidelity simulation or experimental
data. Resolution invariance is important because it means that if it learns the correct
operator, it will work consistently at any mesh resolution. Additionally, neural operators
such as Modal Operator Learning for Physics (MOR-Physics) have been shown to be effective
for learning important PDEs such as Burger’s equation and Kuramoto-Sivashinsky equation
and obtaining homogenized PDE models from particle simulations [11, 12].

However, the Fourier transform exhibits Gibbs phenomenon when attempting to model
discontinuities and cannot handle non-periodic boundary conditions. The Fourier Neural
Operator (FNO) [8] tries to remedy this by adding “bias functions”, Wv(x) that operate
along the Fourier convolution layers. However, it has been shown [10] that this does not
fully alleviate the weakness that FNO has around non-periodic boundary conditions and
discontinuities, e.g., shock waves.

Instead, we propose a mixture of experts model where the weighting of experts is de-
termined locally across space. This way the model can choose different experts on two
sides of a discontinuity or any non-periodic transition, e.g. zero velocity at the walls for
channel flow. In particular, we apply a POU-Net [6] like ensemble method with the MOR-
Physics Operator [11] to better learn boundary conditions (POU-MOR-Physics). POU-Net
[6] is comparable to Mixture of Experts (MoE) [15] except that it is able to choose differ-
ent experts locally across a spatial field. This method also has the benefit of facilitating
ensemble-based UQ [2] and model selection. To demonstrate the method, we simulatenously
learn the boundary conditions and a LES model for channel flow using the Johns Hopkins
Turbulence Database (JHTDB) [7, 5, 13].

∗University at Buffalo, The State University of New York, dwyerdei@buffalo.edu
†Sandia National Laboratories, jaactor@sandia.gov
‡Sandia National Laboratories, rgpatel@sandia.gov

310 CSRI Summer Proceedings 2024

Because we are limited to a single DNS, we embed a simple forward-Euler solver in our
model for training and implement Uncertainty Quantification (UQ) to provide a range of
predictions outside the training data. The integration of the PDE solver with the learned
correction serves a purpose similar to data augmentation: enabling higher-quality predic-
tions despite the limited data. The UQ is instrumental in identifying the support of the
dataset at prediction time, particularly for detecting out-of-distribution (OOD) queries, and
for modeling the notoriously high aleatoric uncertainty in turbulence.

The UQ arises from a hybrid approach utilizing the diversity among expert models and
Mean-Field Variational Inference (MFVI). It has been demonstrated in [3] that “sub-space
method” such as MFVI and ensemble methods can serve complementary roles, each allevi-
ating the other’s weaknesses. Additionally it was suggested in [3] that ensemble methods
could be potentially made more efficient for UQ by explicitly enforcing ensemble member
diversity. We believe our method indirectly tests this suggestion by forcing our experts to
specialize.

Our model operates by applying a learned correction after each timestep of the regular
forward-Euler solver. This correction is designed to capture the sub-grid dynamics that
the low-resolution solver fails to resolve, effectively enhancing its accuracy to better match
the DNS data. By integrating the learned correction into the forward-Euler method at
every timestep, the model adjusts the solver’s output, compensating for the missing fine-
scale dynamics. In contrast to papers like [9] and [14], we apply our PDE constraints by
construction rather than by penalty of the model.

To improve the stability of the learned sub-grid dynamics operator, we employed several
auto-regressive time steps during training, following methodologies similar to those proposed
by Bengio et al. [1] (but without the curriculum). Statistical auto-regressive time series
models often suffer from exponentially growing errors because the model’s flawed outputs
feed back into its inputs, compounding errors over multiple time steps. By exposing the
model to this process during training—taking several auto-regressive steps before each op-
timization step—the model learns to correct its own compounding errors, mitigating the
problem during prediction time [1].

2. Methods.

2.1. Problem descriptions. We demonstrate our method with two numerical exam-
ples. This section describes the problem formulations. In the first example, we learn a
nonlinear operator for functions on a disk. In the second example, we learn an LES model
for turbulence for channel flow.

2.1.1. 2D synthetic data. Our first dataset consists of synthetically generated pairs
of functions, (ui, vi), on the unit disk that vanish on the boundary, Ω =

{
(x, y) : x2 + y2 ≤ 1

}
.

We generate ui by sampling a Gaussian process. We construct a regular grid of points, G,
over a box in which Ω is embedded, B, and compute the point evaluations of a function û
on the grid as,

zi ∼ GP(0,K)

ûi(x
′, y′) = zi(x

′, y′)|{zi(x, y) = 0 : (x, y) ̸∈ Ω} (x, y), (x′, y′) ∈ G (2.1)

where K is a symmetric positive definite kernel, K : B × B → R. We compute v̂i by taking
the second order finite difference approximation of the Laplacian of û2i .

We obtain a mapping, ui 7→ vi, from this synthetic data by solving the least squares
problem,

min
θ

∑

i

||P̂(ûi; θ)− v̂i||2ℓ2(G) (2.2)

D. Deighan, J. Actor, & R. Patel 311

where P̂ is the model operator and θ are the parameters of P̂. We discuss the parameteri-
zation of P̂ in Section 2.3

Since ûi and v̂i vanish at the boundaries of B, we glue the opposite sides of the box
together and treat them as periodic functions. We arrive at (ui, vi) by taking the restriction
of ûi and v̂i to the domain, Ω. We construct P(u) by extending u to the domain B where it
evaluates to zero outside of Ω. P̂ maps this extension to another function on B as discussed
above. v is the restriction of this action to Ω. The model operator with the restriction and

extension takes the form, P : u
extend7→ û

P̂7→ v̂
restrict7→ v

2.1.2. Large Eddy Simulation Modeling. For our next example, we obtain a large
eddy simulation (LES) model from direct numerical simulation (DNS) of turbulent channel
flow. The Navier-Stokes equations are,

∂tu+∇u⊗ u = −1

ρ
∇p+ ν∇2u x ∈ Ω

∇ · u = 0 x ∈ Ω

u = 0 x ∈ ∂Ω

(2.3)

(2.3) is typically expensive to integrate because real systems often contain a large range of
spatio-temporal scales that must be resolved. The LES equations are obtained by applying
a low pass spatio-temporal filter to the Navier-Stokes equations,

∂tũ+∇ũ⊗ ũ = −1

ρ
∇p̃+ ν∇2ũ−∇τ x ∈ Ω

∇ · ũ = 0 x ∈ Ω

ũ = 0 x ∈ ∂Ω

(2.4)

where τ = ũ⊗ u− ũ⊗ ũ is the residual stress tensor. Since the small scale features have been
filtered out, (2.4), can be much cheaper to numerically integrate than (2.3). However, τ is
an unclosed term that must be modeled. Traditionally, one uses a combination of intuition
and analysis to arrive at a simple model with a few parameters that can be fitted to DNS
simulation or experiments. Here, we will use POU-MOR-Physics to provide the closure.

To obtain our model, we will first consider LES in a triply periodic domain.

∂tũ+∇ũ⊗ ũ = −1

ρ
∇p̃+ ν∇2ũ−∇τ x ∈ Ω

∇ · ũ = 0 x ∈ Ω

(2.5)

We use the Chorin projection method to eliminate the pressure term and the explicit Euler
time integrator to obtain an evolution operator,

ûn+1 = ũn −F−1

(
iκ · F ũn ⊗ ũn +

iκ

||κ||22
(κ⊗ κ) : F ũn ⊗ ũn − ||κ||22F ũn

)

= LES(ũn)

(2.6)

where F is the Fourier transform and κ is the wave vector.
This update operator does not include the boundary conditions or the missing sub-grid

scale physics. We propose to model these as a POU-MOR-Physics correction to the action
above and obtain,

ũn+1 = P(LES(ũn); θ) = Uθ(ũn) (2.7)

312 Mixture Of Neural Operator Experts For Nontrivial Boundary Conditions And Model Selection

where P is the POU-MOR-Physics operator discussed in Section 2.3. Given a time-series
for the velocity field evolution from DNS, {und}n=0,...,N , on a regular grid, G, we solve the
least squares problem,

min
θ

N∑

n=1

∥∥Un
θ ũ

0
d − ũnd

∥∥2
ℓ2(G)

(2.8)

to obtain an LES model. Note that we have applied the low-pass filtering operator to
the data. In practice, (2.8) is not computationally tractable, so we implement a multiple
shooting strategy and obtain the optimization problem,

min
θ

N−P∑

n=1

P∑

p=1

∥∥Up
θ ũ

n
d − ũn+p

d

∥∥2
ℓ2(G)

(2.9)

where P is a hyperparameter.

Fig. 2.1. John Hopkins Turbulence Dataset: Channel Flow DNS

Our target application is extracting an LES model from DNS provided by the JHTDB.
The simulation data is obtained from a channel flow problem with no-slip boundary condi-
tions (BCs) on the top and bottom of the flow, and periodic BCs on the left, right, front
and back.

We greatly sub-sample the DNS data spatially (see Table 2.2), we keep the full resolution
in the time dimension. This was motivated by the need to have a larger training dataset.
The spatial sub-sampling is performed after applying a box filter to the DNS data.

Parameter Value
Viscosity v = 5× 10−3

Friction velocity Reynolds number Reτ ∼ 1000
Domain Length 8π × 2× 3π
Grid Size 2048× 512× 1536

Table 2.1
Simulation Data Parameters of 3d DNS channel flow data from the JHTDB. This table has the pa-

rameters of the DNS simulation.

D. Deighan, J. Actor, & R. Patel 313

Parameter Value
Spatial Stride sx = sy = sz = 20
Sub-Sampled Dimensions 103× 26× 77
Time Dimension t = 4000
Box Filter Dimension b = 20

Table 2.2
Post Processing Parameters. For post-processing steps we applied box filtering and then spatial stride

(without time stride).

2.2. Scaling. The JHTDB channel flow problem [5], characterized by three spatial di-
mensions plus a recursive time dimension, presents significant computational challenges that
demand careful resource management. To mitigate the substantial memory requirements,
we utilized the real Fast Fourier Transform (rFFT) within the MOR-Physics Operator,
effectively conserving memory without compromising performance.

To handle the computational load efficiently, we employ 20 A100 GPUs alongside
the Fully-Sharded Data Parallel (FSDP) strategy [17]. This approach builds upon Data-
Distributed Parallelism by dividing the data batch across multiple GPUs and averaging
the independent gradients after each iteration. According to the linear scaling rule from [4],
scaling the learning rate proportionally with the batch size can expedite training. We imple-
mented this by adjusting the learning rate in line with the increased batch size distributed
over the GPUs.

FSDP further reduces the memory burden on each GPU by sharding the model param-
eters, optimizer states, and gradients across all available GPUs. It broadcasts the necessary
shards just in time for forward and backward passes, overlapping communication with com-
putation to eliminate communication overhead. This strategy not only conserves memory
but also enhances computational efficiency.

Following the methodologies outlined in [16] and [4], we introduced a warm-up phase
for the learning rate to approach linear scaling effectively. This warm-up period is crucial to
avoid suboptimal local minima early in the training process, as the linear scaling rule may
not be effective when the model parameters are changing rapidly at the outset.

Adhering to the linear scaling rule from [4], we set the batch size to batch size = n
and the learning rate to learning rate = 0.00025n, where n represents the number of GPUs
utilized. Although memory constraints necessitated a smaller per-GPU batch size, we found
that combining this approach with gradient clipping yielded effective training results.

2.3. Model Design. We construct our model by combining a spatially conditioned
POU network and neural operators,

(P ◦ a)(x) =
∑

i

Gi(x)(Ni ◦ a)(x) (2.10)

This section describes the components of this model, the gating network G and the neural
operators, Ni.

2.3.1. MOR-Physics Operator. We use a modified version of the MOR-Physics Op-
erator presented in [11, 12] to construct Ni. Input and output channels are necessary to
deal with the 3d input and output velocity components, but hidden channels improve per-
formance, so we used them throughout the model.

We follow the notational conventions similar to those from the FNO paper [8]. Also all
the equations below ignore the batch dimension.

Definition 2.1. Given the Banach spaces A, V, U :

314 Mixture Of Neural Operator Experts For Nontrivial Boundary Conditions And Model Selection

Fig. 2.2. MOR Operator Diagram: It is important to recall that g(k) is actually implemented with
a tensor so we need to truncate higher modes of the input (or sometimes g(k)). Also the arrows denote
composition, and h(v) is a learned (local) activation function.

• The neural operator N : A→ U is defined by N(a) = u for all a ∈ A and u ∈ U .

• ∀v(l) ∈ V , the function v(l) : Rd → Rd(l)
v represents the intermediate state of u ∈ U

at hidden layer l.
• ∀k ∈ Rd, the learned weights of a MOR Operator layer in the Fourier domain are

given by g(l)(k) ∈ Cd(l)
v ×d(l−1)

v .
– d :=dimensionality of the problem (e.g. 1d, 2d, etc...)

– d
(l−1)
v , d

(l)
v := number of input and output channels for layer l respectively.

• The non-linearity represented as h(l)(x) is a learned local activation function (im-
plemented with a neural network).

Note that g(k) is implemented as a tensor due to its use with the FFT. We truncate
the higher modes of either the g(l)(k) or F(v(l))(k) tensors (which ever has more in a given
dimension) so that their shapes are made compatible. This effectively results in a low pass
filter; more details can be seen in [11].

MOR Operator Layer Equation:

N (l+1)(v(l))(x) = F−1(g(l+1) · F(h(l+1) ◦ v(l)))(x) (2.11)

Note that the multiplication operation in the operator 2.11 is a matrix multiplication;

recall 2.1 g(l+1)(k) ∈ Cd(l+1)
v ×d(l)

v and F(h(l+1) ◦ v(l+1))(k) ∈ Rd(l)
v . This is comparable to

how channel dimensions are handled in Convolutional Neural Networks (CNNs).

MOR Operator Layer + Skip Connection Equation:

Ñ (l+1)(v(l)) = N (l+1)(v(l)) + v(l) (2.12)

We used skip connections throughout the hidden layers. But due to changing channel
dimensions it cannot them apply to the first or last layer.

MOR Operator (aka Expert) Equation:

Ñ (l+1)(v(l)) = N (l+1)(v(l)) + v(l) (skip connection layer)

N(a) = (N (0) ◦ Ñ (1) ◦ ... ◦ Ñ (n−1) ◦ N (n))(a) = u, s.t.

d(l)v = dhidden : 0 < ∀l < n (channel dimensions)

d(0)v = din, d
(n)
v = dout (channel dimensions)

(2.13)

D. Deighan, J. Actor, & R. Patel 315

Gating Network Equation:

G(x) : Rd →Rñ, s.t. Ni ∈ {Nj}ñj=1

G̃(x) =
eG(x)

∑ñ
i=1 e

Gi(x)

(2.14)

The gating network takes the coordinates as inputs and produces a Softmax weight vector
that is used to get a weighted combination of expert (aka Ni) outputs at location x ∈ Rd.
The Gating network does not take a as input, it only uses the location x which is sufficient
to partition the space for different experts.

Fig. 2.3. Mixture of Experts Diagram: Unlike regular Mixture of Experts [15] the weights are
spatially localized and the gating network Gi(x) doesn’t see the actual input (a(x)).

3. Results.

3.1. 2D MOR-Physics Operator Problem. We generate synthetic 2d data con-
sisting of pairs of functions on the unit disk that vanish on the boundary, as discussed in
Section 2.1.1 and train our mixture of experts model to fit the operator, P(a) ≈ u. The data
have activity in the center but have zero boundary conditions, ∀x ∈ ∂D, a(x) = u(x) = 0.
This process generates pairs (a,u) that are suitable for training models and conducting
further analysis because they are non-periodic and need different experts to fit different
regions.

Fig. 3.1. (Left) input and (Right) output functions from 2d synthetic data.

316 Mixture Of Neural Operator Experts For Nontrivial Boundary Conditions And Model Selection

Fig. 3.2. (Left) Test data and (Right) prediction 2d synthetic exemplar. Top and Bottom are results
from different test data samples.

Fig. 3.3. 2d Expert Partitions: We investigated the gating network’s partitioning of the problem to see
if it choose different experts for the domain and boundary layer. The results confirm our hypothesis that it
would learn these partitions and use the special ”Zero Expert” near the boundary. It seems the expert #2
is mostly used between the other two, although it primarily relies on the other two overall.

As can be seen in Figure 3.2 the model was able to flawlessly fit the problem. In fact
it achieved a validation R2 > 99.999% implying it explained that percent of the variance,
which is essentially a perfect fit. And as seen in 3.3 it was clearly able to assign the “Zero
Expert” Z(a) = 0, Z : A→ U to the boundaries as was intended.

3.2. Large Eddy Simulation. Figures 3.6,3.9, and 3.12 compare the x, y, and z
components of velocity between our LES model and the JHTDB data. We find our model
is able to closely match the true DNS evolution. It is evident from all these figures that the
learned simulation is able to largely avoid divergence, because it is clearly able to reproduce
late simulation artifacts found in the DNS. This is at least partially attributable to the extra
auto-regressive timesteps taken during training to stabilize prediction (effectively teaching
it to correct its own errors). However, it is important not to forget that this model also
achieved validation R2 = 98.81% (i.e. it explains 98.81% of the variance). The only catch
here is that the model was tasked with reproducing the simulation it had been trained on
(since there was only one simulation from JHTDB with these settings). Even so, this is
impressive as 20% of the simulation was held out from the training data.

D. Deighan, J. Actor, & R. Patel 317

Fig. 3.4. Learned Simulation: X Velocity

Fig. 3.5. DNS: X Velocity

Fig. 3.6. Comparison of X velocity field from learned simulation vs DNS from JHTDB.

318 Mixture Of Neural Operator Experts For Nontrivial Boundary Conditions And Model Selection

Fig. 3.7. Learned Simulation: Y Velocity

Fig. 3.8. DNS: Y Velocity

Fig. 3.9. Comparison of Y velocity field from learned simulation vs DNS from JHTDB.

D. Deighan, J. Actor, & R. Patel 319

Fig. 3.10. Learned Simulation: Y Velocity

Fig. 3.11. DNS: Y Velocity

Fig. 3.12. Comparison of Y velocity field from learned simulation vs DNS from JHTDB.

3.3. Model Expert Partitions. We inspect the gating network’s partitioning of the
domain in order to investigate whether it was partitioning the space differently between the
domain and boundary layer. And in particular, if it happened to learn how to use the Zero
Expert we included. The partitions are shown in 3.13.

Fig. 3.13. 3d Expert Partitions: Here ”expert #0” is the Zero Expert. While this version of the model
didn’t learn to utilize the Zero Expert as we had hoped, it did definitely learn to partition the space based on
the boundary layer. It can be seen that it used N1 for predictions inside the domain and N2 for predictions
inside the boundary layer. Furthermore the transition from N1 to N2 is continuous roughly approximating
the strength of the velocity at those points in the simulation.

320 Mixture Of Neural Operator Experts For Nontrivial Boundary Conditions And Model Selection

3.4. Model Training Metrics. In 3.16 and 3.19 we show the results when we apply
our Mixture of Experts MOR-Physics Operator method to the full 3d JHTDB channel flow
problem. In particular, we show the training and validation metrics of the best model we
trained on the Kahuna supercomputer. Notably there seems to be almost no discrepancy
between the training and validation performance which indicates good generalization.

Fig. 3.14. Train R2 vs Step Fig. 3.15. Validation R2 vs Step

Fig. 3.16. The metric is defined as: R2(ỹ, y) = 1−∑
i(ỹi − yi)

2V ar[y] ∈ (−∞, 1]
R2 = 1 implies perfect prediction, R2 = 0 indicates your model is no better than f(x) = E[y], and R2 < 0
is even worse. These R2 ≈ 98.8% values are really good! It means that the regression problem is 98.8%
solved. Or strictly speaking that the regression model explains 98.8% of the variance in the y variable.

Fig. 3.17. Train wMAPE vs Step Fig. 3.18. Validation wMAPE vs Step

Fig. 3.19. The metric is defined as: wMAPE(ỹ, y) =
∑n

i=1 |ỹi−yi|∑n
i=1 |yi| ∈ [0, 1] wMAPE (Weighted Mean

Absolute Percentage Error) measures the weighted percentage difference between predicted and actual values.
A wMAPE of 0% indicates perfect prediction, while higher values reflect larger deviations from the actual
values. In these plots wMAPE steadily decreases, eventually converging around 0.01 after 92,000 steps. This
final value indicates that the model’s predictions are, on average, within 1% of the true values, representing
a very good result!

4. Conclusion. In this work, we addressed the challenge of learning non-periodic
boundary conditions and discontinuities in PDE simulations using a Mixture of Experts
(MoE) approach, specifically applied to the MOR-Physics neural operator. The motivation
for this work stems from the limitations of traditional Fourier-based PDE solvers, which
struggle with non-periodic boundary conditions, such as those found in Navier-Stokes sim-
ulations. By integrating a forward Euler PDE solver and applying a correction operator
at each timestep, we were able to enhance solver accuracy. Our methods were tested on
both 2D synthetic data and LES for 3D channel flow, demonstrating promising results. The

D. Deighan, J. Actor, & R. Patel 321

model was highly successful in the 2D case, where it flawlessly captured the zero bound-
ary conditions. Furthermore, the 3D channel flow problem yielded auspicious results with
training and validation metrics showing that the model explained 98.8% of the variance in
the target variable and had a final wMAPE of around 1%, indicating a very strong fit to
the data. Similarly in the 3d case the model’s learned simulation reproduced the original
simulation so well it was almost indistinguishable from the original.

5. Future Work. Future efforts will focus on expanding this research in a few areas:

• Uncertainty Quantification (UQ) Using a Mixture of Experts Ensemble
+ VI: We aim to explore the uncertainty quantification capabilities of our Mixture
of Experts method by validating the UQ against known results and determining the
model’s confidence in its predictions.

• Energy Spectrum figures to determine if the flow statistics match between the
learned simulation and the actual DNS data.

• Publication: The results and findings from this ongoing work are being prepared
for publication, which will provide a more comprehensive evaluation of our approach
and its implications for PDE modeling and neural operators.

REFERENCES

[1] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, Scheduled sampling for sequence prediction with
recurrent neural networks, Advances in neural information processing systems, 28 (2015).

[2] T. Fan, N. Trask, M. D’Elia, and E. Darve, Probabilistic partition of unity networks for high-
dimensional regression problems, International Journal for Numerical Methods in Engineering,
124 (2023), pp. 2215–2236.

[3] S. Fort, H. Hu, and B. Lakshminarayanan, Deep ensembles: A loss landscape perspective, arXiv
preprint arXiv:1912.02757, (2019).

[4] P. Goyal, Accurate, large minibatch sg d: training imagenet in 1 hour, arXiv preprint
arXiv:1706.02677, (2017).

[5] J. Graham, K. Kanov, X. Yang, M. Lee, N. Malaya, C. Lalescu, R. Burns, G. Eyink, A. Szalay,
R. Moser, et al., A web services accessible database of turbulent channel flow and its use for
testing a new integral wall model for les, Journal of Turbulence, 17 (2016), pp. 181–215.

[6] K. Lee, N. A. Trask, R. G. Patel, M. A. Gulian, and E. C. Cyr, Partition of unity networks:
deep hp-approximation, arXiv preprint arXiv:2101.11256, (2021).

[7] Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink,
A public turbulence database cluster and applications to study lagrangian evolution of velocity
increments in turbulence, Journal of Turbulence, (2008), p. N31.

[8] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar, Fourier neural operator for parametric partial differential equations, arXiv preprint
arXiv:2010.08895, (2020).

[9] Z. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu, K. Azizzadenesheli, and A. Anandkumar,
Physics-informed neural operator for learning partial differential equations, ACM/JMS Journal
of Data Science, 1 (2024), pp. 1–27.

[10] L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, and G. E. Karniadakis, A comprehen-
sive and fair comparison of two neural operators (with practical extensions) based on fair data,
Computer Methods in Applied Mechanics and Engineering, 393 (2022), p. 114778.

[11] R. G. Patel and O. Desjardins, Nonlinear integro-differential operator regression with neural net-
works, arXiv preprint arXiv:1810.08552, (2018).

[12] R. G. Patel, N. A. Trask, M. A. Wood, and E. C. Cyr, A physics-informed operator regression
framework for extracting data-driven continuum models, Computer Methods in Applied Mechanics
and Engineering, 373 (2021), p. 113500.

[13] E. Perlman, R. Burns, Y. Li, and C. Meneveau, Data exploration of turbulence simulations using
a database cluster, in Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, 2007,
pp. 1–11.

[14] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations, Journal of Computational physics, 378 (2019), pp. 686–707.

322 Mixture Of Neural Operator Experts For Nontrivial Boundary Conditions And Model Selection

[15] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean, Out-
rageously large neural networks: The sparsely-gated mixture-of-experts layer, arXiv preprint
arXiv:1701.06538, (2017).

[16] L. N. Smith and N. Topin, Super-convergence: Very fast training of neural networks using large
learning rates, in Artificial intelligence and machine learning for multi-domain operations appli-
cations, vol. 11006, SPIE, 2019, pp. 369–386.

[17] Y. Zhao, A. Gu, R. Varma, L. Luo, C.-C. Huang, M. Xu, L. Wright, H. Shojanazeri, M. Ott,
S. Shleifer, et al., Pytorch fsdp: experiences on scaling fully sharded data parallel, arXiv
preprint arXiv:2304.11277, (2023).

D. Deighan, J. Actor, & R. Patel 323

EXPLORING MACHINE LEARNING SURROGATES FOR MOLECULAR
DYNAMICS SIMULATIONS

ARTHUR FEENEY∗ AND SIVA RAJAMANICKAM†

Abstract.

Molecular dynamics (MD) simulations are often restricted to integration timesteps that are smaller
than the vibrational frequency of atoms—on the order of femtoseconds (10−15 seconds). However, scientists
and engineers are interested in phenomena that occur over much longer timescales. This difference in
time scales means that MD simulations often require many millions of integration timesteps. This work
explores accelerating MD simulations via data-driven techniques to approximate the time-evolution and
enable taking very large timesteps. We show that it is possible to reproduce the long-time dynamics of
single-chain polymers. We also present an E(3)-equivarient model, that is equivariant with respect to a
history of atom positions. Finally, we discuss possible future directions to overcome current limitations.

1. Introduction. Molecular dynamics (MD) simulations are often restricted to inte-
gration timesteps that are smaller than the vibrational frequency of atoms—on the order
of femtoseconds (10−15 seconds). However, scientists and engineers are interested in phe-
nomena that occur over much larger timescales: as an extreme example, protein-ligand
association may occur over 101−103 seconds. This difference in time scales means that MD
simulations often require many millions of timesteps. This problem has been studied for
decades, so there are a number of existing approaches to alleviate this “timescale barrier.”
One approach is to make each integration step faster, which may involve using better hard-
ware or developing software optimizations [5]. A second approach is using strategies like
coarse graining [2], where the coarsened system may have smoother vibrational frequencies
and thus can be simulated using larger timesteps. A third approach is accelerated MD
[4, 7], which accelerates how quickly an MD simulation can explore the configuration space
by reducing energy barriers between states.

This work attempts to accelerate MD simulations by taking much larger timesteps, at
the expense of accuracy. We explore approximating the time-evolution operator, T∆t, using
machine learning. For a fixed timestep ∆t, which is ideally much larger than the maximum
timestep that can be used with a standard MD simulator, we step forward in time via
repeated application of this operator x(∆tN) = TN

∆t(x(0)), where x(t) is the positions of all
particles at time t and N is the number of times the operator is applied.

We note that reproducing a particular trajectory is effectively impossible due to the
chaotic nature of MD simulations. Thus, our goal is only to produce representative tra-
jectories, from which we can compute approximations of desired properties. A potential
advantage of this, compared to learning to predict properties directly from a configuration,
is that we can avoid categorizing properties before training. After we have trained our
model, the produced trajectories can be used for more general analysis.

This work is an extension of recent work by Fu [3], which explores a similar idea to
accelerate MD simulations. Their major contributions that we use were the use of coarse-
graining and having separate “encoder module” (which does the coarse-graining) and “dy-
namics module” (which is used for a coarse-grained forward simulation). An additional goal
of this project is to explore what may be necessary to build a potential “foundation model”
for surrogates of MD simulations. By this, we essentially mean a model that can handle
a variety of materials and conditions without having to make problem-specific architecture
and modeling choices. This is of course a more distant goal.

∗University of California Irvine, afeeney@uci.edu
†Sandia National Laboratories, srajama@sandia.gov

324 CSRI Summer Proceedings 2024

RGS: 24 RGS: 31 RGS: 68

Fig. 2.1: Several class II polymers [10] with different radii of gyration. From left to right,
these polymers are those with RGS values that had the minimum, median, and maximum
variance over the course of a full simulation. So, the left-most polymer tends to be clumped
together while the right-most fluctuates. The atom colors correspond to different particle
types.

0 2000 4000 6000 8000 10000
Timestep t (/500)

0

20

40

60

80

100

120

Va
r(r

2 g
([1

,t
]))

0 2000 4000 6000 8000 10000
Timestep t (/500)

25

30

35

40

45

M
ea

n(
r2 g

([1
,t

]))

Fig. 2.2: Illustrating the time to convergence of r2g for three polymers from our dataset [3],
with the minimum (blue), maximum (red), and median (green) r2g variance. In order to
get good approximations of r2g the simulations must be run for sufficiently long so that the
mean and variance nearly converge. The y-axes correspond to the variance (left) or mean
(right) through to the first t timesteps.

2. Background.

2.1. Polymers. A polymer is a large molecule composed of many identical parts called
monomers. For instance, polyethylene is a polymer chain with monomers of C2H4. In a
simulation, a polymer chain may consist of atoms linked by rigid bonds. The angle between
bonds θ and the torsional angle ϕ defined by three adjacent bonds are both allowed to vary.
In addition to the potential for interatomic forces U , there is a bond angle potential Uθ and
a potential for the torsional angles Uϕ [1].

The metric we are interested in is the distribution of the radius of gyration squared
(RGS), which we denote r2g . The RGS can be informative for understanding rheological
behavior of polymers, because it can be related to the onset of chain entanglements and
gelation [10]. The RGS requires sufficiently long simulations to reliably reach good ap-
proximations. This time to convergence is illustrated in Figure 2.2, which shows that the
time-averaged mean and variance of the RGS take several million τ to converge. We show
several single-chain polymers with varying radii of gyration in Figure 2.1.

Our dataset consists of single-chain polymers in a solvent liquid. Instead of explicitly
modelling all of the solvent particles, they are handled implicitly via a Langevin thermostat.

A. Feeney & S. Rajamanickam 325

ẍ(t) = f(x, t)− αẋ(t) + β(t) (2.1)

This equation essentially says that the atoms’ acceleration depends on the various in-
teratomic forces, a damping term α ≥ 0, and a noise term β that has zero mean and is
uncorrelated between timesteps. The “random” interactions between the solvent and poly-
mer are handled implcitly by the noise term. In practice, we found that handling this
non-determinism makes it challenging for an ML model to reproduce the dynamics of a
system.

2.2. Graph Neural Networks. Graph neural networks can be applied to graph struc-
tured data G = (V,E). Graph neural networks process graphs via “message passing,” which
propagates information along edges. The update of a vertex i ∈ V , based on it’s neighbors
N(i), may look like

mij = f(vi, vj , eij)

mi =
∑

j∈N(i)

mij
(2.2)

The result mi is the new representation of node i and mij is the message from node
j to node i. The vi and vj correspond to node attributes, which may be encodings of
positions, node types, velocities, etc. The eij are edge attributes, which could be the length
of the edge. When applying graph neural networks to MD problems, the vertices V often
correspond to atoms. Edges may be defined somewhat arbitrarily depending on the problem;
they could correspond to bonds, interatomic forces, or auxiliary edges that are only intended
to propagate information.

2.3. Equivariance. For many physics applications, it can be beneficial to construct
machine learning models that are explicitly equivariant to classical groups [6, 9]. Ideally, our
models should be robust to changes in orientation of the simulation box. So, we are primarily
concerned with the three-dimensional Euclidean group E(3), which includes rotations and
translations.

Definition 2.1 (Equivariance). A function f : X → X is equivariant with respect
to a group G if for all g ∈ G and x ∈ X, we have f(ρ(g)x) = ρ(g)f(x) where ρ(g) is the
representation of g in X.

Similarly, f is invariant with respect to G if f(ρ(g)x) = f(x). A simple way to construct
an equivariant GNN is based on “scalarization” [9, 6], which relies on the fact the an
equivariant vector times an invariant scalar results in an equivariant vector.

3. Methods. This work is exploratory and we are mostly interested in looking at
what works and what does not. Thus, we make some simplifying assumptions. First, the
model does not take force information as input. This makes it possible to avoid force
calculations altogether, since the model should be able to infer it from position information.
Second, because of the prior assumption, we are limited to datasets that consist of “similar”
problems. I.e., we cannot the potential function. Third, it is acceptable to not satisfy
conservation laws as long as we can match the expected trends. Fourth, we assume rare
events will not be an issue. In some problems, phenomena like diffusion may occur relatively
infrequently, making it difficult for a model to learn it well. For the polymer dataset, such
rare phenomena are mostly absent.

326 Exploring Machine Learning Surrogates For Molecular Dynamics Simulations

3.1. Auto-regressive Model. We have a dataset of simulations, from which we sam-
ple a range of timesteps to use as input for training. The model processes this history
and approximates the atom positions in the next timestep. After a model is trained, we
evaluate it via a timestepping method. The machine-learning community calls this an “auto-
regressive” model. This is similar to numerical integrators. We step forward in time, using
the model’s most recent output as a new input. This is a very common strategy for handling
forward dynamics with machine learning.

3.2. Modeling Langevin Dynamics. As discussed in section 2.1, the polymer sim-
ulations use a Langevin thermostat to model an implicit solvent [8]. This introduces non-
determinism into the simulations, which over large timesteps can be moderately large. In
practice, this non-determinism seems difficult for a standard ML model to handle, as shown
in Figure 4.1.

In order to handle this non-determinism, we have the model output a mean and variance
for a Gaussian distribution for the particle accelerations: mt+1, σt+1 = T (xt) and sample
ẍt+1 ∼ N (mt+1, σt+1). This acceleration is plugged into the semi-implicit Euler integrator
to get the new particle positions [3]. LAMMPS’ implementation of the langevin thermostat
uses a uniform distribution, but to the best of our knowledge it is not possible train a model
to output a uniform distribution, and either a uniform or normal distribution can be used
with Langevin dynamics.

3.3. Coarse-Graining. Coarse-graining is a common strategy used in polymer simu-
lations to reduce the degrees of freedon, while preserving the fundamental physics [2]. This
takes the form of clustering “fine-grained” atoms into larger “coarse-grained” atoms. We
borrow this idea from Fu [3], but it is relevant to discuss here because of the potential im-
pact on equivariance. The encoder network is only applied to invariant node features. The
coarse graining process only uses the the adjacency pattern, so it is certainly invariant to
translations of particle positions and will have no effect on the equivariance of the model.

3.4. History. Since we use coarse-graining, the problem becomes non-Markovian. So,
passing in history information becomes necessary (or at least beneficial). Unfortunately,
equivariant GNNs are typically only constructed to handle a single input coordinate asso-
ciated with each node. We make an extension so that each node can be E(3)-equivariant
with respect to a short history of positions.

3.5. Equivariant GNN. Our equivariant model is similar to EGNN [6], but it should
be able to process a a history of velocities for each node. We restate two relevant lem-
mas from [9], essentially highlighting that O(d)-equivariant vector-valued functions can be
expressed as a function of scalar products.

Lemma 3.1. An O(d)-invariant scalar function of V ∈ Rn×d, denoted f(V), can be writ-
ten as a function g of the scalar products of the vi: f(V) = g((⟨vi, vj⟩)i,j∈[n]) = g(V V ⊤).

Lemma 3.2. An O(d)-equivariant vector-valued function, h, can be written as h(V) =∑
t∈[n] ft(V)vt =

∑
t∈[n] g(V V

⊤)vt
Using these Lemmas, we can construct an O(d)-equivariant layer. Since we process a

history of positions for each node, we can compute “velocities” by computing a difference
between timesteps to make the model translation equivariant. Thus, the layer we will
describe can be made E(3)-equivariant.

The input to layer l of our model is a graph G = (V,E). Each node i ∈ V has an
associated history Hl

i ∈ RT×d capturing the node’s (possibly noisy) d-dimensional position
over the prior T timesteps. For edges (i, j) ∈ E we can compute the O(d)-equivariant
features Vij = Hl

i −Hl
j . The product VijV

⊤
ij is O(d)-invariant. Based on Lemmas 3.1 and

3.2, our equivariant layer then has a form similar to EGNN.

A. Feeney & S. Rajamanickam 327

mij = ϕ1(VijV
⊤
ij)

Hl+1
i = Hl

i + C
∑

j∈N(i)

diag(ϕ2(mij))Vij
(3.1)

The functions ϕi are standard MLPs and N(i) denotes the set of neighbors of node i. C
is just a chosen constant and can be set to |N(i)|−1 [6]. We scale Vij by a diagonal matrix,
rather than a scalar, in an effort to improve expressivity.

4. Experiments. The experiments are primarily intended to demonstrate feasibility
of MD surrogates.

4.1. Dataset. We look at a polymer dataset from [10]. We show several polymers
from the test dataset in Figure 2.1. There are 100 simulations used for training and 40 used
for testing. The training simulations are short and only run for 50, 000τ . The simulations
used for testing are run for 5, 000, 000τ . The LAMMPS simulations use a timestep of 0.01τ
and our model uses a timestep of 5τ , or 500× larger. (Since one inference of an ML model
is slower than a LAMMPS timestep, the hypothetical speedup may be much less than
500x.) The LAMMPS simulations use a Langevin thermostat to model interactions with an
implicit solvent [8]. This introduces some non-determinism to the simulations that we found
adds an additional challenge to faithfully approximating the dynamics and estimating the
distribution of the RGS.

4.2. Non-determinism. An unexpected challenge with this problem is handling the
noise present in Langevin dynamics. We found that using a standard deterministic model
typically fails to capture the distribution of the RGS. To illustrate this, we compare two
rollouts of the same trained model in Figure 4.1. Recall that the model produces a mean and
standard deviation for a Gaussian distribution. For the deterministic output, we directly use
the predicted mean as the acceleration. For the Gaussian output, we sample an acceleration
from the Gaussian output by the model. The model using a deterministic output clearly fails
to capture the distribution of the RGS, since the variance is extremely small. When sampling
the output from a Gaussian distribution, the model can mimic the dynamics quite well. This
result highlights two key things. First, it is feasible to have an ML model reproduce the
long-time dynamics of MD simulations. Second, it seems that standard models will be
unable to reproduce stochastic dynamics.

4.3. Equivariant Model. We have negative results for our current approach to ro-
tation equivariance. While the model trains well and achieves a similar one-step validation
loss to the non-equivariant model, it is significantly less stable when used in a full test
rollout and the RGS values diverge. When the model performs timestepping, it is using its
past output as new inputs. So, the input distribution will slightly change. It is difficult to
exactly characterize why the model is struggling in the auto-regressive setting. It could be
due to overfitting or greater sensitivity to changes in the input distribution.

5. Related Work. This project is inspired by the massive amount of recent work
looking at creating machine learning-based surrogates for simulations. For continuum PDEs,
there are many variations of Neural Operators and DeepONets. These approaches rely
on having a dataset of existing simulations to train a model. The primary interest in
these surrogates is due to claimed performance improvements compared to numerical solvers
on some problems. There is also work exploring circumventing the timescale barrier by
approximating transfer operators [7], which is similar to our own approach. This work is

328 Exploring Machine Learning Surrogates For Molecular Dynamics Simulations

0 2000 4000 6000 8000 10000
Timestep (/500)

0

2000

4000

6000

8000

10000

12000
r2 g

2
Deterministic Output

0 2000 4000 6000 8000 10000
Timestep (/500)

2000

4000

6000

8000

r2 g
2

Gaussian Output

Fig. 4.1: Example rollouts corresponding the the polymers with the minimum (blue), max-
imum (red), and median (green) variance of r2g over the full simulation. The y-axis shows
the instantaneous r2g times its variance. The opaque lines correspond to the LAMMPS sim-
ulations and the dark lines are the ML model. The deterministic model obviously struggles
to mimic the distribution of the RGS, while the model that samples from a Gaussian can
capture the distribution quite well.

mostly based on the approach taken in [3], which, in addition to the polymer dataset, also
looks at a Li-ion dataset and uses a denoising score model to improve their results.

6. Limitations. As discussed, we made a number of simplifying assumptions including
that the potential function is fixed for all simulations in a dataset. This could be overcome
just by computing forces in each step and passing them into the model. Furthermore, a
trained model is limited to one thermodynamic ensemble. We also assume a fixed timestep.
For some systems, it may be useful to take even larger timesteps or make the timestep a
more flexible choice.

There are also general challenges with gathering data and training. The dataset we
used is on the order of gigabytes, but single MD simulations may be terabytes. Building and
storing a sufficiently large and diverse dataset seems to be a major challenge. Furthermore,
faithfully reproducing dynamics over longer time scales is fairly difficult. As with most
applications of deep learning, more data is better. As an optimistic estimate, training a
surrogate would likely require on the order of several dozen simulations. Our dataset has
around 100 simulations for training. Training a model, even on this fairly simple polymer
dataset, can take over 12 hours. This makes it challenging to perform hyperparameter
tuning or experiment with different modelling approaches. A possible way simplify creating
and storing datasets of more diverse systems could be to consider only extremely coarse
timesteps (like 106 fs).

7. Conclusion and Future Work. The main results highlight that creating a sur-
rogate for MD simulations is feasible. The surrogate model can reproduce the variation
and expectation of the radius of gyration for unseen polymer systems. We also identify
some notable challenges for “foundation models.” A major hurdle will be handling both
stochastic and deterministic dynamics. The results indicate that standard supervised train-
ing “input-output” pairs does not reproduce the dynamics of a stochastic system. In future
work, it could be beneficial to prioritize stochastic systems, and treat deterministic systems
as a special case with zero noise.

A. Feeney & S. Rajamanickam 329

REFERENCES

[1] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, 06
2017.

[2] S. Dhamankar and M. A. Webb, Chemically specific coarse-graining of polymers: Methods and
prospects, Journal of Polymer Science, 59 (2021), pp. 2613–2643.

[3] X. Fu, T. Xie, N. J. Rebello, B. Olsen, and T. S. Jaakkola, Simulate time-integrated coarse-
grained molecular dynamics with multi-scale graph networks, Transactions on Machine Learning
Research, (2023).

[4] D. Perez, B. P. Uberuaga, Y. Shim, J. G. Amar, and A. F. Voter, in Chapter 4 Accelerated
Molecular Dynamics Methods: Introduction and Recent Developments, R. A. Wheeler, ed., vol. 5
of Annual Reports in Computational Chemistry, Elsevier, 2009, pp. 79–98.

[5] K. Santos, S. Moore, T. Oppelstrup, A. Sharifian, I. Sharapov, A. Thompson, D. Z. Kalchev,
D. Perez, R. Schreiber, S. Pakin, E. A. Leon, J. H. L. I. au2, M. James, and S. Rajaman-
ickam, Breaking the molecular dynamics timescale barrier using a wafer-scale system, 2024.

[6] V. G. Satorras, E. Hoogeboom, and M. Welling, E(n) equivariant graph neural networks, CoRR,
abs/2102.09844 (2021).

[7] C. Schütte, S. Klus, and C. Hartmann, Overcoming the timescale barrier in molecular dynam-
ics: Transfer operators, variational principles and machine learning, Acta Numerica, 32 (2023),
p. 517–673.

[8] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier,
P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens,
J. Tranchida, C. Trott, and S. J. Plimpton, LAMMPS - a flexible simulation tool for particle-
based materials modeling at the atomic, meso, and continuum scales, Comp. Phys. Comm., 271
(2022), p. 108171.

[9] S. Villar, D. W. Hogg, K. Storey-Fisher, W. Yao, and B. Blum-Smith, Scalars are universal:
equivariant machine learning, structured like classical physics, Neural Information Processing
Systems, (2021).

[10] M. A. Webb, N. E. Jackson, P. S. Gil, and J. J. de Pablo, Targeted sequence design within the
coarse-grained polymer genome, Science Advances, 6 (2020), p. eabc6216.

330 Exploring Machine Learning Surrogates For Molecular Dynamics Simulations

DESIGNING A MACHINE-LEARNED INTERATOMIC POTENTIAL FOR
GOLD-PROMOTED NICKEL CATALYSTS UTILIZING MAGNETIC

TRAINING DATA

ISABELLA FURRICK∗, MITCHELL WOOD† , AND ALYSSA HENSLEY‡

Abstract. The hydrogen oxidation reaction (HOR) plays a critical role in various fossil-fuel replace-
ment technologies, including hydrogen fuel cells and biofuel upgrading processes. To enhance the accessi-
bility of these technologies, nickel (Ni) catalysts doped with gold (Au) offer a cost-effective alternative to
the conventional, yet expensive, platinum catalysts. However, during HOR, such NiAu catalysts undergo
adsorbate-driven surface reconstruction, where atoms in the subsurface migrate to the surface or vice versa.
This phenomenon is difficult to capture via computational models due to the large length- and time-scales
needed. Here, we overcome the limitations of length- and time-scales in computational models of NiAu
catalysts by developing a machine learned interatomic potential (ML-IAP). A key question associated with
developing ML-IAPs for Ni-based systems is whether or not inclusion of Ni’s magnetism within the ML-IAP
training data is necessary to accurately capture the structure and energies of NiAu nanoparticles. Here,
we address this issue by developing a ML-IAP from spin-polarized first-principles calculations. To evaluate
the impact of including magnetism in the training data on ML-IAP model accuracy, we plan to benchmark
this spin-inclusive model against a comparable ML-IAP that does not account for spin in future work.
We developed a comprehensive training dataset of over 60,000 data points and used the ML-IAP fitting
software, FitSNAP, to create a linear Atomic Cluster Expansion (ACE) potential from this data. The po-
tential was then applied to various structures using the molecular dynamics code, LAMMPS, with fourteen
system-specific objective functions optimized through the optimization software, Dakota, to refine the model
parameters. Our final model successfully predicted 11 out of 12 energy-related objective functions within
0.03 eV/atom. Additionally, it accurately captured the behavior of NiAu systems across a range of sizes,
compositions, structures, and temperatures. This work paves the way to address two critical questions in
the large-scale modeling of Ni-based catalyst systems: is incorporating magnetism within the training data
essential for achieving an accurate ML-IAP model, and can we develop a computational model capable of
capturing NiAu catalyst surface reconstruction during HOR? These advancements promise to enhance cat-
alyst performance, thus driving sustainable energy technology and leading us towards a carbon-free future.

1. Introduction. Energy derived from fossil fuels contributes to global warming and
energy security concerns [1]. Alternative energy sources are being explored by researchers
across the world with hydrogen fuel cells and biofuels being two promising options. A key
reaction for both technologies is the hydrogen oxidation reaction (HOR). Hydrogen fuel
cells produce energy by splitting hydrogen (H2) into protons and electrons at the anode and
then recombining them with oxygen (O2) at the cathode via HOR. This technology offers
an efficient and environmentally friendly method for energy conversion with water (H2O)
as the only by-product [2, 3]. Biofuels are derived from renewable biological sources such
as plant matter. To improve their suitability for use in internal combustion engines, H2

is used to reduce the oxygen content of bio-oils via hydrodeoxygenation (HDO) [4, 5]. In
both applications, a heterogeneous catalyst is required to facilitate HOR, with platinum
(Pt) being the most efficient and widely used material [6]. However, the scarcity and high
cost of Pt increases the price of sustainable energy technologies, limiting their widespread
use [7, 8]. Thus, it is critical to find a cheaper alternative to Pt.

Nickel (Ni) is a promising alternative catalyst material for HOR because it is abundant,
cost-effective, and highly stable in alkaline environments and near the HOR equilibrium
potential [9, 10]. However, it does not achieve the same level of selectivity and yield as
Pt. One effective method for enhancing the performance of a pure Ni catalyst is doping
it with a secondary promoter metal [11]. A study by Furrick et al. demonstrated that
adding just 6% gold (Au) to a Ni catalyst led to significant improvements in performance,

∗Stevens Institute of Technology, ifurrick@stevens.edu
†Sandia National Lab, mitwood@sandia.gov
‡Stevens Institute of Technology, ahensley@stevens.edu

CSRI Summer Proceedings 2024 331

specifically increasing turnover frequency [12]. Introducing a secondary metal into a catalytic
system adds a layer of complexity to the design. During reaction, when molecules are
adsorbing to and desorbing from the catalyst surface, bimetallic catalysts may undergo a
phenomenon known as surface reconstruction, where metal atoms from the subsurface move
to the surface and vice versa [13, 14, 15]. The composition and structure of the catalytic
surface directly affect reaction kinetics, and bimetallic systems achieve optimal performance
when their constituent metals are arranged in specific configurations. Specifically, for Ni
catalysts, dopants have a more pronounced effect on HOR when located in the surface layer
of the catalyst [12]. Though extremely difficult to probe experimentally, understanding and
accounting for in situ surface reconstruction is crucial for the design of bimetallic catalysts.
Therefore, we aim to develop a model to study surface reconstruction in NiAu catalysts.

Quantum mechanical calculations, such as density functional theory (DFT) and Ab
Initio Molecular Dynamics (AIMD), provide the most accurate energetic characterization
of systems but are computationally expensive. These methods have limitations regarding
the size and timescales of systems that can be modeled. Surface reconstruction occurs
across entire catalytic nanoparticles which are too large to be modeled with first-principles
calculations. Molecular Dynamics (MD) simulations can model larger systems and longer
time scales but with less accuracy. In MD simulations, the interatomic potential (IAP)
calculates the forces and energies on atoms and defines the physical properties of the system.
Here, we take a multiscale modeling approach by employing machine learning (ML) to train
an IAP based on a database of DFT and AIMD calculations, bridging the gap between
quantum mechanical and molecular dynamics methods.

One of the key challenges in computationally modeling Ni-based systems is accurately
capturing the magnetic properties of Ni. Ni is ferromagnetic, meaning it retains its mag-
netism even without an external magnetic field, a phenomenon known as spontaneous mag-
netization [16, 17]. The magnetic moment of a Ni atom originates from the unpaired elec-
trons in its 3d orbital. In ferromagnetic materials like Ni, when the orbitals from the
unpaired valence electrons of adjacent atoms overlap, the total energy with respect to the
distribution of charge is minimized when electrons have parallel spins. Computationally
searching for these minimum energy states can be accomplished within DFT and AIMD
simulations but is often challenging due to the need to find self-consistent charge densities
that strongly interact with itself, subject to these constraints on spin. Critically, it remains
unknown how the inclusion or exclusion of magnetism and spin in Ni atoms within the DFT
and AIMD training data impacts the accuracy of ML-IAPs when modeling catalytic behav-
iors such as surface reconstruction. The long-term objective of our study aims to shed light
on this uncertainty by comparing predictions for NiAu catalyst reconstruction during HOR
from separate ML-IAPs developed from two distinct training data: magnetic and nonmag-
netic. This specific project accomplished a major component of our long-term objective by
developing an accurate NiAu ML-IAP trained on solely magnetic DFT and AIMD data.

2. Methods. The long-term objective of this ongoing project is to develop a three-
element (Ni, Au, O) potential to study surface reconstruction during HOR on an O-covered
NiAu nanoparticle. A logical starting point for developing a new multi-element potential
is to address the constituent elements with similar bonding characteristics before trying to
generalize it. As such, we will construct training data and optimize potentials specific to the
NiAu binary alloy. Two NiAu potentials were constructed to assess whether incorporating
magnetism in the training data is necessary in the final potential: a magnetic potential,
where Ni atoms are modeled with spin, and a non-magnetic potential, where spin is not in-
cluded for Ni atoms. In both potentials, Au is modeled without spin, as it is non-magnetic.
These differences come down to how the DFT training data is generated, which will di-

332Designing AMachine-learned Interatomic Potential For Gold-promoted Nickel Catalysts Utilizing Magnetic Training Data

rectly translate to differences in the pair of potentials. For simplicity, neither potential will
explicitly resolve the spin dynamics [18], but observations of the differing predictions may
motivate this more complex modeling method in MD. This report will detail the process of
developing the magnetic two-element NiAu potential.

2.1. Atomic Cluster Expansion (ACE). An interatomic potential is needed by ev-
ery classical molecular dynamics simulation. The model form of these potentials has evolved
over time from analytic forms of simple bonding types such as dispersion and electrostat-
ics (Lenard-Jones[19], Coulomb[20]) to complex machine learned [21] versions. In the past
decade, such data-driven models have shown remarkable accuracy while offering a favorable
balance between precision and computational cost [22]. A ML-IAP has three key compo-
nents 1) a training set that contains ground truth values of total energy and forces per
atom, 2) A set of descriptors (features) that serve as input to 3) a model form that outputs
per-atom energy and force. Constructing the training set that captures the desired material
properties and end use cases is non-trivial, and will be explained in detail in subsequent
sections.

For simplicity we will adopt a linear model form versus a more complex neural net-
work, though the same procedures outlined here apply to the training of either model form.
Which leaves the choice of descriptor set, where special attention to the accuracy versus
computational cost of constructing this basis set is needed. Many suitable options exist
in the literature, and our search is narrowed by their availability in LAMMPS[23, 24]. A
zoo of acronyms exist to define these descriptor sets; SNAP[25], GAP[26], POD[27]. The
’parent’ set to all of these atom-centered bases is the Atomic Cluster Expansion (ACE)
method[28, 29, 30]. Much like our quantum-chemical understanding of localized electron
orbitals, the ACE descriptor set combines the radial and angular components into rotation
and permutation invariant functions. Rather than capturing the electron density around an
atom, the ACE basis is used to capture the density of neighboring atoms that surround a
central atom. Equation 2.1 captures the basic representation of the tensor products that
comprise each ACE basis function.

Φnlm(rN) =

N∏

j=1

Rn(rij)Y
m
l (r̂ij) (2.1)

The product of basis functions for Φ is evaluated for each neighboring atom j at distance rij
from the central atom i, where the product extends over all neighbors, N . Full detail of the
mathematical formulation can be found in Goff et. al.[29]. The ACE basis needs truncation
at some upper limit of basis functions–n, l,m–as there are diminishing accuracy returns for
these higher order functions. As such, there are a small number of hyperparameters that
control the number of radial and angular functions to be included in the basis expansion.
The first of which is the distance away from the central atom to expand the neighboring
atom density, known as the radial cutoff, or rcutfac in our fitting code. Importantly, ACE
decomposes the contributions from differing ranks of atomic interactions, which defines the
n, l,m limits in Equation 2.1. For example, the force experienced by an oxygen in a O2

molecule constitutes of a 2-body interaction, and would be mapped onto a rank = 1 ACE
descriptor. Separably, the interactions between triplets (and so forth) of atoms would be
mapped onto higher rank descriptors. Radial basis functions,Rn(rij), are evaluated up to
nmax, defined for each rank of descriptor. Angular functions, Y m

l (r̂ij), are terminated
at lmax which are independently defined for each of the ranks. Lastly, mumax is singly
defined for all ranks. An extension to a chemically informed basis is available in Ref. [29].

I. Furrick, M. Wood, & A. Hensley 333

2.2. Training Data Set. ML-IAPs predict forces and energies in a system by nu-
merically interpolating between quantum-mechanical reference data, typically derived from
high-fidelity density functional theory (DFT) calculations[31]. However, when predicting
properties for new atomic configurations, extrapolation-estimating unknown values based
on observed trends-is often necessary, which can lead to inaccurate or physically implausible
results[32]. To reduce the need for extrapolation, we aimed to effectively span descriptor
space by providing the model with a large, diverse training data set. Descriptor space en-
compasses the full range of possible structures that can be formed from a given composition
of elements at any given set of conditions (i.e. temperature, pressure). By covering a larger
portion of the descriptor space, the model’s need for extrapolation is minimized, leading to
more reliable predictions.

All first principles calculations were carried out using the Vienna Ab Initio Simulation
Package (VASP). Initial DFT calculations were performed on the Dorothy high-performance
computing (HPC) cluster at Stevens Institute of Technology. The electron-electron in-
teractions were modeled using the Revised Perdew-Burke-Ernzerhof (RPBE) exchange-
correlation functional [33]. All calculations were conducted with a minimum plane wave
cutoff energy of 400 eV. Convergence of the wavefunction and charge density within each
self-consistent field step was reached at a total energy tolerance of 10−4 eV. The Methfessel-
Paxton (N = 1) smearing method was applied with a smearing width of 0.1 eV. In this
work, all VASP calculations were spin-polarized to account for the magnetism of Ni, with
the initial magnetic moment of Ni set to 2.0 and Au set to 0.0. The calculations were spin-
polarized with an ISPIN value of 2. We specified the same positive relative orientation for
all Ni atoms which is consistent with ferromagnetic materials. The first Brillouin zone of
all DFT calculations was sampled using a k-point resolution of 0.02 in units of 2πÅ−1.

Training data generally falls into two categories. The first category consists of do-
main knowledge structures, which are based on an understanding of the material system
and include known or anticipated structures such as bulk metals, alloys, surfaces, and ex-
pected defects (e.g., vacancies and substitutions). The second category includes structures
generated by methods like active learning and genetic algorithms, which automate the cre-
ation of training data. These structures are often referred to as beyond domain knowledge
structures[34]. Here, only single-point DFT calculations were performed on all domain and
beyond domain knowledge structures.

For this potential, the domain knowledge structures included four subsets. First, bulk
Au and Ni in three different crystal structures–face-centered cubic (fcc), body-centered cu-
bic (bcc), and hexagonal close-packed (hcp)–were examined with various lattice constants.
Second, substitution defects–where one metal atom within either the fcc Ni or fcc Au crys-
tal structure was replaced with a metal atom of the opposite type–were included for three
supercell sizes: p(2x2x2), p(3x3x3), and p(4x4x4). Third, vacancy defects–where one metal
atom was removed from either the fcc Ni or fcc Au crystal structure–were considered in each
of three supercell sizes: p(2x2x2), p(3x3x3), and p(4x4x4). Fourth, possible bulk alloy crys-
tal structures of Ni3Au and NiAu3 were obtained from Materials Project [35] and included.
The descriptor space covered by the domain expertise DFT data is shown in Figure 2.1B.

To generate beyond domain knowledge structures, a genetic algorithm called Universal
Structure Predictor: Evolutionary Xtallography (UPSEX) was used to predict stable and
metastable structures based solely on chemical composition. For three compositions (Ni,
Au, and NiAu), USPEX was configured to generate 100 structures with between four and
twelve atoms, with a minimum ion distance of 2 angstroms. The descriptor space covered
by the USPEX DFT data is shown in Figure 2.1C.

AIMD simulations provide insight into atomic movements under applied temperature
over short timescales using the forces calculated at the DFT-level. These simulations were

334Designing AMachine-learned Interatomic Potential For Gold-promoted Nickel Catalysts Utilizing Magnetic Training Data

performed with VASP on the Sandia HPC cluster, Amber. The canonical ensemble was
used, keeping the number of atoms, structure volume, and system temperature constant
throughout the simulation. Each simulation was run with 1.0 femtosecond timesteps at two
different temperatures (300K and 1000K), using a minimum cutoff energy of 400 eV. AIMD
simulations were conducted on both domain and beyond domain knowledge structures. For
domain knowledge structures, AIMD data included bulk fcc, bcc, and hcp Ni and Au, slab
calculations for the three fcc crystal facets with the lowest surface energies—(111), (100),
and (110)—for both Ni and Au [36, 37, 38, 39], Ni3Au and NiAu3 alloys, and all substitu-
tion defects. The descriptor space covered by the domain expertise AIMD data is shown
in Figure 2.1D. Additionally, AIMD was run on the beyond domain knowledge structures.
The five USPEX structures from each composition (e.g., Ni, Au, NiAu) with the lowest
formation energy (in eV/atom) were selected for AIMD simulations. The descriptor space
covered by the USPEX AIMD data is shown in Figure 2.1E.

With training data from DFT and AIMD, we compiled a comprehensive training data
set consisting of 60,231 data points (see Table 2.1 for a detailed breakdown of the quantity
of each type). The descriptor space covered by the entire training data set is displayed in
Figure 2.1A. This t-distributed stochastic neighbor embedding (t-SNE) projection of the
data highlights similarities and differences between each category of training data. It is
important to note the volume of descriptor space mapped by AIMD versus other training
data types, which results in less extrapolative predictions and, thus, more stable models.

Table 2.1
Training Data Overview.

Training Data Type Number of Training Data Points

Au Bulk AIMD 2,000

Au Surface AIMD 6,000

Au USPEX AIMD 10,000

Au Ground States 41

Au USPEX 100

NiAu Ground State AIMD 6,006

NiAu USPEX AIMD 10,000

NiAu Ground States 4

NiAu USPEX 100

Ni Bulk AIMD 2,326

Ni Surface AIMD 6,000

Ni USPEX AIMD 9,354

Ni Ground States 41

Ni USPEX 100

Substitution AIMD 8,159

I. Furrick, M. Wood, & A. Hensley 335

Fig. 2.1. Visualization of the NiAu training data set coverage on the ACE descriptor space in 2D
using distance preserving t-SNE analysis. (A) All data. (B) Domain Knowledge DFT (bulk, alloy, vacancy,
and substitution structures). (C) USPEX DFT. (D) Domain Knowledge AIMD (bulk, alloy, surface, and
substitution structures). (E) USPEX AIMD.

2.3. Optimization Methodology. To produce a viable ML-IAP from our NiAu
training data, a number of free variables in an ACE ML-IAP must be optimized. These
generally fall into three categories: hyper-parameters that affect the calculation of the de-
scriptors, group weights that shift the contribution of different components of the DFT
training data within the ML-IAP optimization, and basis set parameters that affect the
number of descriptors generated for a given system. Group weights directly influence the
linear regression (RIDGE regression, L2 regularization penalty of 10−6) by biasing the loss
function toward (or away from) subsets of the training set. The number of these group
weights is unbounded, but we limit the number by collecting similar training data into said

336Designing AMachine-learned Interatomic Potential For Gold-promoted Nickel Catalysts Utilizing Magnetic Training Data

groups.

To enhance model accuracy, we used Dakota- a software toolkit developed by Sandia-
to identify the set of hyper-parameters and group weights that minimize force and energy
errors, along with fourteen additional objective functions errors detailed in Section 3.1.
Specifically, we employed Dakota’s Single Objective Genetic Algorithm (SOGA) function
for such optimization. The hyper-parameters optimized in this study were radial cutoff and
lambda. The radial cutoff determines the number of atoms in a local neighbor list. Atoms
exert energies, forces, and stresses on each other, and the radial cutoff determines how far
an atom can be from another atom before its affect is negligible. The radial cutoff was
scanned over the range 3.0 to 7.0 Å. Lambda determines how much emphasis is placed on
the energies, forces, and stresses from nearby atoms versus those from atoms farther away.
Lambda was scanned over the range 0.0 to 4.0. In an ACE potential, there is a hyper-
parameter set for each element-element interaction type. For this system, there existed one
set of radial cutoffs and lambdas for each of the following interaction types: Ni-Ni, Ni-Au,
Au-Ni, and Au-Au.

Basis set parameters determine the number of ACE descriptors that are generated by
FitSNAP to describe a given system. There is a trade-off between computational cost and
the accuracy that additional descriptors bring to a system. Optimizing basis set parameters
with a genetic algorithm like Dakota can be computationally expensive, thus basis set testing
is done by hand. Three potentials, each using different basis set parameters as described
in Table 2.2, were trained on the complete training dataset. Their hyper-parameters and
group weights were optimized through Dakota to achieve maximum accuracy. To evaluate
the computational cost associated with each basis set, a short, energy-minimization MD run
was performed on a Ni fcc (111) facet containing 36 atoms. The MD simulation was run
on a single core on Sandia’s Amber cluster, and the time (in seconds) it took to run the
simulation was recorded in Table 2.2. To evaluate the accuracy of each basis set, the energy
and force root mean squared errors (RMSEs) were extracted from FitSNAP’s automatically
generated metrics file. The objective function RMSE was calculated based on the fourteen
system-specific objective functions described below in Section 3.1. These three error metrics
were also recorded in Table 2.2

Table 2.2
Basis set optimization parameters and results.

Basis Set 1 Basis Set 2 Basis Set 3

Ranks 1 2 3 4 5 6 1 2 3 4 1 2 3

lmax 1 2 2 2 1 1 1 2 2 2 0 6 2

nmax 22 2 2 2 1 1 22 2 2 2 18 4 2

nmaxbase 22 22 22

Number of Descriptors 876 1082 698

Time to Run MD (seconds) FAILED 24.9119 19.6926

Energy RMSE 0.0437034 0.108847 0.137224

Force RMSE 0.313889 0.232557 0.126694

Objective Function RMSE 3.4590939 2.174479262 1.634084964

I. Furrick, M. Wood, & A. Hensley 337

Basis Set 1 was found to be inadequate for this potential. Despite resulting in the lowest
energy RMSE, it had the highest RMSE values for both force and objective function among
the three basis sets. More importantly, a brief MD simulation on a small Ni fcc facet failed,
suggesting that the potential is unstable. Since this potential cannot be used effectively for
small structures, it is not reliable for the simulations we are interested in, which involve
larger structures, extended time scales, and varying temperature and pressure conditions.
Basis Set 2 successfully completed the MD simulation and achieved lower force and objective
function RMSEs than Basis Set 1. However, it was not selected as the optimal basis set.
Basis Set 3, however, achieved a 25% lower objective function error RMSE compared to
Basis Set 2 and completed the MD simulation approximately 21% faster. Due to its superior
efficiency and accuracy, Basis Set 3 was chosen as the optimal set of parameters for this
potential.

3. Results.

3.1. Objective Functions. The overall accuracy of a ML-IAP is determined by the
potential’s ability to predict known material properties, system stability, and energies/forces.
To evaluate model accuracy in regards to known material properties, we set fourteen ob-
jective functions and tracked their errors over the course of potential development. To test
the model’s capacity for predicting structural properties, we set objective functions for the
lattice parameters of fcc Ni and fcc Au. Predicted lattice constants were obtained through
short LAMMPS simulations on bulk fcc Ni and fcc Au, and we determined the error by
subtracting these predictions from the energy minimizing lattice constants from DFT. For
evaluating the model’s accuracy in predicting the energetic properties of the individual ele-
ments of the system, we created objective functions for the formation energies of bulk Ni and
Au in fcc, bcc, and hcp phases. The predicted energies were derived from short LAMMPS
simulations and compared to DFT-calculated energies. Using the same method, we set ob-
jective functions for the formation energies of Ni3Au and NiAu3 to assess the potential’s
performance in modeling the energetic properties of element combinations in the system.
Additionally, we tested the model’s ability to capture system imperfections by setting ob-
jective functions for the vacancy and substitution energies of fcc Ni and fcc Au, following a
similar methodology to the other systems described above.

To evaluate the progression of the potential over the course of its development, the en-
ergy/force and objective function errors of three successive potentials are compared in the
bar chart shown in Figure 3.1. The potential represented by the teal bars, Potential 1, was
fit on June 18th. It was trained using only domain knowledge and USPEX DFT calculations
(totaling 386 training data points), covering the descriptor space shown in Figure 2.1B and
C. Potential 1 was generated with Basis Set 1 and did not undergo any hyper-parameter or
group weight tuning. The potential represented by the pink bars, Potential 2, was created
on August 8th and was trained using domain knowledge DFT, USPEX DFT, and USPEX
AIMD data, totaling 29,740 training data points and covering the descriptor space shown in
Figure 2.1B, C, and E. This potential utilized Basis Set 3 and underwent tuning of hyper-
parameters and group weights via Dakota. Finally, the potential represented by the orange
bars, Potential 3, was created on August 12th and trained on the entire training dataset,
which includes domain knowledge DFT, USPEX DFT, domain knowledge AIMD, and US-
PEX AIMD. This dataset covers the descriptor space shown in Figure 2.1A, comprising a
total of 60,231 training data points. Like the previous potential, it used Basis Set 3, with
its hyper-parameters and group weights optimized by Dakota.

Among the three potentials, Potential 3 demonstrated the highest accuracy, reporting
the lowest errors in 8 key metrics: force MAE, Ni lattice parameter error, Au lattice param-
eter error, Ni hcp formation energy error, Ni substitution energy error, Au fcc formation

338Designing AMachine-learned Interatomic Potential For Gold-promoted Nickel Catalysts Utilizing Magnetic Training Data

energy error, Ni3Au formation energy error, and NiAu3 formation energy error. It fully out-
performed the other models in objective functions aimed at evaluating the model’s accuracy
in capturing both the structural properties of the system and the energetic properties of
elemental combinations. Furthermore, Potential 3 achieved the second lowest energy errors
for 5 metrics: Ni fcc formation energy error, Ni bcc formation energy error, Ni vacancy
energy error, Au hcp formation energy error, Au vacancy energy error, and Au substitution
energy error. Note, the bar chart in Figure 3.1 is presented on a log scale. In non-log space,
the units are as follows: Energy MAE in eV/atom, Force MAE in eV/Å, Ni/Au lattice pa-
rameter errors in Å, and the remaining metrics in eV/atom. For Potential 3, all formation,
vacancy, and substitution energy objective function errors were below 0.03 eV/atom, with
the exception of the Au substitution energy error, which proved to be particularly challeng-
ing to model accurately. Despite this, the overall level of objective function error achieved
by Potential 3 is remarkably precise, on the order of irreducible error between MD and DFT
predictions. As one moves between computational methods, differences in approximations
made by each method. A small baseline error is expected in all energy errors due to the
underlying theory differences of a true many-body (DFT) interaction and those that are
localized by using a radial cutoff (ML-IAP). Detailed comparisons between DFT calculated
adsorption energies and experimental microcalorimetry measurements show that careful se-
lection of the exchange-correlation functional results in an error of at most 0.2 eV [40].
Thus, the errors predicted by Potential 3 are approximately an order of magnitude smaller
than the acceptable error range typically seen between DFT calculations and experimental
data.

Fig. 3.1. Error metric comparison over the course of potential development.

3.2. Stability Tests. While objective function errors are an excellent way to gauge the
accuracy of a potential, they often do not provide the complete picture. The true purpose of

I. Furrick, M. Wood, & A. Hensley 339

a potential is to apply it to structures outside the training data set and use it in molecular
dynamics simulations under various conditions, such as different temperatures, pressures,
or time scales. A well-trained and optimized potential will be stable and exhibit physically
and chemically realistic behavior under these circumstances.

Potentials can fail in several ways. One common issue is ”black-holing,” where repulsive
forces are poorly represented, causing too many atoms to occupy the same space. In this
case, LAMMPS outputs the following error message: ”Encountered very small distance.
Stopping.” Another failure mode is ”exploding,” which occurs when attractive forces are
inadequately captured, causing atoms to drift apart in space, leading to the error ”ERROR:
Lost atoms.” Lastly, the simulation may complete, but the structure’s behavior may deviate
significantly from realistic physical behavior. For example, this could manifest as a pure
nickel surface melting at an unrealistically low temperature, such as 300 K.

Potential 3, which achieved the best objective function error results, was subjected to a
series of stability tests to evaluate its ability to accurately capture the physics and chemistry
of Ni and Au across various length/time scales and under different reaction conditions.
Figure 3.3 presents the results of two such stability tests. The potential was first applied
to a pure Ni(110) facet in LAMMPS. This simulation ran for 1 picosecond at 300K. The
facet maintained its structure throughout the simulation, indicating stability. Although
this is a promising result, the Ni(110) facet was part of the training dataset, so further
tests were needed to assess the model’s ability to extrapolate and predict the behavior of
structures not explicitly included in the training data. Additionally, we aimed to test the
model’s performance over longer simulation times and at temperatures higher than room
temperature. To this end, Potential 3 was applied to a 2-nanometer NiAu nanoparticle
with a composition of 20% gold, where the gold atoms were randomly distributed within
the nanoparticle. This simulation was run for 10 picoseconds at 1000 K. Excitingly, the
nanoparticle maintained its structure, with atoms vibrating and moving in a physically
realistic manner. To evaluate this behavior further and in a more quantitative way, the Ni-
Ni, Ni-Au, and Au-Au radial distribution functions (RDFs) of the simulation were evaluated
before and after 10 picoseconds, as shown in Figure ??. The RDF describes how the density
of surrounding atoms varies as a function of distance from a reference atom, providing
insight into the frequency of specific atomic separations. RDFs of crystalline structures
exhibit pronounced peaks, indicating preferred atomic distances within the structure [41].
For this simulation, first peaks of the RDFs at both 0 ps and 10 ps show that the Ni-Ni
peak appears at the shortest distance (2.5Å and 2.5Å), followed by the Ni-Au peak at
a larger distance (2.6Å and 2.7Å), and finally the Au-Au peak at the farthest distance
(2.7Å and 3.0Å), consistent with the larger atomic radius and lattice constant of Au
compared to Ni. Comparing the two RDFs, the peaks at 10 ps have broadened and are
less smooth than those at 0 ps, which is expected as the temperature increased from 0 to
1,000 K (near the metals’ melting temperatures). The rounded peaks at 0 ps indicate that
the system retains a mostly crystalline structure, while the more jagged peaks at 10 ps
suggest increasing atomic disorder as thermal energy is introduced, disrupting the crystal
lattice. These observations confirm that while the nanoparticle remains structurally intact,
increasing thermal energy leads to noticeable atomic rearrangements and a gradual loss of
long-range order. Overall, the stability tests outlined here demonstrate that Potential 3 can
accurately capture the structural integrity and atomic interactions of Ni and Au systems
across different conditions, while also revealing its ability to handle extrapolation, longer
simulation times, and elevated temperatures with realistic atomic behavior.

4. Conclusions. In this study, we developed a two-element NiAu ML-IAP trained
on spin polarized DFT data. During the development of the potential, we expanded our

340Designing AMachine-learned Interatomic Potential For Gold-promoted Nickel Catalysts Utilizing Magnetic Training Data

Fig. 3.2. Stability test results for the Ni fcc (110) facet at 300 K (top) and NiAu nanoparticle at 1000
K(bottom). Structures shown are from before and after MD simulations.

training dataset from fewer than 400 to approximately 60,000 data points by including AIMD
data for both domain knowledge and beyond domain knowledge structures. This addition
significantly broadened our span of the descriptor space and improved model accuracy. We
evaluated three basis sets and determined that Basis Set 3, which contained the fewest
number of descriptors, was the most effective for this potential. It resulted in the lowest
computational cost for simulations and minimized errors in energy, force, and objective
functions. Additionally, optimizing hyper-parameters and group weights was crucial for the
development of the ML-IAP. The use of SOGA via Dakota for tuning these parameters
significantly enhanced the accuracy of our model in a short time.

The most advanced potential, Potential 3, was trained on the full 60,231-point dataset,
employed the most effective basis set (Basis Set 3), and had its hyper-parameters and
group weights optimized using Dakota. Among the 12 energy-related objective function
error metrics assessed, the model achieved accuracy within 0.03 eV/atom for 11 of them.
Moreover, the model demonstrated the ability to accurately predict the behavior of NiAu
systems across various sizes, compositions, and structures, and under different reaction
conditions. These included larger structures that may be similar to training data, but
allow for emergent properties such as surface reconstruction to occur naturally through the

I. Furrick, M. Wood, & A. Hensley 341

Fig. 3.3. Radial distribution function results for NiAu nanoparticle before (top) and after (bottom)
MD simulation at 1000K.

simulation. As MD predicts new structures each timestep, extrapolative predictions are
inevitable. The models’ low errors and consistent performance with both familiar and new
structures attests to the model’s robustness.

The next step in this project is to compare the stability and objective function errors
of the NiAu potential trained on spin polarized DFT data with those of a potential trained
on non-spin polarized DFT data for the same elements. This comparison aims to determine
if incorporating Ni spin into the training dataset significantly impacts modeling accuracy
for the structure of NiAu catalytic nanoparticles. Gaining insight into how magnetism and
spin influences the accuracy of Ni-containing ML-IAPs will be valuable for advancing future
modeling techniques, particularly given the challenges of incorporating magnetism. After
comparing the magnetic and non-magnetic models, we will select one for oxygen integration
based on a balance of accuracy and ease of further development. The chosen model will
then be used to study adsorbate-driven surface reconstruction on O-covered NiAu catalyst
nanoparticles.

Computational modeling, specially ML-IAPs, help capture physical and chemical be-
haviors of systems that cannot be seen with the naked eye or probed experimentally. The
NiAu model developed in this study serves two key purposes: (1) it helps to address a
long-standing question in modeling about the role of magnetism in accurately simulating

342Designing AMachine-learned Interatomic Potential For Gold-promoted Nickel Catalysts Utilizing Magnetic Training Data

the behavior of Ni in an ML-IAP, and (2) it serves as a foundational step toward creating a
three-element (Ni, Au, O) potential to study adsorbate-driven surface reconstruction on O-
covered NiAu catalyst nanoparticles during HOR. This work will advance our understanding
of these issues, ultimately paving the way for designing more efficient catalysts for hydrogen
fuel cells, aiding the transition away from fossil fuels, and contributing to a carbon-free
future.

5. Acknowledgments. Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA0003525. This
paper describes objective technical results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government. A.J.R.H. acknowledges support
from institutional funds from the Department of Chemical Engineering and Materials Sci-
ence at Stevens Institute of Technology. I.F. acknowledges funding support from the Science
Undergraduate Laboratory Internship (SULI) program and Stevens Institute of Technology
Provost’s Office Research Funds. Preliminary computations were performed on the Dorothy
HPC at Stevens Institute of Technology.

I. Furrick, M. Wood, & A. Hensley 343

REFERENCES

[1] S. E. Hosseini. Fossil fuel crisis and global warming. In Elsevier eBooks, pages 1–11, 2022.
[2] Uchimura M. Wang C. et al. Strmcnik, D. Improving the hydrogen oxidation reaction rate by promotion

of hydroxyl adsorption. Nature Chem, 5:300–306, 2013.
[3] MyatNoeZin Myint Zhongbin Zhuang Robert V. Forest Qianrong Fang Jingguang G. Chen Wen-

chao Sheng, Adam P. Bivens and Yushan Yan. Non-precious metal electrocatalysts with high
activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environmental Science,
7:1719–1724, 2014.

[4] et al Huynh, Thuan Minh. Hydrodeoxygenation of bio-oil on bimetallic catalysts: From model com-
pound to real feed. Journal of Sustainable Bioenergy Systems, 5:151–160, 2015.

[5] et al Lugo-José, Yuliana K. Gas-phase, catalytic hydrodeoxygenation of propanoic acid, over supported
group viii noble metals: Metal and support effects. Applied Catalysis a General, 469:410–418, 2013.

[6] O. Holton and J. Stevenson. The role of platinum in proton exchange membrane fuel cells. Platinum
Metals Review, 57:259–271, 2013.

[7] et al. Sun, Yongling. The impact of widespread deployment of fuel cell vehicles on platinum demand
and price. International Journal of Hydrogen Energy, 36:11116–11127, 2011.

[8] et al. Topalov, Angel A. Dissolution of platinum: Limits for the deployment of electrochemical energy
conversion? Angewandte Chemie International Edition, 51:12613–12615, 2012.

[9] et al. Alexandr G. Oshchepkov, Alexander. Recent advances in the understanding of nickel-based
catalysts for the oxidation of hydrogen-containing fuels in alkaline media. ACS Catalysis, 10:7043–
7068, 2020.

[10] et al. Davydova, Elena. Stability limits of ni-based hydrogen oxidation electrocatalysts for anion
exchange membrane fuel cells. ACS Catalysis, 9:6837–6845, 2019.

[11] et al. Davydova, Elena. Hydrogen oxidation on ni-based electrocatalysts: The effect of metal doping.
Catalysts, 8:454, 2018.

[12] Shuqiao Wang Thomas Robinson Alyssa Hensley Isabella Furrick, Ayodeji Omoniyi. Integration of
facet-dependent, adsorbate-driven surface reconstruction into multiscale models for the design of
ni-based bimetallic catalysts for hydrogen oxidation. Chem Cat Chem, 2024.

[13] Liu C. Su D. Xin H. L. Fang H. Eren B. Zhang S. Murray C. B. Salmeron M. B. Wu, C. H. Bimetallic
synergy in cobalt–palladium nanocatalysts for co oxidation. Nature Catalysis, 2:78–85, 2018.

[14] Tamura H. Tanaka K. Sasahara, A. Catalytic activity of pt-deposited rh(110) bimetallic surface for
no + h2 reaction. The Journal of Physical Chemistry B, 101:1186–1189, 1997.

[15] Vandermause J. Van Spronsen M. A. Musaelian A. Xie Y. Sun L. O’Connor C. R. Egle T. Molinari
N. Florian J. Duanmu K. Madix R. J. Sautet P. Friend C. M. Kozinsky B. Lim, J. S. Evolution
of metastable structures at bimetallic surfaces from microscopy and machine-learning molecular
dynamics. Journal of the American Chemical Society, 142:15907–15916, 2020.

[16] Marcus P. M. Schwarz K. Mohn P. Moruzzi, V. L. Ferromagnetic phases of bcc and fcc fe, co, and
ni. Physical Review. B, 34:1784–1791, 1986.

[17] Eschrig H. Perlov A. Y. Oppeneer P. M. Halilov, S. V. Adiabatic spin dynamics from spin-density-
functional theory: Application to fe, co, and ni. Physical Review. B, Condensed Matter, 58:293–
302, 1998.

[18] Svetoslav Nikolov, Mitchell A Wood, Attila Cangi, Jean-Bernard Maillet, Mihai-Cosmin Marinica,
Aidan P Thompson, Michael P Desjarlais, and Julien Tranchida. Data-driven magneto-elastic
predictions with scalable classical spin-lattice dynamics. npj Computational Materials, 7(1):153,
2021.

[19] John Edward Jones. On the determination of molecular fields.—ii. from the equation of state of a gas.
Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and
Physical Character, 106(738):463–477, 1924.

[20] Anthony K Rappe and William A Goddard III. Charge equilibration for molecular dynamics simula-
tions. The Journal of Physical Chemistry, 95(8):3358–3363, 1991.

[21] Yunxing Zuo, Chi Chen, Xiangguo Li, Zhi Deng, Yiming Chen, Jorg Behler, Gábor Csányi, Alexan-
der V Shapeev, Aidan P Thompson, Mitchell A Wood, et al. Performance and cost assessment of
machine learning interatomic potentials. The Journal of Physical Chemistry A, 124(4):731–745,
2020.

[22] Chen C. Li X. Deng Z. Chen Y. Behler J. Csányi G. Shapeev A. V. Thompson A. P. Wood M. A. Ong
S. P. Zuo, Y. Performance and cost assessment of machine learning interatomic potentials. The
Journal of Physical Chemistry A, 124:731–745, 2020.

[23] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of computational
physics, 117(1):1–19, 1995.

[24] Aidan P Thompson, H Metin Aktulga, Richard Berger, Dan S Bolintineanu, W Michael Brown, Paul S
Crozier, Pieter J In’t Veld, Axel Kohlmeyer, Stan G Moore, Trung Dac Nguyen, et al. Lammps-a

344Designing AMachine-learned Interatomic Potential For Gold-promoted Nickel Catalysts Utilizing Magnetic Training Data

flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum
scales. Computer Physics Communications, 271:108171, 2022.

[25] et al. Thompson, A. P. Spectral neighbor analysis method for automated generation of quantum-
accurate interatomic potentials. Journal of Computational Physics, 285:316–330, 2015.

[26] Albert P Bartók, Mike C Payne, Risi Kondor, and Gábor Csányi. Gaussian approximation po-
tentials: The accuracy of quantum mechanics, without the electrons. Physical review letters,
104(13):136403, 2010.

[27] Ngoc Cuong Nguyen and Andrew Rohskopf. Proper orthogonal descriptors for efficient and accurate
interatomic potentials. Journal of Computational Physics, 480:112030, 2023.

[28] Anton Bochkarev, Yury Lysogorskiy, Sarath Menon, Minaam Qamar, Matous Mrovec, and Ralf Drautz.
Efficient parametrization of the atomic cluster expansion. Physical Review Materials, 6(1):013804,
2022.

[29] James M Goff, Charles Sievers, Mitchell A Wood, and Aidan P Thompson. Permutation-adapted com-
plete and independent basis for atomic cluster expansion descriptors. Journal of Computational
Physics, 510:113073, 2024.

[30] R. Drautz. Atomic cluster expansion for accurate and transferable interatomic potentials. Physical
Review. B., 99, 2019.

[31] Ann E Mattsson, Peter A Schultz, Michael P Desjarlais, Thomas R Mattsson, and Kevin Leung. De-
signing meaningful density functional theory calculations in materials science—a primer. Modelling
and Simulation in Materials Science and Engineering, 13(1):R1, 2004.

[32] Y. Mishin. Machine-learning interatomic potentials for materials science. Acta Materialia, 214, 2021.
[33] L.B.; Nørskov J.K. Hammer, B.; Hansen. Improved adsorption energetics within density-functional

theory using revised perdew-burke-ernzerhof functionals. Phys. Rev. B, 59:7413–7421, 1999.
[34] et. al Sikorski, E. Machine learned interatomic potential for dispersion strengthened plasma facing

components. The Journal of Chemical Physics, 158, 2023.
[35] et al. Jain, Anubhav. Commentary: The materials project: A materials genome approach to acceler-

ating materials innovation. APL Materials, 1, 2013.
[36] Wang S. Wang, J. Surface energy and work function of fcc and bcc crystals: Density functional study.

Surface Science, 630:216–224, 2014.
[37] Vitos L. Kwon S. K. Kollár J. Zólyomi, V. Surface relaxation and stress for 5d transition metals.

Journal of Physics Condensed Matter, 21, 2009.
[38] Marzari N. Singh-Miller, N. E. Surface energies, work functions, and surface relaxations of low-index

metallic surfaces from first principles. Physical Review B, 80, 2009.
[39] Ruban A. Skriver H. Kollár J. Vitos, L. The surface energy of metals. Surface Science, 411:186–202,

1998.
[40] Ghale K. Rieg C. Dang T. Anderst E. Studt F. Campbell C. T. McEwen J. Xu Y. Hensley, A. J. R.

Dft-based method for more accurate adsorption energies: An adaptive sum of energies from rpbe
and vdw density functionals. The Journal of Physical Chemistry C, 121:4937–4945, 2017.

[41] Wu X. Keong K. Sha, W. Molecular dynamics (md) simulation of the diamond pyramid structure
in electroless copper deposits. Woodhead Publishing Series in Metals and Surface Engineering,
pages 82–103, 2011.

I. Furrick, M. Wood, & A. Hensley 345

EVENT DETECTION USING NEURAL NETWORKS ROBUST TO
STATISTICALLY SIMILAR DISTRACTORS

MARTHA GAHL∗, G. WILLIAM CHAPMAN† , SAPAN AGARWAL‡ , AND FRANCES S. CHANCE§

Abstract. Remote sensing applications increasingly rely on artificial neural networks for online detec-
tion of events of interest. However, industry-driven, off the shelf, models require general purpose hardware
which can be power and space inefficient, and often ignore temporal aspects of signals. Driven by these
constraints, we design an abstract remote-sensing task and test network architectures that can be deployed
on analog neural network accelerators. We find that spatiotemporal layers enable accurate and fast on-line
event detection, while being robust to spatially similar but temporally distinct distractors. While each such
layer is complex, we find that relatively few layers are required to reach high performance. We then inves-
tigate biologically inspired methods which incorporate temporal sparsity and low-precision communication
to enable even further power-efficiency, and show similar accuracy. Taken together, these results suggest
a hardware platform that incorporates temporal sparsity and enables local recurrence, rather than purely
feed-forward components.

1. Introduction. In recent years, machine learning approaches have shown great
promise for video-processing applications, such as the detection of specific individuals or
monitoring of lightning storms. However, these networks are typically run on energy-
intensive general-purpose hardware such as GPUs or FPGAs, making them prohibitively
size-weight-and-power (SWaP) constrained for deployment to edge-processing applications.
An alternative to such hardware is the use of analog neural network accelerators [15], which
utilize passive electronic elements to implement portions of machine learning algorithms in
an energy-efficient manner [2], but require simple neural network architectures. Here, we
investigate the minimal complexity networks which can solve such remote-sensing tasks,
while adhering to the general constraints of analog devices.

Task Domain. We utilize an abstract remote-sensing application in which a network
must detect spatiotemporal signals of interest in a timely manner, while ignoring spatially
similar distractor signals and other noisy-signals in the background of videos. These addi-
tional characteristics prevent an ideal algorithm from simply responding to features such
as movement or changes in the input signal. While primarily static tasks, such as object
recognition, can rely on access to an entire observation to classify a stimulus, spatiotemporal
tasks require online detection in the presence of streaming temporal data. When using a
neural network and relying on predictions to make decisions with real world implications,
it is vital to know what it is that the network has learned to do. This could mean the
difference between a network that can be reliably used in novel situations, and one with
unpredictable behavior with out-of-distribution examples [6, 7]. In this work, we train net-
works to differentiate signals of interest from distractor signals to ensure the network is
learning about the signal properties themselves and not using artifacts of the dataset to
achieve high performance. This will allow the network, and the learned features, to be more
readily transferable to other domains.

Analog ANNs. Analog neural networks have shown minimal degradation to their digital
counterparts [16] when trained to be aware of the inherent noise in such devices. One partic-
ular analog device of interest is crossbar arrays, which utilize memristors as programmable
resistors to accelerate in-memory matrix-vector-multiplication (MVM) required by all neural
networks, but which constitute the majority of operations in feedforward networks. How-

∗Sandia National Laboratories, mtgahl@sandia.gov
†Sandia National Laboratories, gwchapm@sandia.gov
‡Sandia National Laboratories, sagarwa@sandia.gov
§Sandia National Laboratories, fschanc@sandia.gov

346 CSRI Summer Proceedings 2024

ever, video-like signals, such as may be required for the domains described below, contain
temporal as well as spatial information. Processing of spatiotemporal signals typically in-
cludes early spatial processing by convolutional networks, followed by late post-processing
by recurrent neural networks or post-hoc processing by alternative methods such as Kalman
filtering, particle filtering, or template matching [1, 10, 11]. While recurrent architectures
have been implemented on memristive devices [8], this requires the use of auxillary circuitry
which drastically increases power consumption of the overall network [14]. We therefore
seek a network which solves the tasks at hand while staying as close as possible to a pure
MVM-based feedforward network.

Architecture constraints. To determine the network components that may enable tem-
poral processing, regardless of hardware feasibility, we first review methods for processing
of temporal data. Many common architectures used in object detection tasks are not feasi-
ble candidates because of the intensive data movement requirements. Two stage detection
models, like Faster R-CNN, require multiple large networks or stored weights beyond what
current arrays would allow [13]. Alternative single stage detection models, such as YOLO
[12] or single-shot detectors [9], do not detect with temporally changing data. Temporal
tracking methods require simultaneous access to all frames of a video, precluding use in
on-line detection tasks, and also rely on static spatiotemporal filters rather than allowing
dynamic integration of previous and current inputs. In the online detection tasks that we
address here, a network may only access external inputs from the current timestep and any
information explicitly maintained via internal states or recurrent connectivity. Transformer
models, which are increasingly popular for sequence data, can incorporate spatial compo-
nents as well [4]. However such systems require nonlinear attention mechanisms, continual
buffering of inputs via a shifting context trace, and other mechanisms all of which require
additional operations beyond the MVM offerings of curent analog hardware.

2. Methods.

2.1. Task. We design a temporal task, in which each trial consists of 100 sequentially
presented images (frames). On each timestep the target output is based on whether the event
trace of interest (see below) has a signal-to-noise ratio greater than one. By restricting
our network architectures below to be purely feedforward or causally recurrent (eg: no
bidirectional layers or acausal temporal convolutions), the network only has access to the
current input and any history which has been encoded in temporal architecture components.
The task of the network is then to minimize total cross-entropy loss on detection of events
throughout the trial.

We create a dataset pipeline which allows customization of signals, both distractors
and events, with generic python functions, including parameters of the signals and the
probability distributions of signal waveforms occuring on a given frame. Signal parameters
may include properties such as amplitude, time of onset, temporal duration, and spatial
patterns. Table 2.1 shows all tunable parameters, the type of distribtion the values are
drawn from, and default bounds for the parameters, and the signal type or types that use
the parameter during signal generation.

Our initial experiments demonstrated here utilized sigmoidal and Gaussian temporal
waveforms as the events and distractors. These waveforms are placed at a random location in
a background image, and then convolved by a point-spread function to give a spatiotemporal
waveform. This results in adjacent pixels changing proportionally to their proximity to the
true source. The generated waveforms have similar amplitudes and first-derivative values
for the event and distractor signals and the signal types are similar enough to prevent simple
filtering effects from accurately detecting events.

We consider four circumstances when generating data, which are illustrated in Figure

M. Gahl, W. Chapman, S. Agarwal, & F.S. Chance 347

2.1: 1. Trials with no signals present, 2. Trials with only event signals present, 3. Trials
with event signals and distractor signals present, and 4. Trials with only distractor signals
present. Numbers 1 and 4 should result in negative answers; the network should be able to
identify that neither of these situations includes a signal of interest (event). Numbers 2 and
3 should result in positive answers because there is an event signal present. Even if there
is also a distractor signal present, we want the network to identify that there is an event
signal.

Fig. 2.1. Exemplar trials along the vertical arrangement, which evolve temporally along horizontal.
Each frame is normalized to show more detail. Top Background images are randomly cluttered, as to
obfuscate small SNR events. Second Sigmoidal events of interest rise at a randomly chosen frame, and
remain on for the remainder of a 100-frame trial. Third Gaussian distractors occur on a random frame
and rise for a short time before reaching inflection (frame 20 here) and decaying. Fourth Events of interest
and distractors are randomly combined to create a dataset with wide distributions in relative onset and
amplitude of events and distractors.

Default Default
Parameter Distribution Minimum Maximum Signal Type

Location (x and y) Bivariate Uniform 0 10 Gaussian and Sigmoidal

Amplitude Uniform Exponent log10(1000) 5 Gaussian and Sigmoidal

Onset Uniform 4 30 Gaussian and Sigmoidal

Rise Uniform 0.5 10 Sigmoidal

Width Uniform 0.5 10 Gaussian

Offset Uniform 4 30 Gaussian

Table 2.1
The tunable parameters used for signal generation. Each parameter type has a distribution that values

are drawn from and minimum and maximum bounds for the distribution. Signals that use the parameter
for generation are included in the right most column.

2.2. Architecture and Hyperparameter Search. To find an optimal network for
this task, we performed an architecture search and a hyperparameter search. In order to
most directly map to analog accelerators, we utilize only simplistic multilayer networks, and
avoid systems which utilize attention heads, generate anchor boxes, or otherwise rely on
non-MVM operations.

348 Event Detection Using Neural Networks Robust To Statistically Similar Distractors

Layer types. Our search started with six basic layer-types: dense connections (MLP),
convolutional (CNN), recurrent layers (RNN), gated recurrent units (GRU), long short term
memory (LSTM) layers, and convolutional-recurrent layers (CRNN). Figure 2.2 shows these
architecture building blocks [5, 18]. These layer types are combined into deeper networks,
either by utilizing the same type of layers in sequence, or mixing various layer types.

Dense layers preserve no spatial information and do not allow for temporal effects,
but offer a greater number of trainable parameters. Convolutional layers preserve spatial
information by utilizing a convolutional operator and shared weights among all pixels. Such
convolutional layers may extract the point-spread structure of our waveforms, but can not
extract temporal information that differentiates our event and distractor signals. Recurrent
layers (RNN, GRU, and LSTM) utilize recurrent connections to preserve information from
previous timesteps, allowing detection of temporal patterns, rather than simply spatial
structure.

Preliminary experiments showed that networks without any recurrent connections (MLP,
CNN) can perform well, particularly if they preserve spatial information, but were less sta-
ble in their predictions, and demonstrated a greater delay in detecting signals 3.1. Without
temporal information, a network likely relies on thresholding intensity for predictions, which
is not reliable when distractors are present. Networks that did not preserve any structural
information (RNN, LSTM) generally performed poorly, as they lacked the ability to utilize
the point-spread function to filter out background changes.

This suggests an architecture best suited for this task would perform both spatial and
temporal processing. We therefore focused our search on network structures that contain
both spatial and temporal processing, either by combinations of spatial and temporal layers,
or by the introduction of a single spatiotemporal layer. The convolutional-recurrent layer
follow the governing equations:

Y (X,Y (t− 1)) = F (Wih ∗X +Whh ∗ (Y (t− 1)))

where ∗ indicates the convolutional operator, Wih is the set of feedforward convolutional
filters, Whh is the set of recurrent convolutional filters, and F is the nonlinear activation
function of choice. Such networks preserve spatial invariance, but detect spatially structured
changes through time.

Hyperparameters. Constrained by the layer-types above, our hyperparameter search
focused on three values: 1. number of layers in the architecture, 2. confidence threshold
for positive identification, and 3. learning rate. Increasing the number of layers can allow
an architecture to approximate a more complex function, but at the risk of overfitting to
training data, meaning a network will perform poorly on testing data. The confidence
threshold determines how confident a network must be before identifying an event. For
example, with a confidence threshold of 50%, a network could determine the likelihood of a
frame containing an event to be 51%, and the likelihood of the frame not containing an event
to be 49%, and the frame would be classified as containing an event. Increasing this value
means the network is more confident that a frame will contain an event. Conversely, a very
large confidence threshold might mean the network not making positive predictions soon
after signal onset and waiting for a stronger signal before positively identifying a frame. This
can increase the delay in response. Confidence threshold is only used at inference time when
network outputs are translated into actual predictions. Finally, learning rate determines the
magnitude of the network weight updates in response to a penalty. Too small of a learning
rate can cause the network to get stuck in a local minimum in the loss landscape. Too large
of a learning rate can cause the network to oscillate in performance and fail to converge,
particularly in heavily recurrent networks.

M. Gahl, W. Chapman, S. Agarwal, & F.S. Chance 349

Activation functions. In our initial set of experiments, all networks use the ReLU ac-
tivation function. Due to the desire to deploy on low-energy edge-based hardware, we also
investigate binary activation functions. Previous work [3] has shown that recurrent layers
cannot be trained for binary activation, and we therefore implement binary activation re-
current layers as leaky-integrate and fire (LIF) units. LIF units are a biologically inspired
architecture in which each unit contains a local real-valued state that persists over time.
The units communicate with each other only by binary spikes when reaching a threshold.
They follow the equation:

τv
dvL(t)

dt
= −vL(t) +

∑

nϵA

WnLSn(t)

SL(t) = vL(t) ≥ 1

vL(t+ 1) =

{
0, if vL(t) +

dvL(t)
dt > 1

vL(t) +
dvL(t)

dt , otherwise

(2.1)

Where vL(t) indicates a local real-valued internal state that is not communicated to
other units or layers, τv is a corresponding time constant with the value 4. SL indicates
transient spikes which are transmitted to other units, and tend to be temporally sparse.

2.3. Performance Metrics. In an event detection network, there are a variety of
metrics that are useful in creating a complete picture of network performance. We report
both frame-based and trial-based accuracy. Frame-based accuracy is simply the portion of
frames across all validation trials which are correctly classified as containing an event or not.
Trial accuracy reports the portion of trials on which the network correctly detects an event,
on at least one frame. The degree to which these two metrics differ is caused by the detection
delay, which measures how many frames after signal onset a network takes to respond with
a positive output. This measurement provides insight to the sensitivity of the network to
signals, as frames just after signal onset have a low-SNR, while later frames at the peak of
signal waveforms may be orders of magnitude greater amplitude than background values.
This is important, particularly for online, real time event detection because it dictates the
onset of other processes involved in positive event identification, like localization of the event
or response to the event.

Models are trained using binary cross entropy loss on a frame-by-frame basis, which
implicitly optimizes for delay, recall, and precision. Recall measures the ability to select
all true positive frames, as such missing false negatives decrease this metric. Precision
measures the ability to only select true positive frames, and is penalized by false positives.
Poor recall and precision are equally and explicitly penalized in the network. Anytime a
frame is incorrectly identified, whether it be a false positive or a false negative, the network
receives a direct penalty. Long delay is implicitly penalized in the network. The longer it
takes to detect an event, the more frames are incorrectly identified, and the more penalty
the network receives. This forces the network to try to decrease the delay between signal
onset and first prediction.

2.4. Experiments. For all experiments described here, create trials which are 11x11
pixels and 100 frames long. The training set consisted of 10,000 trials equally (2,500 per
case) chosen to have no signals, distractor only, event only, or event and distractor present.
The events were sigmoidal and the distractors were Gaussian, and had a shared amplitude
range from which individual amplitudes were sampled. An independent validation dataset
of 10,000 trials was generated following the same splits and parameters.

350 Event Detection Using Neural Networks Robust To Statistically Similar Distractors

While trials were equally split to contain or not contain an event, the loss function is
based on frames. Due to the temporal nature of the events, a variable number of frames
in each trial which contained an event was random, creating a imbalance in the number
of frames which contained events. To account for this, we weighted our loss function such
that positive frames were penalized more strongly, than negative frames. This weight was
calculated as the ratio of positive to negative frames, resulting in a potentially equal loss
across negative and positive frames. We used binary cross entropy loss and an Adam
optimizer, and backpropagation through time to incorporate the temporal relationships
among frames.

3. Results.

Frame Trial Average
Accuracy Accuracy Delay

(%) (%) (frames)

1 layer MLP 84.71 71.50 11.45

2 layer MLP 51.99 44.81 8.38

1 layer CNN 86.28 79.5 13.97

2 layer CNN 90.02 79.88 11.44

1 layer RNN 46.84 28.83 -0.88

2 layer RNN 46.78 28.81 -0.89

1 layer LSTM 75.05 59.95 11.06

2 layer LSTM 79.64 64.45 10.96

1 layer CRNN 88.27 62.65 8.73

2 layer CRNN 90.99 83.28 10.44

3 layer CRNN 91.34 83.68 10.11

Table 3.1
Frame accuracy, trial accuracy, and average delay for simple architectures, each composed of a single

type of network.

3.1. Real Valued. Our initial set of experiments compared basic network architecture
types, utilizing one- and two-layer versions of MLP, CNN, RNN, LSTM, and CRNN, with
learning rates of 0.001. The results for these initial tests are shown in Table 3.1, reported
with confidence thresholds of 50%. The frame accuracy is always higher than the trial
accuracy, which is due to a stringent definition of trial accuracy. In a trial without an event,
if 99 frames are predicted to not contain an event and one frame is predicted to contain an
event, the trial will count as a miss. Despite the frame accuracy in this case being 99%,
the trial accuracy for that single trial is 0%. Feedforward networks (MLP, CNN) generally
have longer delays than recurrent layers (LSTM, CRNN), indicating that they require a
higher change in pixel intensity before determining that changes are due to an event and
not noise or a distractor. RNN networks have a mean negative delay, indicating the presence
of false positive frames, or the network making a positive prediction before the signal onset.
The MLP, RNN, and LSTM models, which do not preserve spatial information, have lower
frame accuracies and lower trial accuracies than models that do preserve spatial information
(CNN and CRNN), indicating that maintaining spatial structure is important to differentiate

M. Gahl, W. Chapman, S. Agarwal, & F.S. Chance 351

high frequency noise from structure signals. This data suggest lower average delays require
recurrent architectures and high accuracies require spatially aware architectures.

Frame Trial Average
Accuracy Accuracy Delay

(%) (%) (frames)

1 layer CNN and 1 layer CRNN in series 90.23 69.88 10.06

1 layer CNN and 2 layer CRNN in series 90.57 78.99 10.30

2 layer CNN and 1 layer CRNN in series 89.85 81.06 12.43

2 layer CNN and 2 layer CRNN in series 89.26 85.47 15.94

1 layer CRNN and 1 layer CNN in series 88.91 61.50 7.73

1 layer CRNN and 2 layer CNN in series 88.94 66.87 9.45

2 layer CRNN and 1 layer CNN in series 89.94 78.78 10.76

2 layer CRNN and 2 layer CNN in series 89.19 74.57 9.37

1 layer CNN and 1 layer GRU in series 88.77 77.98 11.70

1 layer CNN and 1 layer CRNN in parallel 88.58 74.39 10.88

1 layer CNN and 2 layer CRNN in parallel 90.11 75.98 10.24

1 layer CNN and 3 layer CRNN in parallel 90.94 82.51 10.91

2 layer CNN and 1 layer CRNN in parallel 90.23 78.51 10.56

2 layer CNN and 2 layer CRNN in parallel 90.04 80.90 11.69

Table 3.2
Frame accuracy, trial accuracy, and average delay for more complex architectures, each composed of

two network types, either in series or in parallel.

Based on these results, we constrain our search to architectures with spatial and tem-
poral processing. Some of these architectures are single modules that have both spatial and
temporal processing, like the CRNN, and others are combinations of architectures whose
outputs are combined to create representations that include both spatial and temporal in-
formation. Table 3.2 lists the architectures we considered in this phase of the search and
their resulting performances. All of these experiments had confidence scores of 50% and
learning rates of 0.001.

The models in Table 3.2 all include some spatial processing and some temporal process-
ing. These models generally produce higher accuracies than the models in Table 3.1 that
did not have both spatial and temporal processing. We then looked at the loss plots for
these models to understand how they were learning throughout training. We want the loss
to decrease consistently and oscillate as little as possible. This is indicative of a stable model
that is learning useful features that are consistently helpful for the task. In Figure 3.1 are
loss plots that correspond to networks in Table 3.2. All of the models show much oscillation
in the loss values, suggesting that the learning rate for all models should be lowered. The
loss values for the networks with CNN and CRNN in series show little difference between the
loss values at the beginning and end of training. These models are able to achieve reduced
loss at different points in training, but the overall flat trend and large oscillations suggest
the epochs with low loss are good guesses by the models and do not correspond to learning.

352 Event Detection Using Neural Networks Robust To Statistically Similar Distractors

Models that don’t show consistent learning are not considered as they are likely to have
difficulty adapting to data outside of the training data distribution. Despite having low loss
at a few points in training, the model is not learning useful featurers that can be transferred
to other data.

Based on these two broad searches, we found three architectures that performed well,
had relatively low delays, and demonstrated consistent learning during training: 3-layer
CRNN, 1-layer CNN in parallel with 1-layer CRNN, and a 1-layer CNN in parallel with
a 3-layer CRNN. Along with a 1-layer CNN followed by a 1-layer GRU as a baseline [17]
for comparison, these four architectures make up the list of candidate architectures that we
explore more fully. Notably, the baseline architecture is the only candidate architecture that
does not include a CRNN. The baseline network we call Architecture 1, the 3-layer CRNN
we call Architecture 2, the 1-layer CNN in parallel with 1-layer CRNN we call Architecture
3, and the 1-layer CNN in parallel with a 3-layer CRNN we call Architecture 4. These four
architectures are shown in Figure 2.3. We continued our hyperparameter search, optimizing
for performance in Architectures 2-4, and found an learning rate of 0.0001, weighted loss,
and a confidence level of 60% result in the best performing networks. We trained each of
these network architectures five times with random weight initializations and report averaged
performance in Table 3.3.

Architecture 1 has the longest delay of all architectures, though the difference between
Architecture 1 and the architecture with the shortest delay, Architecture 2, is just over
two frames. The average delays are clustered around 10 frames. Interestingly, the average
length of a Gaussian signal (a distractor) in the dataset is approximately 18 frames. All
models appear to learn to wait to make a decision about whether or not a location of rapidly
increasing intensity is an event until after the expected inflection point of a distractor signal.
This suggests that all models are able to learn about the shape of the signals and use this
information to accurately distinguish events from distractors. This invites further questions
about the impact of the signal types on model performance, which we discuss briefly in an
outline of our future steps in the conclusion.

All four architectures, even the baseline, are able to consistently achieve a a high recall
value, indicating a lack of false negatives. Precision values are lower across all architectures.
Taken together, the recall and precision values indicate that the models very rarely miss
an event, but are more likely to classify false positives. The frame accuracy, like with the
simple architectures, is always higher than the trial accuracy.

Architecture 2 and Architecture 4 differ only in the addition of a 1-layer CNN. Despite
this architectural difference between the networks, the difference in their performance across
metrics is extremely minimal. This suggests that the addition of the 1-layer CNN does not
provide the model with any additional useful spatial processing for this task. In theory, the
CRNN should be able to use a subset of its channels as a feedforward CNN. This means
that with a sufficiently large CRNN, the addition of a 1-layer CNN is redundant.

3.2. Spiking. Based on the results shown in Table 3.3 that suggest little if any per-
formance benefits from adding parallel spatial processing to Architecture 2 to create Archi-
tecture 4, we test only Architectures 1-3 with binary activation functions. The results from
these experiments are shown in Table 3.4. All three networks show significantly decreased
performance across frame accuracy, trial accuracy, precision, and recall as compared with
the same architectures using the ReLU activation function. However, the average delay
values for the spiking networks are slightly reduced. Similarly to the ReLU networks, each
binary activation network achieves a higher recall than precision, with a significant differ-
ence between Architecture 1, the baseline, and Architectures 2 and 3. Architecture 1 has a
negative average delay, meaning before the event has occured it is classifying frames as hav-

M. Gahl, W. Chapman, S. Agarwal, & F.S. Chance 353

Frame Trial Average Trial Trial
Accuracy Accuracy Delay Precision Recall

(%) (%) (frames)

Architecture 1:
1 layer CNN and
1 layer GRU in series 87.77 75.91 11.42 0.690 0.942

Architecture 2:
3 layer CRNN 90.95 75.49 9.25 0.689 0.934

Architecture 3:
1 layer CNN and
1 layer CRNN in parallel 88.37 74.43 10.95 0.678 0.931

Architecture 4:
1 layer CNN and
3 layer CRNN in parallel 90.88 78.01 9.36 0.713 0.938

Table 3.3
Further investigation of chosen architectures. CRNN-based networks show the highest accuracy and

precision, along with low recall. Adding parallel spatial processing adds minimal or no additional perfor-
mance.

Frame Trial Average
Accuracy Accuracy Delay Precision Recall

(%) (%) (frames)

Architecture 1:
1 layer CNN and
1 layer GRU in series 46.78 28.81 -0.89 0.366 0.576

Architecture 2:
3 layer CRNN 51.99 44.81 8.38 0.473 0.896

Architecture 3:
1 layer CNN and
1 layer CRNN in parallel 52.19 45.67 9.11 0.473 0.913

Table 3.4
SNN performance for chosen network architectures. All architectures are able to achieve 100% accu-

racy, though the negative delay for Architecture 1 suggests errors in predicting events too early.

ing events. We interpret this as trial error because the network is not classifying accurately
based on the information available.

4. Conclusion. In this work we investigate hardware constrained network architec-
tures for robust spatiotemporal event detection. We find that convolutional-recurrent net-
works consistently outperform sequential spatial-then-temporal networks, both in overall
accuracy and by responding more quickly to changes in inputs. Incorporating biologically
inspired, and temporally sparse and low power, activation functions into these networks
shows the same general trend. Currently the performance of spiking models is reduced com-
pared to real-valued activations, but this may be mitigated in the future by optimizing the
time constants of the LIF units.

354 Event Detection Using Neural Networks Robust To Statistically Similar Distractors

4.1. Future Work. The results of this work prompt additional questions about the
relationships between network hyperparameters, signal properties, and alternative activation
functions.

Confidence. We performed inference with two confidence levels: 50% and 60%. We
found models made fewer mistakes with a confidence of 60%, but we have not done an
indepth analysis of how confidence level changes performance. As this is preliminary work,
we intend to look at the AUC for different metrics, including accuracy, precision, recall, and
delay, for a broader array of confidence values. This can inform optimal confidence level
based on the metric that is most important to a client or task.

Signal types. We generated one dataset and ran all of our experiments on those data.
Our dataset generation pipeline was made to be modular, and there are more types of
signals, and changes to signal properties, that we could readily use. Some of the results
suggested that the models were learning properties about the signals in the dataset. For
example, we found average delay in our ReLU models to be about half of the average width
of distractor signals. By changing signal parameters and signal types, we can quanitfy the
extent to which models are able to learn about a given signal and how useful those learned
features are in out-of-distribution stimuli.

Activation functions. Our results showed significant differences in model performance
just from changing activation functions. We plan to explore more bio-inspired activation
functions in an attempt to further decrease the delay between event onset and event detec-
tion.

REFERENCES

[1] S. Afshar, A. P. Nicholson, A. Van Schaik, and G. Cohen, Event-Based Object Detection and
Tracking for Space Situational Awareness, IEEE Sensors Journal, 20 (2020), pp. 15117–15132.

[2] S. Agarwal, T.-T. Quach, O. Parekh, A. H. Hsia, E. P. DeBenedictis, C. D. James, M. J.
Marinella, and J. B. Aimone, Energy scaling advantages of resistive memory crossbar based
computation and its application to sparse coding, Frontiers in neuroscience, 9 (2016), p. 484.

[3] G. W. Chapman, C. Teeter, S. Agarwal, T. P. Xiao, P. Hays, and S. S. Musuvathy, Biological
dynamics enabling training of binary recurrent networks, in 2024 Neuro Inspired Computational
Elements Conference (NICE), 2024, pp. 1–7.

[4] A. H. de Oliveira Fonseca, E. Zappala, J. O. Caro, and D. van Dijk, Continuous spatiotemporal
transformer, in Proceedings of the IEEE International Conference on Machine Learning, IEEE,
2024, pp. 123–130.

[5] I. Developer, Machine learning and deep learning architectures. https://developer.ibm.com/

articles/cc-machine-learning-deep-learning-architectures/. Accessed: 2024-08-30.
[6] R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, and F. A.

Wichmann, Shortcut learning in deep neural networks, Nature Machine Intelligence, 2 (2020),
p. 665–673.

[7] A. Kurakin, I. Goodfellow, and S. Bengio, Adversarial examples in the physical world, 2017.
[8] C. Li, Z. Wang, M. Rao, D. Belkin, W. Song, H. Jiang, P. Yan, Y. Li, P. Lin, M. Hu, et al.,

Long short-term memory networks in memristor crossbar arrays, Nature Machine Intelligence, 1
(2019), pp. 49–57.

[9] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, Ssd: Single
shot multibox detector, in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
the Netherlands, October 11–14, 2016, Proceedings, Part I 14, Springer, 2016, pp. 21–37.

[10] T. J. Ma and R. J. Anderson, Remote sensing low signal-to-noise-ratio target detection enhancement,
Sensors, 23 (2023), p. 3314.

[11] V. Patraucean, A. Handa, and R. Cipolla, Spatio-temporal video autoencoder with differentiable
memory, Sept. 2016.

[12] J. Redmon and A. Farhadi, Yolov3: An incremental improvement, arXiv, (2018).
[13] S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-time object detection with region

proposal networks, 2016.

M. Gahl, W. Chapman, S. Agarwal, & F.S. Chance 355

[14] M. Spear, J. E. Kim, C. H. Bennett, S. Agarwal, M. J. Marinella, and T. P. Xiao, The impact
of analog-to-digital converter architecture and variability on analog neural network accuracy, in
Proceedings of the IEEE International Conference on Neural Networks, IEEE, 2024, pp. 123–130.

[15] Q. Xia and J. J. Yang, Memristive crossbar arrays for brain-inspired computing, Nature Materials,
18 (2019), pp. 309–323.

[16] T. P. Xiao, B. Feinberg, C. H. Bennett, V. Agrawal, P. Saxena, V. Prabhakar, K. Ramkumar,
H. Medu, V. Raghavan, R. Chettuvetty, et al., An accurate, error-tolerant, and energy-
efficient neural network inference engine based on SONOS analog memory, IEEE Transactions
on Circuits and Systems I: Regular Papers, 69 (2022), pp. 1480–1493.

[17] T. P. Xiao, W. S. Wahby, C. H. Bennett, P. Hays, V. Agrawal, M. J. Marinella, and S. Agar-
wal, Enabling high-speed, high-resolution space-based focal plane arrays with analog in-memory
computing, in 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and
Circuits), 2023, pp. 1–2.

[18] K. Zainal Mokhtar and J. Mohamad-Saleh, An oil fraction neural sensor developed using electrical
capacitance tomography sensor data, Sensors (Basel, Switzerland), 13 (2013), pp. 11385–406.

356 Event Detection Using Neural Networks Robust To Statistically Similar Distractors

A CNN

B MLP D LSTM

C RNN E GRU

F CRNN

Fig. 2.2. Architecture building blocks: A Convolutional layers incorporate spatial invariance by uti-
lizing shared weights between neighbors across all pixels [5]. B Perceptron layers allow nonlinear mixing
of input components, but do not include spatial or temporal invariance [18]. C RNN layers incorporate
feedforward activity from their input, but also a “context” which represents previous time-steps outputs
[5]. D LSTM layers: LSTM layers are a type of recurrent network. They have three gates (input, output,
and forget) and are meant to minimize occurance of vanishing gradients using a cell state [5]. E GRU
layers: GRU layers are also reccurent layers, but with only two gates (update and reset) meaning they have
fewer parameters than an LSTM [5]. F CRNN layers incorporate both spatial and temporal invariance, by
utilizing independent feedforward (top pathway) and recurrent (bottom pathway) convolutional weights.

M. Gahl, W. Chapman, S. Agarwal, & F.S. Chance 357

Fig. 2.3. Illustration of data flow through time. Left Input frames, which are spatially structured
and contain sensor magnitude readings, arrive throughout time (frames). Right All architectures classify
each frame as containing an event of interest or not, purely based on the preceding frames, or only the
current frame in the case of CNN or MLP layers. Top Sequential spatial-then-temporal network process
frames in a purely spatial manner before integrating outputs through time. Middle CRNN layers integrate
local changes on each timestep. Bottom Parallel architectures combine multiple methods and summate the
resulting activations on each timestep.

358 Event Detection Using Neural Networks Robust To Statistically Similar Distractors

0 50 100
Epochs

0.4

0.6

0.8
Lo

ss
1 layer CNN 1 layer CRNN

0 50 100
Epochs

0.4

1.2

2.0

Lo
ss

1 layer CNN 1 layer CRNN

0 50 100
Epochs

0.4

0.6

0.8

Lo
ss

1 layer CRNN 1 layer CNN

0 50 100
Epochs

0.4

0.6

0.8

Lo
ss

1 layer CNN 2 layer CRNN

0 50 100
Epochs

0.4

1.2

2.0

Lo
ss

1 layer CNN 2 layer CRNN

0 50 100
Epochs

0.4

0.6

0.8

Lo
ss

1 layer CRNN 2 layer CNN

0 50 100
Epochs

0.4

0.6

0.8

Lo
ss

2 layer CNN 1 layer CRNN

0 50 100
Epochs

0.4

1.2

2.0

Lo
ss

2 layer CNN 1 layer CRNN

0 50 100
Epochs

0.4

0.6

0.8

Lo
ss

2 layer CRNN 1 layer CNN

0 50 100
Epochs

0.4

0.6

0.8

Lo
ss

2 layer CNN 2 layer CRNN

0 50 100
Epochs

0.4

1.2

2.0

Lo
ss

2 layer CNN 2 layer CRNN

0 50 100
Epochs

0.4

0.6

0.8

Lo
ss

2 layer CRNN 2 layer CNN

Parallel Networks CNN-CRNN Networks CRNN-CNN Networks

Fig. 3.1. Loss throughout training for models shown in Table 3.2. X axis is training epochs and y axis
is the loss. Left Models with a CNN and a CRNN in parallel. Both models recieve the stumli and their
representations are added at the end. Center Models with a CNN and CRNN in series. Only the CNN
recevies the input stimuli. The output of the CNN is the input to the CRNN. Right Reverse of the center
column.

M. Gahl, W. Chapman, S. Agarwal, & F.S. Chance 359

MACHINE LEARNED INTERATOMIC POTENTIAL DEVELOPMENT
ACCELERATED VIA LARGE-LANGUAGE MODELS FOR NICKEL-GOLD

JENNIFER D. GONZALES-PASION∗, MITCHELL WOOD† , AND ALYSSA J. HENSLEY‡

Abstract.
The widespread use of hydrogen alkaline fuel cells, a clean renewable energy source, is hindered by

its reliance on scarce and expensive noble metal catalysts. Existing literature indicates that sustainable
and cheaper gold-promoted nickel-based catalysts show promising catalytic activity for the hydrogen fuel
cell. However, two challenges exist: (1) current computational modeling techniques are unable to reach
the necessary length- and time-scales and (2) due to nickel displaying ferromagnetic properties, there is an
open question on how magnetism affects model accuracy. To fully understand the chemistry and physics of
the nickel-gold system, this study aims to develop a nonmagnetic interatomic potential for gold-promoted
nickel catalysts. The methodology for building an accurate machine learned interatomic potential involved
the development of training data, conversion of training data points to descriptors, tuning and optimizing
sets of parameters to decrease accuracy errors, and modeling the potential against various structures. This
nonmagnetic potential is intended to be compared against a magnetic informed potential to assess the impact
magnetism has when developing an accurate gold-promoted nickel catalyst model. The current nonmagnetic
potential demonstrated low errors while successfully being able to model stable nickel and gold surfaces.
This signifies a promising step towards building accurate potentials for the desired system and advancing
towards cost effective hydrogen fuel cells.

1. Introduction. The need for a clean renewable energy source stems from the cur-
rent, primary practice of burning fossil fuels for energy production. When burning fossil
fuels, carbon dioxide–a greenhouse gas which is the leading cause of climate change–is re-
leased in addition to energy. An alternative energy production route growing in interest are
hydrogen fuel cells. These hydrogen fuel cells require heterogeneous catalysts for the hydro-
gen oxidation reaction (HOR) to occur, a chemical reaction that causes molecular hydrogen
to break into its atoms and release electrons before combining with molecular oxygen to
form water[4]. The flow of electrons drives the fuel cell to generate power without releasing
harmful chemicals to the atmosphere. The choice of catalyst here is key, as without it the
HOR would occur at much slower rate deeming the hydrogen fuel cell inefficient. Platinum
and iridium are the current standard catalysts for this device, but they prevent the mass
production of hydrogen fuel cells due to their high cost and scarcity[4]. Research has shown
that nickel (Ni)-based catalysts have great stability in the alkaline media of a hydrogen fuel
cell and emphasized promising electrochemical behavior[14]. When doped with a secondary
promoter metal, like gold (Au), we can further enhance the properties of the catalyst, letting
our desired material become a Ni-Au alloy[8].

As catalytic reactions occur at the nano-scale, experiments cannot fully resolve key in-
formation about the working catalyst, such as atomic-level surface reconstruction and active
site formation. To tackle this problem requires the use of atomistic molecular dynamics to
uncover the mechanisms of this evolving catalytic activity. A further complication that
exists in modeling Ni catalysts is the ferromagnetic nature of metallic Ni. Ferromagnetism
is a class of magnetism, a phenomenon described as the motions of electronic charges that
produces attractive and repulsive forces between objects[17]. The presence of this ferromag-
netism poses a critical question: can the dynamic surface structures of Ni-based catalysts be
accurately predicted without accounting for the metal’s magnetic properties? Our approach
will be to utilize molecular dynamics simulations to directly observe surface reconstruc-
tion during the HOR as these methods are well suited for the length and timescale of this

∗Stevens Institute of Technology, jgonzal7@stevens.edu
†Sandia National Laboratories, mitwood@sandia.gov
‡Stevens Institute of Technology, ahensley@stevens.edu

360 CSRI Summer Proceedings 2024

phenomena.
To address this question for Au-promoted Ni catalysts, we need to first address the in-

puts required for any molecular dynamics (MD) simulation, an interatomic potential. The
main difference between ab-initio MD (AIMD) and its classical MD counterpart is that
forces on atoms are taken either from gradients of a self-consistent wavefunction (AIMD),
or from a reduced order model solely based on atomic positions (classical MD). AIMD is
very accurate but very computationally expensive, scaling as the cube of the atom count.
Meanwhile, the cost of classical MD is linear with atom count, largely due to the use of a
radial cutoff of atom interactions. There has been a large emphasis on machine learning
methods used in MD[9, 21], and we aim to capitalize off this for our work on Ni-Au catalyst
design. Therefore, we will build a nonmagnetic Ni-Au machine learned interatomic potential
(ML-IAP), a complex function that describes the forces and energies based on local atomic
positions. The nonmagnetic Ni-Au potential developed here will be compared to a similarly
created magnetic potential in the near future to gain further insight on the effects of mag-
netism on large-scale MD simulation results. Here, we built a nonmagnetic potential using
a diverse training data set containing only nonmagnetic structures. A computational tool
was then employed to fit initial potentials to the given training data set and output force
and energy error metrics for accuracy assessment. Subsequently, the potential was further
optimized using a genetic algorithm that applied different data point sampling methods to
find the best settings for the ML-IAP to minimize errors. Once the potential was deemed
optimized, based on the errors to known properties, it was then tested against a variety
of structures under different reaction conditions using MD simulations through the Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [15, 18]. During these
simulations, our goal was to achieve stable structures, signifying an accurate nonmagnetic
potential for Ni-Au catalysts.

2. Methods. A ML-IAP is constructed in three key components: 1) a training set
that contains ground truth values of total energy and forces per atom, 2) a set of descrip-
tors (features) that serve as input to 3) a model form that outputs per-atom energy and
force. Constructing the training set that captures the desired material properties and end
use cases is non-trivial, and will be explained in detail in subsequent sections. For simplic-
ity we will adopt a linear model form versus a more complex neural network, though the
same procedures outlined here apply to the training of either model form. Which leaves the
choice of a descriptor set, where special attention to the accuracy versus computational cost
of constructing this basis set is needed. Many suitable options exist in the literature, and
our search is narrowed by their availability in LAMMPS[18]. A zoo of acronyms exist to
define these descriptor sets; Spectral Neighborhood Analysis Potential (SNAP)[19], Gaus-
sian Approximation Potential (GAP)[2], Proper Orthogonal Descriptors (POD)[11]. The
’parent’ set to all of these atom-centered bases is the Atomic Cluster Expansion (ACE)
method[3, 6]. Subsequent sections will detail the choices made to construct the training set
and optimize both descriptor and model form hyper parameters.

2.1. Generation of Training Data. The initial set of training data was generated on
the Dorothy high-performance computing cluster (HPC) at Stevens Institute of Technology
(SIT). Two types of training data were generated: domain and beyond domain knowledge
structures. For domain knowledge structures, we used the open access database Materi-
als Project[7] to include bulk Ni (fcc, bcc, hcp) and bulk Au (fcc, bcc, hcp). Additionally,
ground state structures for Ni, Au, Ni3Au alloy, and NiAu3 alloy, were also accessed through
Materials Project and are the most stable configurations of both element types. We also
created defect structures of pure Ni and Au with single-atom metal vacancies and substi-
tutions of one element type replacing the other. Beyond domain knowledge structures were

J.D. Gonzales-Pasion, M. Wood, & A.J. Hensley 361

generated using the Universal Structure Predictor: Evolutionary Xtallography (USPEX).
USPEX can generate randomized stable and metastable structures by using input param-
eters such as chemical composition, the range of the number of atoms that can exist in a
structure, and the ion distance between the atoms[12, 13, 10]. We instructed USPEX to
create three sets of structures, 100 pure Au, 100 pure Ni, and 100 Ni-Au alloys. Each set
contained a range of 4-12 atoms and a minimum ion distance of 2.0 Å, with the chemical
composition changing depending on the set that is being calculated.

Once structures were generated, the energies and forces needed for ML-IAP training
were obtained via the Vienna Ab Initio Simulation package (VASP), a quantum mechanics
simulation code that solves for the electronic structure with Density Functional Theory
(DFT). All DFT calculations were single point and non-spin polarized. Electron-electron
interactions were captured using the Revised Perdew-Burke-Ernzerhof (RPBE) functional.
A plane-wave basis set was used with an energy cutoff of 400 eV. Electron smearing was
modeled with the Methfessel-Paxton (N=1) approach, with a smearing width of 0.1 eV. The
first Brillouin zone of all DFT calculations was sampled using a k-point resolution of 0.02
in units of 2πÅ−1. The electronic convergence criteria was set to 10−4 eV.

To rapidly generate data that spans a large descriptor space, AIMD simulations were
employed using VASP on the Sandia HPC cluster, Amber. AIMD simulations move atoms
through space based on the forces calculated and the quantum mechanical level, a set tem-
perature, and Newton’s laws of motion. Here,the canonical ensemble was used (e.g., constant
number of atoms, volume, temperature), and each simulation was run with 1.0 femtosecond
timesteps at two different temperatures (e.g., 300 K and 1000 K). AIMD simulations were
performed on all domain knowledge structures at various temperatures ranging from 300
K-2000 K. These values were selected based on the stability and melting temperatures of
Ni and Au.

Fig. 2.1. t-SNE projection of complete training data set plotted against the descriptor space. Note the
large volume of descriptor space mapped by AIMD versus other structure generation methods.

To visualize the diversity and amount of training data, we produced a plot called the

362Machine Learned Interatomic Potential Development Accelerated Via Large-language Models For Nickel-gold

t-distributed Stochastic Neighbor Embedding (t-SNE). This technique takes the given high-
dimensional data set and graphs it against a two-dimensional plot while preserving as much
of the original information [20]. A t-SNE projection does this by calculating the pairwise
similarities between data points and finds the probability of one point being the neighbor
of another[20]. Using these probabilities, t-SNE generated a two-dimensional plot based on
the similarities between different data points[20]. The points that are similar will tend to
attract and vice versa, creating groups of points on the graph.

Using this visualization technique we observed where our structures laid in the descriptor
space (as seen by the ML-IAP) and understood how varying training data covers different
parts of the space (see Figure 2.1). Previously at SIT, the training data set only included
USPEX structures and we saw how little space these structures cover. By using the Sandia
resources, we increased coverage with the inclusion of AIMD, further diversifying our data.
With AIMD simulations we generated hundreds of data points that are unique, given that
the space they cover are at different locations in comparison to the USPEX structures.
By providing diverse training data to the ML-IAP, we are more likely to be interpolating
between points, which is a more reliable mode of prediction. Without good coverage in
descriptor space, extrapolations will be common and, thus, we do not have a reliable way
to quantify the accuracy with respect to DFT.

2.2. ML-IAP Construction and Hand-Tuned Optimization. Current empirical
potentials, like Lennard-Jones, can be used to simulate systems but are constrained to their
respective applications, unable to predict material specific properties. We will instead use
ML-IAP, which serves to link DFT and MD, capable of performing simulations with the
accuracy of quantum mechanical methods[16]. To do this we will use FitSNAP, a software
that automates the conversion of training structures into descriptors that are needed for
the model[16]. From FitSNAP, we can construct an ACE potential [3, 6], which differs
from other ML-IAP due to the descriptor set used. This descriptor set treats interactions
between atoms (within a radial cutoff) as separable terms based on the body order. For
example, an O2 molecule can only exhibit two-body interactions, where H2O will be a sum
of two- and three-body interactions. This chemically intuitive mathematical description
is not present in other ML-IAP methods, namely SNAP. Along with the construction of
potentials, FitSNAP is also able to provide an error analysis for the user to understand the
accuracy in terms of energy and force errors. This is done by producing the loss function
that compares the predicted potential against DFT calculations and outputs the difference
between the two[16]. Having access to these metrics allowed us to make changes to the
adjustable parameters to further improve the accuracy of the potential.

Among these parameters, both group weights and hyper-parameters (i.e., lambda and
radial cut off) were adjusted. There are three types of group weights that can be changed,
energy, force, and stress. By increasing the value for any of the three we are telling FitSNAP
to place more emphasis on that type of training and to decrease its error. These three values
exist for each group where our groups are defined as seen in figure 2.1. Since the system
we observed for this study is Ni-Au, we did not make any changes to the stress weight due
to neither element type having significant properties that require stress to be changed for
improvement of the model. This leaves us with changes made to only energy and force in
terms of group weights. The accuracy of the potential is far more sensitive to change in radial
cutoff and lambda than group weights, and we will later see how this creates difficulties when
hand-tuning these parameters. All descriptors are atom-centered, meaning the neighboring
atom positions are used to calculate the energy and force on a central atom. This process
repeats itself for every atom in a given structure. Radial cutoff sets the maximum distance
a neighboring atom can be from the central atom and still exert any forces and energies on

J.D. Gonzales-Pasion, M. Wood, & A.J. Hensley 363

the central atom. Lambda specifies whether emphasis should be placed on further or closer
neighboring atoms relative to the central atom.

Fig. 2.2. Graphs of changes in errors as group weights or hyper-parameters are adjusted.

Using the generated training data, an initial potential was first created by adapting an
example input script provided in the FitSNAP code repository. This script contained pre-
set group weight values that were chosen for their specified system but can be modified for
different training data sets. As for the hyper-parameter values, a separate script generates
starting values based only on the element types. With these values we can begin to run
FitSNAP and produce our first potentials.

To build intuition on how changes in the parameters affect the force and energy errors,
an assessment of the outputted metrics was done with each FitSNAP run. This hand-tuning
process was first executed against the group weights given that they are less sensitive. In
figure 2.2, the graph of the ratio of the group weights versus mean absolute error (MAE)
shows a total of 10 data points, each representing a FitSNAP run. We saw overtime how
a significant decrease in the force MAE was made while preserving the energy MAE as we
increased the force weight. Eventually, the group weights lost influence over the MAE and
trade offs between the force and energy errors were noticed. Since we reached a saturation
point where further hand-tuning of the group weights did not make notable improvements,
we moved to the hyper-parameters.

Since the potential accuracy is far more sensitive to lambda and radial cutoff change,
we set base values for radial cutoff by performing a nearest neighbor analysis on Ni-Au
USPEX generated structures. From this preliminary analysis, we found that the radial cut
offs of the first, second, and third nearest neighboring atoms from the central atom were
located at values 3.175, 4.325, and 5.275Å respectively. For lambda, we intuitively chose
to increase by integer increments. As seen in figure 2.2, there is no noticeable optimum set

364Machine Learned Interatomic Potential Development Accelerated Via Large-language Models For Nickel-gold

of values achieved with respect to energy and force MAE, demonstrating the difficulty of
hand-tuning these parameters as the errors rise and fall at different rates. Another dilemma
that arose is the time needed to run more fits and analyze the metrics. This slow process
only allowed 5-10 fits to be run per day and raised the need for an automation system.
Thus, we turned to the genetic algorithm called the design analysis kit for optimization and
terascale applications (Dakota) for further optimizations.

2.3. ML-IAP Construction and Genetic Algorithm Optimization. Dakota is
a tool used to perform a variety of analyses such as uncertainty quantification, calibration,
and design of experiments[1]. For the purpose of this study, we used optimization algorithms
to automate the selection of hyper-parameters and group weights with the goal to evaluate
more candidate potentials efficiently. The flexibility for Dakota comes from the treatment
of connected codes as a black box. This refers to the ability for Dakota to propose pa-
rameters to an outside code, with the expectation that said code returns an error metric
for Dakota to determine new parameter sets. Presently, the outside code is FitSNAP and
it is up to our discretion on how candidate potentials are scored. Our objective functions
include the lattice parameter, formation energy, vacancy energy, and substitution energy
errors. We selected these because they represent basic properties of the Ni-Au alloy that
should be easily reproduced by a suitable parametrization of the ML-IAP. The objective
function errors were obtained by running short LAMMPS simulations that deploy the can-
didate ML-IAP to predict these properties of interest. The remaining steps for setting up
Dakota involved selecting sampling methods of the varied parameters and adding additional
objective functions for candidates evaluation.

Dakota has many sampling methods on the free variables for the optimization. Of
those methods we applied two, Efficient Global Optimization (EGO) and Single Objective
Algorithm (SOGA), to our runs[1]. EGO finds the best solution by iteratively using a
surrogate Gaussian process model of the objective functions each time more sampling data
is added[1]. It then evaluates the improvements in errors to select more sample points. For
this study, sample points refer to parameter values of hyper-parameter and group weights[1].
SOGA finds the best solution by initializing a population of random sample points to be
evaluated by calculating the objective values. Based on these values, SOGA then chooses
the best points to be bred/mutated into a new population. For our template input file we
made modifications to lambda and radial cut off, leaving them open for Dakota to know
that these were the values to be optimized.

Separate to hyper-parameter tuning, there are a set of values that define the ACE basis
set that are not easily optimized. Much like our quantum-chemical understanding of local-
ized electron orbitals, the ACE descriptor set combines the radial and angular components
into rotation and permutation invariant functions. Radial basis functions,Rn(rij), are eval-
uated up to nmax, defined for each rank of descriptor. Angular functions, Y m

l (r̂ij), are
terminated at lmax which are independently defined for each of the ranks. Lastly, mumax
is singly defined for all ranks. Ongoing work in the group has selected a few basis sets for
use that show broad applicability. Here, two basis sets were tested. Lastly, there is a choice
in FitSNAP to additionally use an analytical interatomic potential for close atom distances
that aren’t well represented by DFT. This is called the Ziegler-Biersack-Littmark (ZBL)
term and can be subtracted off the DFT energies and forces such that it can be consistent
with fitted ML-IAP. With these confirmed inputs we began to run Dakota while varying the
sampling method, basis set, and ZBL and retrieve some candidate potentials.

2.4. Potential Deployment. From a large batch of candidate potentials from Dakota,
a few were isolated by using a ranking system discussed in greater detail later. With these
few candidates we further tested for accuracy by utilizing MD simulations within LAMMPS.

J.D. Gonzales-Pasion, M. Wood, & A.J. Hensley 365

LAMMPS is a versatile tool used by many members within the scientific community for
applications in physics, chemistry, and materials science [18]. It offers great flexibility and is
able to simulate systems of sizes ranging from small atomic structures to large-scale systems
containing billions of particles[18]. Because of its wide range applications it is difficult to
explore all its possibilities and understand what is needed to create a script that describes
the simulation we wish to occur. Instead of writing these scripts from scratch, we instead
used Sandia Artificial Intelligence (SAI) to accelerate the rate it takes to code LAMMPS
input scripts without prior knowledge. SAI is a large language model, and is a snapshot of
ChatGPT[5] that is locally hosted for uses at the lab.

Before we could implement SAI into this workflow, we first tested if SAI could create a
working LAMMPS input script without providing it a pre-made script. Since our primary
system for this study is Ni-Au, we instructed SAI with the given prompt: ’Give me a
LAMMPS input script for Ni-Au’. SAI then outputted a series of code with commentary
describing what each line does. The script provided was then run through LAMMPS and
resulted in no output file to check if it gave the desired simulation. After carefully reading
through the output section of the code, the issue was identified and corrected by notifying
SAI of an incorrect ordering of commands. SAI acknowledged this and gave a revised script
that produced an output file containing the simulation. Another problem arose when the
only element type found in the structure was Ni. SAI was then asked to explain why
this happened and responded with an explanation of the problematic line of code and an
updated script that correctly included Au in the structure. This portion of the discussion
with SAI ended with a successful simulation of a 50% Ni and 50% Au filled box using the
Lennard-Jones potential.

To further challenge SAI, it was given the request: ’Can you give me a LAMMPS in-
put script for Ni-Au alloy using a lennard-jones potential and have it be a nanoparticle’.
Additional specifications were given to enhance the chances of achieving the desired simula-
tion. This moved beyond the initial simulation by defining the atomic geometry that should
be simulated, something that is usually left to domain expert users. The first script SAI
produced was a success, displaying a LAMMPS simulation of a Ni-Au alloy nano-particle
and exceeding expectations by including changes in temperature. The temperature was set
to increase from 300 K to 1000 K and this inclusion resulted in noticeable motions of the
atoms, creating visually pleasing effects for the user to watch. This proved that SAI can
create working LAMMPS input scripts with the help from the user. SAI learned from it’s
previous mistakes, as seen by this new prompt, and required no troubleshooting. SAI could
then be used to create specified simulations to qualitatively test the accuracy of the best
candidate potential against different structures.

3. Results.

3.1. Best Candidate Potential. A total of eight Dakota runs were conducted, each
varying either the sampling method, basis set, or if ZBL was turned on or off. Each of these
runs provided a large set of candidate potentials that were difficult to sift through to find
the best potential because of the number of outputted error values. Instead of manually
going through the metrics of each potential, a ranking system was applied to select the best
performing candidate. How this ranking system works is it will rank all the potentials for
each objective functions and apply points depending on where they fall (e.g., a potential
that ranks as number 54 in force error has 54 points applied to them). The higher the
number of points, the worse they are in terms of quantitative errors. Once the potentials
were ranked for each objective function, the points were then summed to give a total score.
By using this system, we selected the best potential from each Dakota run.

366Machine Learned Interatomic Potential Development Accelerated Via Large-language Models For Nickel-gold

Table 3.1
Best candidate potentials from the eight Dakota runs and their errors.

Basis Set 1 Basis Set 2

Candidates 1 2 3 4 5 6 7 8

Energy Error 0.2001 0.198 0.332 0.208 0.182 0.183 0.175 0.182

Force Error 0.131 0.189 0.295 0.200 0.230 0.229 0.228 0.256

Lattice Parameter Error 0.447 0.442 0.567 0.440 0.458 0.463 0.413 0.434

Formation Energy Error 0.338 0.418 0.299 0.339 0.106 0.162 0.169 0.200

Vacancy Energy Error 0.909 2.036 2.139 2.027 0.046 0.042 0.090 0.088

Substitution Energy Error 0.855 1.996 2.106 1.987 2.033 2.027 2.037 2.015

Overall Ranking 1 5 8 6 2 4 3 7

From Table 3.1, we inspected the objective errors between the top selected potentials
and saw how they differ from each other. Some potentials outperformed others for cer-
tain objective functions. For example, potential 1 had a substitution energy error below
1 eV/atom while the remaining had an error nearing or equal to a value of 2 eV/atom.
Potential 6 did well in predicting the vacancy energy, having the lowest value out of the 48
seen in the table. The same ranking system that was applied to each Dakota run is then
applied to the eight potentials to enable comparison. This system found that potential 1,
using basis set 1, the SOGA sampling, and ZBL turned off, was the best overall potential.
After deeming potential 1 as the most accurate quantitatively, we proceeded with running
the potential against different structures in LAMMPS.

3.2. Simulations of Stability Test. Potential 1 was tested against a variety of sur-
face structures at 300 K by using a LAMMPS input script generated by SAI. The prompt
that was given was: ’Can you give me a LAMMPS input script to check the stability of
my potential at 300 K, I already have the POSCAR, I also want the bottom layer of atoms
to be frozen while the rest are mobile. The script should also give me an output file for
the entire simulation.’ This resulting script simulated the given structures at the correct
reaction conditions but required an additional energy minimization step to relax the system.
Inclusion of this command let the structure find the configuration that is most stable by
minimizing the energy. Once this configuration was found, the simulation then began to run
at a constant temperature of 300 K. Additionally, the bottom layer of atoms were frozen
to replicate the existence of infinite material found in solids. As for the structures this test
was conducted on, it was the surfaces of each element type at the (100), (110), and (111)
facets. These simulations ran to completion and did not show any incorrect physics of the
system. This is proven both visually as well as quantitatively through the radial distribution
functions (RDFs).

Figure 3.1 illustrated how the structures maintained their shape during the stability
tests, as seen by structure images and RDFs. These images, captured at the final frames
of the simulation, did not display any black holes or anomalies indicative of an inaccurate
potential that needs further optimization. The RDFs provided insights on how the atoms
are shifting as time passes. Although it is clear that the atoms do shift from their original
positions, the overall structure remained consistent. This is noticed when the biggest differ-
ence between the RDFs before and after simulation is the rounding of the peaks, indicating

J.D. Gonzales-Pasion, M. Wood, & A.J. Hensley 367

that the locations of the atoms changed but still kept the crystal-like state. This serves as
evidence that the currently developed potential is able to accurately predict surface physics
of Ni and Au.

Fig. 3.1. RDFs for Ni and Au surfaces before (blue) and after (red) the MD simulations at 300 K
performed to test the stability of the optimum nonmagnetic Ni-Au ML-IAP.

4. Conclusions. In this study, we developed a nonmagnetic Ni-Au ML-IAP that suc-
cessfully predicted the stable surface behavior of pure Ni and Au despite the absence of
surface structures in the training data set. This demonstrated the remarkable capability
of machine learning techniques to construct accurate interatomic potentials, even where
some extrapolation from the training set is present. Throughout this process, we were able
to add thousands of data points to our training data and provide structures the ML-IAP
had never seen before, covering a larger amount of the descriptor space. This then lead to
improvements in the accuracy of the ML-IAP, but was later hindered by the slow rate of
the hand-tuning parameter optimization process performed to decrease errors. Manually
shifting the values of the adjustable parameters raised the need for a tool that could auto-
mate this process. A genetic algorithm was then employed to gather larger sets of sample
parameter values and produce more candidate potentials.

Future work for this project should involve more simulation tests of the best candidate
potential against different structures to determine what predictions it is unable to make.
From here, we could then decide what type of structures should be added to the training
data set as this aspect of the project is always open for further enhancement. Continuous
refinement of this potential will then lead to a comparative analysis between fully optimized
nonmagnetic and magnetic potentials. This would enable us to asses how influential mag-
netism is on ML-IAP accuracy and determine if the magnetic property should included or
excluded in the potential development process.

REFERENCES

[1] B. M. Adams, W. J. Bohnhoff, K. R. Dalbey, M. S. Ebeida, J. P. Eddy, M. S. Eldred, R. W.
Hooper, P. D. Hough, K. T. Hu, J. D. Jakeman, et al., Dakota, a multilevel parallel object-
oriented framework for design optimization, parameter estimation, uncertainty quantification,

368Machine Learned Interatomic Potential Development Accelerated Via Large-language Models For Nickel-gold

and sensitivity analysis: version 6.13 user’s manual, tech. rep., Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States), 2020.

[2] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Gaussian approximation potentials:
The accuracy of quantum mechanics, without the electrons, Physical review letters, 104 (2010),
p. 136403.

[3] R. Drautz, Atomic cluster expansion for accurate and transferable interatomic potentials, Physical
Review B, 99 (2019), p. 014104.

[4] T. B. Ferriday and P. H. Middleton, Alkaline fuel cell technology-a review, International journal
of hydrogen energy, 46 (2021), pp. 18489–18510.

[5] L. Floridi and M. Chiriatti, Gpt-3: Its nature, scope, limits, and consequences, Minds and Machines,
30 (2020), pp. 681–694.

[6] J. M. Goff, C. Sievers, M. A. Wood, and A. P. Thompson, Permutation-adapted complete and
independent basis for atomic cluster expansion descriptors, Journal of Computational Physics,
510 (2024), p. 113073.

[7] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter,
D. Skinner, G. Ceder, et al., Commentary: The materials project: A materials genome ap-
proach to accelerating materials innovation, APL materials, 1 (2013).

[8] J. Liu, B. Zhang, Y. Fo, W. Yu, J. Gao, X. Cui, X. Zhou, and L. Jiang, Electrochemically induced
dilute gold-in-nickel nanoalloy as a highly robust electrocatalyst for alkaline hydrogen oxidation
reaction, Chemical Engineering Journal, 464 (2023), p. 142692.

[9] W. Liu, Y. Zhu, Y. Wu, C. Chen, Y. Hong, Y. Yue, J. Zhang, and B. Hou, Molecular dynamics
and machine learning in catalysts, Catalysts, 11 (2021), p. 1129.

[10] A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, New developments in evolutionary
structure prediction algorithm uspex, Computer Physics Communications, 184 (2013), pp. 1172–
1182.

[11] N. C. Nguyen and A. Rohskopf, Proper orthogonal descriptors for efficient and accurate interatomic
potentials, Journal of Computational Physics, 480 (2023), p. 112030.

[12] A. R. Oganov and C. W. Glass, Crystal structure prediction using ab initio evolutionary techniques:
Principles and applications, The Journal of chemical physics, 124 (2006).

[13] A. R. Oganov, A. O. Lyakhov, and M. Valle, How evolutionary crystal structure prediction works
and why, Accounts of chemical research, 44 (2011), pp. 227–237.

[14] A. G. Oshchepkov, G. Braesch, A. Bonnefont, E. R. Savinova, and M. Chatenet, Recent ad-
vances in the understanding of nickel-based catalysts for the oxidation of hydrogen-containing
fuels in alkaline media, ACS Catalysis, 10 (2020), pp. 7043–7068.

[15] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of computational
physics, 117 (1995), pp. 1–19.

[16] A. Rohskopf, C. Sievers, N. Lubbers, M. Cusentino, J. Goff, J. Janssen, M. McCarthy,
D. M. O. de Zapiain, S. Nikolov, K. Sargsyan, et al., Fitsnap: Atomistic machine learn-
ing with lammps, Journal of Open Source Software, 8 (2023), p. 5118.

[17] J. Stöhr and H. C. Siegmann, Magnetism, Solid-State Sciences. Springer, Berlin, Heidelberg, 5
(2006), p. 236.

[18] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier,
P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens,
J. Tranchida, C. Trott, and S. J. Plimpton, LAMMPS - a flexible simulation tool for particle-
based materials modeling at the atomic, meso, and continuum scales, Comp. Phys. Comm., 271
(2022), p. 108171.

[19] A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker, Spectral neighbor
analysis method for automated generation of quantum-accurate interatomic potentials, Journal of
Computational Physics, 285 (2015), pp. 316–330.

[20] L. Van der Maaten and G. Hinton, Visualizing data using t-sne., Journal of machine learning
research, 9 (2008).

[21] Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A. V. Shapeev, A. P. Thomp-
son, M. A. Wood, et al., Performance and cost assessment of machine learning interatomic
potentials, The Journal of Physical Chemistry A, 124 (2020), pp. 731–745.

J.D. Gonzales-Pasion, M. Wood, & A.J. Hensley 369

DECISION TREE MACHINE LEARNING MODEL CONSTRUCTION FOR
PARTICLE SIMULATION

QIMORA M. MASON∗ AND KATHRYN A. MAUPIN†

Abstract. This research demonstrates the use of machine learning techniques into particle clustering
methods for enhancing uncertainty quantification (UQ) and validation analysis. Our study explores the
development and application of a machine learning-based particle clustering code designed to improve the
accuracy processes. By using advanced machine learning algorithms, including supervised learning tech-
niques like decision tree, support vector machines, and neural networks, more precise identification and
characterization of uncertainty in simulation models can be achieved. This paper suggests that combining
machine learning with particle clustering holds significant potential for advancing UQ methodologies and
validation analysis in many engineering and scientific implementations.

1. Introduction. High-fidelity computational codes are implementations of physics-
based, first-principles models, the cost of which may vary but are typically computationally
expensive. Reduced-cost simulation techniques, such as surrogate modeling, have been ex-
tensively used to study and analyze complex real-world systems. Surrogate-based models
ease the computational cost of exploring parameter and design space for engineering tasks,
such as model calibration, uncertainty quantification (UQ) and sensitivity analysis (SA).
Model calibration is the process of tuning model parameters to enhance the capability of
the model to reproduce observed data. In applications with a large number of parameters,
sensitivity analysis may be used to reduce the size of the parameter space, thereby eas-
ing the computational burden of parameter studies, e.g. calibration and UQ. Uncertainty
quantification is the science of quantifying estimations of the uncertainties associated with
constructing a computational model and using it in real-world applications.

Machine learning (ML) is a branch of artificial intelligence (AI) which enables us to
tackle complex tasks with fixed programs and algorithms developed by human beings. The
concept of learning in ML refers to the ability to perform specific tasks through the machine.
It focuses on using the provided data and selected algorithms to process the way that humans
learn, while improving predictions and accuracy. An example of ML is a collection of features
(inputs) that have been quantitatively measured from a given dataset or process that we
want the ML system to follow. A computational program learns from experience with
respect to a specified class of tasks, and the performance of the machine learning model is
then measured.

Machine learning models empower computational predictions in a broad variety of ap-
plications, including engineering [15], health care [4, 12], and sciences [11, 16]. In particular,
ML has been used to enhance UQ methodologies through the use of Gaussian process regres-
sion and neural networks [20]. To examine the soundness of ML implementations, formal
metrics may be used to assess the overall quality of predictive accuracy in regression and
classification problems. Validation analyses in machine learning and surrogate modeling can
help evaluate the overall performance of the model to produce sufficient certainty of its pre-
dictions. In the evolving realm of machine learning, generating the accuracy for a predictive
model is a tedious but necessary process for informed decision making. By integrating UQ
and validation into the growth and learning process, an ML model will provide a better
understanding of the high-fidelity model’s robustness, limitations, and reliability.

This paper focuses on the construction of a decision tree ML model for a particle clus-
tering simulation. An overview of the background mathematics of the regression algorithm

∗Elizabeth City State University, qmmason342@students.ecsu.edu
†Sandia National Laboratories, kmaupin@sandia.gov

370 CSRI Summer Proceedings 2024

can be found in Section 2. Section 3 details an exemplar application and the process used
to determine the validity of the constructed model. Concluding remarks can be found in
Section 4.

2. Background. To effectively create our model, we use a decision tree model, as
it breaks our data down into more attainable parts. Decision trees are popular as ML
models due to their ability to handle complex and mixed data and their reliability and
simplicity [17]. In regression tasks, a statistical model between the inputs and outputs is
estimated according to some data. Then, the model is asked to predict a numerical value
given some input.

Machine learning algorithms have many hyper-parameters, which act as settings that we
can use to control the algorithm’s behavior. The values of these hyper-parameters are not
adapted by the learning decision tree algorithm itself [20]. Implementing our decision tree
regressor, we were able to observe these inputs of our data and train our model accordingly
in the structure of a tree.

We use the scikit-learn library in python [13] to construct our supervised decision tree
model. The decision tree regressor is a supervised learning algorithm. This allows our model
to learn over time, as our dataset includes the correct independent and dependent variables.

2.1. Regression Tree Algorithm. In many real-world domains, the task of machine
learning algorithms is to learn models that predict numerical values [10]. A regression tree is
a type of decision tree used for predicting continuous outcomes [9]. It divides the data into
subsets using a series of splits based on feature values with the ultimate goal of predicting
a numerical target variable. Each terminal nodes, branches, and leaf represents a predicted
outcome.

At each node, the dataset is split into two or more groups based on a feature Xi that
minimizes the variance of the target variable within each group. A common approach for
selecting the best split is minimizing the absolute error. The goal is to minimize the sum of
absolute differences between the predicted and actual values.

In a regression decision tree, the primary mathematical concept used is the calculation
of standard deviation reduction (SDR). The SDR is based on the decrease in standard
deviation after a dataset is split on an attribute [19]. The variance σ2, which measures the
average distance of all data points xi from the mean µ is mathematically calculated as,

σ2 =

n∑

i=1

(xi − µ)2/n, (2.1)

where n is the total number of data points. The standard deviation σ is the square root of
the variance,

σ =

√√√√
n∑

i=1

(xi − µ)2/n, (2.2)

The goal of a regression tree is to minimize the total variance within the resulting
subgroups after each split [2]. The formula for the total variance after splitting a node can
be expressed as,

σ2
total =

nL
n
σ2
L +

nR
n
σ2
R, (2.3)

where, nL and nR are the number of samples in the left and right child nodes and σ2
L and

σ2
R represent the variance in the left and right child nodes [6]. The reduction in the standard

Q. Mason & K.A. Maupin 371

deviation or SDR is then computed as the difference between the standard deviation of the
parent node and the standard deviation of its children,

SDR = σtotal − (
nL
n
σL +

nR
n
σR) (2.4)

The split that minimizes this SDR is chosen as the best split at each node.
By recursively splitting the dataset based on features that minimize the variance in

the target variable, regression trees provide a clear and understandable model structure.
The main advantages of regression trees include their ability to handle both numerical and
categorical data, their ease of interpretation, and their capability to capture complex, non-
linear relationships in data [2].

2.2. Limitations of Regression Models. Decision tree regression models have no-
table limitations, such as overfitting, where trees become overly complex and fit to noise
in the data rather than the underlying trends. To avoid overfitting, a grid search with
cross validation was used to tune our hyper-parameters [13]. This approach combines an
exhaustive grid search of the parameter space with a cross validation calculation to identify
the best combination of hyper-parameters for a given training data set. For example, if the
max depth parameter is set too high, the model will learn fine details of the training data
and eventually learns from the noise. This means that the model would overfit. Thus, a
grid search cross validation helps prevent this problem and reduces the risks of overfitting
by making sure that the model remains consistent and reliable across various splits.

Decision tree models are also sensitive to small changes in the data, which can result
in different tree structures [14]. Compared to linear regression, which assumes a linear rela-
tionship between variables, decision trees are more flexible since they can model non-linear
patterns. Random forests and gradient boosting algorithms also offers better performance
by averaging or boosting trees, reducing overfitting and improving extrapolation [14].

Moreover, decision trees may struggle with outliers, unlike ridge or lasso regression,
which use regularization techniques to reduce the impact of multicollinearity and prevent
overfitting. These regularized models provide simpler, more interpretable solutions for high-
dimensional data [18]. Regression tree models have been used in a variety of applications,
ranging from quantum mechanics [3], fraud detection [5], quality control [1] and many more.

2.3. Validation Metrics. To quantify the efficiency, accuracy, error, and overall qual-
ity of an ML model, evaluation metrics such as Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) are calculated [20]. The MAE is the average absolute difference be-
tween our predicted values and our actual values,

MAE =
1

n

n∑

i=1

|yi − ŷi|. (2.5)

Here, n is the total number of observed data points in the testing set, ŷ are the predicted
values, and y are the true values within our dataset. We use this to assess the effectiveness
of our regression model. MAE is more sensitive to outliers and treats all errors equally,
which penalizes large deviations.

The root mean square error (RMSE) is an error metric similar to the MAE. Intuitively,
RMSE is the square root of the mean of the squared error. Calculating the RMSE is a
crucial metric for evaluating our model’s performance [7]. Mathematically, it can be written
as

RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2, (2.6)

372 Decision Tree Machine Learning Model Construction For Particle Simulation

where, as before, n is our total number of data points, yi are the actual observations within
our dataset, and ŷi are the ML model predictions.

3. Example. As an exemplar application, we consider a particle-based current model.
This model takes as inputs the voltages of three areas of the device being simulated. The
emitter, base, and collector voltages are denoted by Ve, Vb, and Vc, respectively. As quanti-
ties of interest, we take the corresponding current output. The emitter, base, and collector
currents are similarly denoted by Ie, Ib, and Ic, respectively.

The parameter space is sampled using Latin-hypercube sampling (LHS). LHS uses a
stratified sampling method to improve coverage of the space being sampled. When sampling
a d-dimensional space of random variables {xi}i=1,2,...,d, stratification in LHS is attained by
dividing each dimension into n non-overlapping intervals of equal probability, where n is the
total number of computational runs produced. One value is randomly selected from each
of the extreme intervals [8]. This method is used in computational modeling of reliability
analyses due to the fact that the samples fill the space better than a purely random sampling
algorithm.

For the application considered here, 500 LHS samples were drawn from the parameter
space. The emitter voltage is set to zero, and the base voltage and collector voltage are
both assigned a uniform distribution,

Ve = 0, Vb ∼ U [0.35, 1], Vc ∼ U [0.35, 1]. (3.1)

The high-fidelity computational code was then run at each of the LHS sample points, and
the current values Ie, Ib, and Ic were extracted.

Given a set of data from a high-fidelity physics code, it is a generally accepted practice
to use 80 percent of the data for training an ML model and reserve the remaining 20 percent
for testing its performance. Here, we randomize and shuffle our data before splitting it by
setting our random state equal to 42. For simplicity, we construct two separate models. The
first takes as input the base voltage and predicts the base current, while the other takes
as input the collector voltage and predicts the collector current. Figure 3.1 showcases the

(a) (b)

Fig. 3.1. Scatterplots of the training data generated by randomly selecting 80 percent of the high-
fidelity data produced through an LHS study of the parameter space. On the left, (a) shows the base current
compared to the input base voltage values. Similarly, on the right, (b) shows the collector current compared
to the input collector voltage values.

Q. Mason & K.A. Maupin 373

(a) (b)

Fig. 3.2. Scatterplots of the decision tree predictions compared to the true testing data. These data
points represent the remaining 20 percent of the high-fidelity data produced through an LHS study of the
parameter space. The green dots represent the true data, and the brown dots represent the decision tree
model prediction. On the left, (a) shows the base current compared to the input base voltage values. Sim-
ilarly, on the right, (b) shows the collector current compared to the input collector voltage values. Note:
These figures will be updated. Some data was lost during Qimora’s separation from SNL and figures will
have to be recreated.

visualization of our training data. The two cases shown in Figure 3.1 are quite different.
The data for the base voltage and base current displays a strong dependency, while that
for the collector voltage and collector current appears to be more random. This training
data is used to train our decision tree regressor, and the testing data is used to evaluate the
accuracy of the trained model.

To evaluate the performance of the decision tree regressor model, we conducted a series
of validation tests. Using 5-fold cross-validation, the base voltage yielded an RMSE of 0.01
and an MAE of 0.02. With these scores, we can say that we would be able to trust our
decision tree regressor model to emulate the base voltage of this system. Again using 5-fold
cross-validation, the collector voltage yielded an RMSE of 3.28 and an MAE score of 1.58.
These results are too high to consider the model a trustworthy predictor of the collector
voltage. This is likely due to the fact that the correlation between the base voltage and the
base current was much stronger than that between the collector voltage and the collector
current. The collector voltage and current data is much more random. The decision tree
regressor was unable to capture the relationship between the independent and dependent
variables because the relationship was too weak.

Scatterplots of the predictions from the decision tree model compared to the true testing
data are shown in Figure 3.2. Here, the green dots represent the true data, and the brown
dots represent the decision tree model prediction. We can qualitatively see what the metrics
tell us quantitaively. The decision tree model performs quite well in predicting the base
current, where the relationship between the input and output are clear. However, the
model is unable to predict the collector current, where the relationship between the input
and output appears to be more random.

4. Conclusion. In previous studies, decision trees have been used to model and predict
outcomes by leveraging the model’s ability to handle very complex, non-linear relationships

374 Decision Tree Machine Learning Model Construction For Particle Simulation

within data. In this study, decision trees were successfully used and validated as an emulator
for the base current as a function of base voltage in an advanced circuit model. However,
in the scenario where the relationship appears to be more random, the decision tree model
performed poorly. Through validation techniques, such as grid search cross validation and
the use of validation metrics, the robustness and reliability of the predictions of the ML
model have been ensured.

REFERENCES

[1] A. O. Alnahit, A. K. Mishra, and A. A. Khan, Stream water quality prediction using boosted re-
gression tree and random forest models, Stochastic Environmental Research and Risk Assessment,
36 (2022), pp. 2661–2680.

[2] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression Trees,
Wadsworth International Group, 1984.

[3] E. Farhi and S. Gutmann, Quantum computation and decision trees, Physical Review A, 58 (1998),
p. 915.

[4] H. Habehh and S. Gohel, Machine learning in healthcare, Curr. Genomics, 22 (2021), pp. 291–300.
[5] M. Hammed and J. Soyemi, An implementation of decision tree algorithm augmented with regres-

sion analysis for fraud detection in credit card, International Journal of Computer Science and
Information Security (IJCSIS), 18 (2020), pp. 79–88.

[6] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, Springer, 2nd ed., 2009.

[7] T. O. Hodson, Root mean square error (rmse) or mean absolute error (mae): When to use them or
not, Geoscientific Model Development Discussions, 2022 (2022), pp. 1–10.

[8] R. L. Iman, Latin hypercube sampling, in John Wiley & Sons, Ltd, 2008.
[9] G. James, D. Witten, T. Hastie, and Tibshirani, An Introduction to Statistical Learning with

Applications in R.
[10] S. Kramer, Structural regression trees, in AAAI/IAAI, Vol. 1, 1996, pp. 812–819.
[11] P. Langley et al., The changing science of machine learning, Machine learning, 82 (2011), pp. 275–

279.
[12] V. Nemani, L. Biggio, X. Huan, Z. Hu, O. Fink, A. Tran, Y. Wang, X. Zhang, and C. Hu,

Uncertainty quantification in machine learning for engineering design and health prognostics: A
tutorial, Mechanical Systems and Signal Processing, 205 (2023), p. 110796.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine learning in Python, Journal
of Machine Learning Research, 12 (2011), pp. 2825–2830.

[14] J. R. Quinlan, Induction of decision trees, in Machine learning, 1986, pp. 81–106.
[15] Y. Reich and S. Barai, Evaluating machine learning models for engineering problems, Artificial

Intelligence in Engineering, 13 (1999), pp. 257–272.
[16] F. A. R. Rodŕıguez, L. G. Flores, and A. A. Vitón-Castillo, Artificial intelligence and machine

learning: present and future applications in health sciences, in Seminars in Medical Writing and
Education, vol. 1, 2022, pp. 9–9.

[17] J. Su and H. Zhang, A fast decision tree learning algorithm, in Aaai, vol. 6, 2006, pp. 500–505.
[18] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical

Society: Series B (Methodological), 58 (1996), pp. 267–288.
[19] A. Tripathi, Decision tree for regression models in machine learning, 2021.
[20] R. K. Tripathy and I. Bilionis, Deep uq: Learning deep neural network surrogate models for high

dimensional uncertainty quantification, Journal of computational physics, 375 (2018), pp. 565–588.

Q. Mason & K.A. Maupin 375

BREAKING BAD STRUCTURE GENERATION: METHODS FOR SYSTEMATIC,
DATA-DRIVEN ATOMISTIC STRUCTURES FOR ML MODEL TRAINING

COREEN MULLEN∗, EMBER SALAS 2†, AND JAMES GOFF 3‡

Abstract. In this paper we discuss the development of the Generalized Representative Structure (GRS) software, which
aims to represent large atomistic environments using smaller representative structures called ”fingerprints”. Current methods
for representing large atomistic environments are restricted to simple, fixed-lattice, crystal structures. This is an issue when
it comes to trying to represent more complex systems that can be found in the natural world. They also focus on predicting
material properties based on structures, using inverse machine learning we are able to generate structures given specified
properties. Our method uses the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) molecular dynam-
ics program and Atomic Cluster Expansion (ACE) descriptors to create structures without these restrictions. The findings
of our research show that the GRS method can accurately predict some of the properties of its target environment. The
results of our method will help to diversify the data used for Density Functional Theory (DFT) simulations and reduce the
computational resources needed for DFT.

1. Introduction. Computational materials research leverages many algorithms and software
tools to predict properties of materials. Some methods have been established for doing the inverse
of this, yielding atomic structures with specific properties[24] . This is of particular interest for
bridging the many length scales accessed with different atomistic simulation methods and for cu-
rating atomistic materials databases. Materials databases and many computational research efforts,
such as machine-learned interatomic potential (MLIP) training, often rely on highly-accurate but
computationally expensive Density functional theory (DFT) calculations. The DFT method falls
under the electronic structure length and time scale, shown in Fg. 1.1 [13]. DFT calculations of-
fer fairly accurate predictions of thermodynamic and electronic properties, and more recently have
served as training data in a wide variety of data-driven research efforts. These include materials
informatics, database development, machine-learned model development, and more[22]. Given the
computational expense for DFT and electronic structure theory methods, it is important to ensure
that they are performed only for the necessary atomic structures for the particular research.

Molecular Dynamic (MD) is a very important computational simulation method that aids in
research, modeling the movement of atoms and the interactions of a molecular system at the micro-
scopic level. The MD technique solves Newton’s equation of motion to observe this behavior by
calculating the particles position in reference to the forces being enacted on the particle[21]. The
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a software package that
is well known for use in MD simulations. Its popularity can be attributed to its ability to curate a
wide range of models, both simple and complex, for a multitude of materials. MLIPs can be in-
tegrated with LAMMPS providing the ability to predict different variables of a system such as the
force and energy based on the input of molecular dynamics simulations.

Procuring atomic structure data and developing atomistic structure databases has become a
mainstay in computational research for the fields of materials science, physics, and chemistry. While
databases containing comprehensive high-fidelity information have been obtained for many mate-
rials systems, they often exclude more exotic or complex phases such as liquid phases or phases
that lack a lot of crystal symmetry[9, 7, 17]. The atomic structures in these databases are useful
for some applications, however, they do not always reflect the properties of the material in real life
systems. For example, they often are perfect crystals without defects, while real life structures are
never perfect, and often have defects. These databases are also often centered around well-ordered,
low-energy structures, leading to limited or even redundant information in them. This presents a
problem for data-driven research that requires comprehensive, diverse data.

∗Elizabeth City State University, cmmullen879@students.ecsu.edu
†Sandia National Labs, elsikor@sandia.gov
‡Sandia National Labs, jmgoff@sandia.gov

376 CSRI Summer Proceedings 2024

FIGURE 1.1. Typical time and length scales accessible with different materials modeling methods.

Though some computational resources allow for ’brute-force’ research with large amounts of
DFT, vast computational resources aren’t available to all. It would be more useful for the broader sci-
entific community if the expensive calculations could be tailored to different computational budgets.
Data redundancy is another issue that can come from ’brute-force’ research, having redundant data in
a dataset increases the amount of time and computational resources needed for the process[10][23].

1.1. Background. For the purposes of discussing challenges with atomic structure generation
in practice, the development of MLIPs is highlighted. However, these challenges are shared with
many other data-driven materials models. While MLIPs are a compelling method to extend the
accuracy of expensive ab-initio MD simulations to more relevant time and length scales, MLIPs
often require an expert curated database of atomistic structures to train on. MLIPs can handle large
systems, adapt with new data input, and are significantly faster than ab-initio methods. However,
curating training data for accurate and efficient MLIPs is one of the key challenges of these methods.

To train MLIPs, many DFT calculations are often performed on atomic structures. From the
scale of DFT, sizes are limited to ∼ 100 atom systems, classical or ML-driven MD simulations are
limited to 1012 atoms on the upper end, and in real life systems, things are on the scale of 1023.
This disparity is a key focus of this work. For MLIPs to accurately predict properties of realistic
or even MD-sized systems, the potential needs to be able to extrapolate and interpolate. Recently
developed advanced ML models are expected to be good at this, but require adequate training data.
Such models often require that some of the characteristics of the more realistic systems be reflected
in the training database. This is a challenge in and of itself, because the training database typically
needs to be comprised of 1-100 atom structures to be compatible with DFT.

Some elegant solutions for this type of problem have been presented for simple systems like
alloys, such as the Special Quasi-random Structure (SQS) method. Small atomic structures may be
generated such that they have the same correlation functions of a true bulk alloy[25]. The atomic
structures that possess the same chemical ordering characteristics as the bulk alloy referenced are
referred to as special quasi-random structures. While this is useful for atomistic modeling of alloys,
it doesn’t work for all possible phases of the material. For example, this method isn’t suitable for
representing the melting process of an alloy. This is because the SQS method relies on finding struc-
tures that best reproduce the fixed-lattice cluster correlations of a target system. The target system
in SQS is typically a completely random (chemically uncorrelated) alloy. In this context, SQS may
be characterized by structures that have fingerprints (fixed-lattice cluster correlations) that closely
resemble the fingerprints of the target. These fingerprints in SQS only encode information about the
chemical occupation of lattice sites. The goal of this research is to develop and validate a method
that is suitable for representing more complex materials systems and physical/chemical processes

C. Mullen, E. Salas, & J. Goff 377

FIGURE 1.2. Inverse machine learning graph that shows relationship between input and target variable. The blue
points represent the data, the red line represents the predicted values from the linear regression model.

than just alloys on a fixed-lattice. This method, referred to within as the Generalized Representative
Structure (GRS) method, may be used for generating atomic structures that represent (in theory)
arbitrary atomic configurations and chemistries. The method is developed such that GRS may accu-
rately represent alloy phases, but also liquids, amorphous systems, ordered phases, and more. This
is accomplished with GRS by generating structures that either collectively or independently repro-
duce a target fingerprint distribution. These target fingerprints may correspond to a large atomic
structure, a set of atomic structures, an alloy, a liquid, etc. This can be accomplished if fingerprints
are sensitive to positions as well as chemistries. Thus, the GRS method relies on the Atomic Cluster
Expansion (ACE) descriptors to do this. These are a natural extension of the fixed lattice cluster cor-
relations used in traditional SQS[1]. It is also advantageous to use these given the direct connection
to MLIPs[1, 4]. A key goal of this work is to develop and validate this GRS method to reduce the
amount of DFT used in training ML models, and to provide DFT-sized representations of complex
materials.

It is proposed that GRS may be generated analogously to how SQS structures are generated. In
this work, GRS are made to reproduce complicated target distributions beyond alloys on a perfect
crystal lattice.The ability to do so and the accuracy with which GRS may be generated is assessed.
The ability to generate smaller atomic structures and reduce atomistic ML datasets is also assessed
to see if GRS can reduce the amount of DFT needed for computational materials research or speed
the DFT calculations by reducing their size (while retaining similar amounts of information).

While other structure generation methods have been developed, these methods often rely on an
external energy model[11]. Data-driven structure generation methods offer compelling alternatives,
such as the entropy maximization method[8]. This method aims to globally sample descriptor space,
which is an effective, systematic way for getting a comprehensive span of descriptor space. However,
globally sampling descriptor space can be very resource-intensive, sometimes resulting in hundreds
of thousands of structures. The massive computational cost this could incur for DFT calculations is
not compatible with all computational budgets, and may still cause concerns for redundancy.

The GRS method is data-driven and does not require an a-priori energy model like the entropy

378Breaking Bad Structure Generation: Methods For Systematic, Data-driven Atomistic Structures For MLModel Training

↑

Generated representative
structure

↑

Complex target
structure

Targeted fingerprintsGenerated fingerprints

≈

FIGURE 1.3. A generalized representative structure (GRS) of a liquid Tantalum (Ta) system. A small structure may be
produced that matches (as closely as possible) the features of a larger system.

FIGURE 2.1. Illustration of the N-body ACE descriptors and defining equation. The key features to highlight about
the ACE descriptors are the rotational invariance, ensured by the blue highlight of the Clebsch-Gordan product, and the
invariance of ACE descriptors with respect to permutations of bonds (accomplished by permutation-invariant functions in
the orange highlight).

maximization method. Rather than aiming to span a window of descriptor space, it provides (1)
a way to obtain structures resembling a target or (2) a way to systematically find structures that
deviate from a target distribution. Because the GRS method does allows one to tailor how far from
a target to search or how accurately to represent a target, it is possible to systematically search over
descriptor space while balancing computational cost. The ability to do this with GRS will be tested
in some applied cases.

Using our GRS method is also beneficial from an ethical research standpoint [6]. Considering
that when using a scientists intuition for what training data structures will be used, there is likely to
be some bias in their selection. For example, it is common to fit MLIPs on bulk ground state data,
and if it were to make up the majority of the training dataset, there will likely be poor extrapolation
to other phases and conditions[16]. It is shown in this paper that the GRS method may be used to
systematically add training data to MLIP datasets.

2. Methodology. To highlight the key methodology for GRS, some concepts for the SQS
method are important to recall. The SQS method relies on minimizing a loss function that matches
the fingerprints of a random alloy in a smaller crystal unit cell.

The fingerprints used in SQS only encode information about atomic structures on a fixed lattice.
The GRS method relies on the use of Atomic Cluster Expansion (ACE) descriptors to encode atomic
information on or off-lattice. Detailed definitions and derivations of ACE descriptors may be found
elsewhere [5, 3, 2]. For the purposes of this work, it is sufficient to say that the ACE descriptors
encode the information needed to generalize the SQS method off-lattice. The ACE descriptors
may be constructed such that they depend on both the collection of atomic positions in a structure,
R = (r⃗1, r⃗2, · · · r⃗Nat

) , and chemical occupations of atomic sites, µ = (µ1, µ2, · · ·µNat
). These

C. Mullen, E. Salas, & J. Goff 379

ACE fingerprints can be generated for arbitrary body order by taking higher order products of atomic
basis functions, as illustrated in Fig. 2.1.

With the ACE descriptors presented, the loss function central to the GRS method may be de-
fined.

QGRS = α1M
GRS
1 + α2M

GRS
2 + · · ·

MGRS
1 =

∑

ν

α1|B̄ν − B̄target
ν |2

MGRS
2 =

∑

ν

α2|var(Bν)− vartarget(Bν)|2
(2.1)

The loss function for GRS, Eq. (2.1) is defined by the difference between the average ACE
fingerprint values of the GRS and those of the target. This is the MGRS

1 term. The difference
between higher order moments in the distribution, such as the variance with the MGRS

2 term, may
be added for minimal additional computational cost. The GRS is then defined by the set of atomic
coordinates and chemistry’s that minimize this loss function.

min(R,µ)

[
QGRS] (2.2)

The evaluation of the input structures is done by scoring theMGRS
1 term. It is used as our metric

to assess the quality of a structure. We use it because if the difference between the fingerprints for
the GRS and the target structure is minimal, then that means the GRS is accurately representing the
target.

MAE 1GRS
metric =

1

ndesc

∑

ν

|B̄ν − B̄target
ν | (2.3)

When the DFT process is being run on large sets of data, there can be an uptick in the time it
takes to complete. These multi-structure solutions are used in the GRS method as a way to accurately
depict more complex systems. Structures and targets can both be made of smaller structures, and
still benefit from the GRS method being used.

2.1. Computational Tools & Software. LAMMPS plays an important role in the minimiza-
tion of the distance between our generated structures and our target structure. We use the Conjugate
Gradient minimization method from LAMMPS which combines the current and previous force gra-
dient to start searching in a new direction over the space[19]. Our method is being run with the
Python version of LAMMPS (pyLAMMPS), as it is convenient to our Python script to include the
work needed by LAMMPS without needing to run it separately in the LAMMPS software.

The Atomic Cluster Expansion (ACE) provides the fingerprints for our representative structures.

V eff(R,µ) = Vcore(R,µ) +QGRS(R,µ)

2.2. Data Generation. Training data is used in various fields of machine learning research
and is arguably the most important piece of the process. The training data that we are observing in
this research includes elements that are transition metals or metalloids. During our testing of the
software, we worked with four different data sets:

1. A single-element dataset of tantalum (Ta) from the FitSNAP paper [18], serving as a simple
and small starting example.

2. A dataset of nickel (Ni) and gold (Au) provided by researchers to test a multi-element
system with our software.

3. A dataset of magnesium (Mg) and calcium (Ca).
4. A dataset of iron (Fe), chromium (Cr), silicon (Si), and vanadium (V).

380Breaking Bad Structure Generation: Methods For Systematic, Data-driven Atomistic Structures For MLModel Training

FIGURE 2.2. A table depicting a 16 atom NiAu as the target and a good and poor-representation of GRS comparatively.

2.3. Procedures of Software. Candidate structures are different unique configurations of atoms
that we use as a foundation for our GRS method to generate its structures. For different atomic
structures, with different atomic elements, there would need to be a variety of candidate structures
to represent the vast array of unique configurations a system can be formed as. It is intended that the
GRS method can work for arbitrary structures as well as perfect candidate structures. If all of the
candidate structures given are perfect structures, or vice-versa, where the candidate structures would
all be unique, then the GRS method would not be able to efficiently represent the other side.

There are various ways to create candidate structures, which is beneficial considering the various
types of structures we need to represent. One way is using crystal structures with variable density,
and with a chemical composition that can either remain constant or be fixed. Including supercells
of specified parent lattices, such as body-centered cubic (BCC), face-centered cubic (FCC), and
hexagonal-close-packed (HPC) lattices with random chemical compositions. Symmetrically distinct
supercells are also used for these crystal structures. Another type of candidate structure needed for
accurate GRS are amorphous/quasi-crystalline candidates with variable density and variable or fixed
chemistry. These structures are constructed from supercells with a specific number of atoms and
without a parent lattice structure allowing for randomly initialized positions. These structures are
useful when simulating disordered systems.

C. Mullen, E. Salas, & J. Goff 381

Algorithm 1 Pseudocode for evaluating MAEGRS

Define run lammps
for each atom in atoms do

set elements
Set pair style and coefficients
Compute descriptors
Run Simulation
Call run lammps function
Return descriptor gradients

end for
Set target
Set candidate
descriptors target all = lammps ace compute(target)
descriptors candidate all = lammps ace compute(candidate)
per descriptor residuals = average columns(descriptors target all) - aver-
age columns(descriptors candidate all)
M1 MAE = average(per descriptor residuals)

For testing the quality of the generated structures we created a Python script [1] to run the
LAMMPS conjugate gradient minimization algorithm over our structures, to then be able to compare
their similarity to the target. The minimization algorithm puts the atoms at their lowest potential
energy where they are stable, which is why it is used for the comparison. We take the average and
variance for the target and candidate structures into account when running the minimization. After
this we get the average between the target and candidate and compare to ensure that the candidate
was able to accurately represent the target. Fg. 2.2 shows an example histogram that would be made
for to determine if the GRS method was able to cover the same distribution of space as the target it
is intended to represent. It represents the target and GRS method aligning almost perfectly, while
the poor representations, which derive from using inaccurate candidate structures for the system, are
highly unaligned with the target. The final metric we use to evaluate the quality of the GRS method
results is the total mae score. The total mae represents the total Mean Average Error (MAE) score
between the candidate and target.

3. Results & Discussion . Providing a solution to the computational costs of using large train-
ing datasets for MLIPs, is one of the main goals of the GRS method. It intends to reduce the size
of the datasets while retaining a sufficiently similar amount of information comparative to a larger
training data set.

382Breaking Bad Structure Generation: Methods For Systematic, Data-driven Atomistic Structures For MLModel Training

FIGURE 3.1. Distribution of a four atom structure of tantalum (Ta) over a target space.

As represented in Figure 3.1, we are looking at the number of representative structures it takes to
cover the equivalent amount of environment that the target structure does. In this example the target
structure was made of 373 structures to achieve 100% of space covered, while our representative
structures could reach 100% with 100 GRS at a size of 128 atoms.

Some of the properties we are comparing include lattice constants, Poisson ratio, and Bulk
Modulus. These properties are often used in the materials science field to describe the behavior and
characteristics of materials, especially crystalline materials. As seen in Fig. 3.1, the GRS method
is able to reasonably predict these properties of interest quantitatively. To compare we look at the
ACE (GRS from QE) and SNAP columns, the determination of having ”good” or ”bad” results
involves the GRS scores matching to the SNAP scores. The lattice constant, shear modulus, and
Poisson ratio properties are all sufficiently predicted with our GRS method. The GRS predictions
have a difference of .001 for the lattice constant property, .13 for the Poisson ratio property, and
10.68 for the shear modulus. Fg. 3.1 shows an example of the GRS method being used on a set of
Ta data where with approximately 150 54-atom structures, you can represent an equivalent amount
of the descriptor space, comparative to one large Ta structure.

FIGURE 3.2. A BCC Iron tensile test using an EAM interatomic potential, the loading direction is along [111] in
a cylindrical wire geometry. Snapshot is post mechanical yielding showing significant necking (diameter reduction) and
corresponding non-crystalline regions where plastic deformation has occurred.

C. Mullen, E. Salas, & J. Goff 383

There is more space covered when using the GRS due to the fact that they are representing more
unique small pieces of a structure, which provides more diversity to what the data represents.

In Fg. 1.3, a simple single element Tantalum (Ta) structures fingerprints are closely represented
by a single GRS. It however is not always the case that a single GRS can accurately represent a
system. In these cases, we aim to reproduce the target with multiple GRS that collectively repro-
duce the target..An example of a more complicated structure can be seen in Fg. 3.2. This example
represents a system of body-centered cubic (BCC) Iron undergoing a tensile test causing deforma-
tions in the structure. The GRS that were made from this system represent multiple sections of the
larger structure, it generates fingerprints for the structured, more ”perfect” area, fingerprints at the
cross-section of the deformation, as well as fingerprints for the area that is deformed.

ACE GRS from QE (fit 1) ACE GRS from QE (fit 2) SNAP DFT (snap paper) Expt.
shear modulus (GPa) 63.08 53.51 73.76 ∅ 69.2
bulk modulus (GPa) 164.12 262.23 190.8 195.4 185.7

Poisson Ratio 0.33 0.4 0.46 ∅ 0.34
C11 (GPa) 188.83 279.04 270.28 ∅ 267
C44 (GPa) 63.08 53.51 73.4 75.3 82.5

lattice constant (Å) 3.315 3.331 3.316 3.32 3.3
TABLE 3.1

A table showing the property scores of two ACE potentials trained on a 160-structure GRS set before hyperparameter
optimization, SNAP, DFT from [18], and Experiment. Note: The Poisson’s ratio is a dimensionless quantity.

To demonstrate that the structures generated by the GRS method aren’t irrelevant energetically,
DFT calculations were performed using the Quantum Espresso package on the 160 structure GRS
set and small ACE MLIPs were trained on it. The potentials we used for this test were not optimized,
but used as beginning estimations for the properties that could be obtained using the GRS set. It is
reasonable to suspect that with further optimization on the potentials, the accuracy of the predicted
properties would increase.

While the GRS method is able to go beyond perfect crystalline alloy systems, there are still
restrictions and unknowns of what can be done using this method. The boundaries of this study
include both the boundaries of the research field as a whole and the constraints of our software.
There is a limitation to the type of data that the GRS system can work with, for example, running
tests on structures of organic systems with elements such as oxygen and hydrogen would be one
barrier. This is due to the large degree of angular resolution needed for the ACE fingerprints to
capture the information of organic systems. In more organic systems other methods such as course-
graining are more useful, as it is able to bridge the gap between the larger length and time scales of
organic systems.

The GRS method however has shown promise to be useful as a new method for providing more
complex and diverse sets of atomistic structure data.

4. Conclusion. In our research project we developed tools to benchmark and test our GRS
method and validate the results we received from it. The main motivation of our research has been
to reduce the amount of computationally and time expensive DFT needed to get important properties
of materials systems. With the results from the testing, we have seen that our GRS are sufficient for
use in this environment.

Another limitation of SQS is that it may be challenging to generate for materials with very high
chemical degrees of freedom. This is because the evaluation of the fixed-lattice cluster correlations
scales exponentially with the number of vertices in a cluster[14]. The efficient implementations of
ACE fingerprints retain linear scaling with the number of neighbor atoms[12]. For example, high-
entropy alloys and high-entropy materials have garnered a lot of attention in recent works[20, 15].
However, the ability to sample the random alloy phase of a 5-element alloy is limited with the

384Breaking Bad Structure Generation: Methods For Systematic, Data-driven Atomistic Structures For MLModel Training

exponential scaling of the fingerprints. There may be additional motivation for the GRS method
when it comes to fixed-lattice systems of this kind.

In conclusion, the validation work done has shown that there is promise for the GRS method to
be useful in providing more complex and diverse sets of atomistic structure data for researchers. Our
future work on this project would include attempting to add charge and magnetism in the properties
of the generated structures, increasing the variety of the datasets created from this method. We will
also consider evaluating the gradient of our effective potential using back propagation through the
ML framework PyTorch.

5. Acknowledgements. This research was funded by the Minority Serving Institution Partner-
ship Program Nuclear Security Advanced Manufacturing Enhanced by Machine Learning (MSIPP
NSAM-ML) program. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly-owned sub-
sidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525. This paper describes objective technical
results and analysis. Any subjective views or opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of Energy or the United States Government.

REFERENCES

[1] R. DRAUTZ, Atomic cluster expansion for accurate and transferable interatomic potentials, Physical Review B, 99
(2019), p. 014104. Publisher: American Physical Society.

[2] , Atomic cluster expansion for accurate and transferable interatomic potentials, Phys. Rev. B, 99 (2019),
p. 014104.

[3] G. DUSSON, M. BACHMAYR, G. CSANYI, R. DRAUTZ, S. ETTER, C. VAN DER OORD, AND C. ORTNER, Atomic
cluster expansion: Completeness, efficiency and stability, 2021.

[4] J. M. GOFF, C. SIEVERS, M. A. WOOD, AND A. P. THOMPSON, Permutation-adapted complete and independent
basis for atomic cluster expansion descriptors, Journal of Computational Physics, 510 (2024), p. 113073.

[5] J. M. GOFF, C. SIEVERS, M. A. WOOD, AND A. P. THOMPSON, Permutation-adapted complete and independent
basis for atomic cluster expansion descriptors, 2024.

[6] D.-A. HO AND O. BEYAN, Biases in data science lifecycle, 2020.
[7] A. JAIN, S. P. ONG, G. HAUTIER, W. CHEN, W. D. RICHARDS, S. DACEK, S. CHOLIA, D. GUNTER, D. SKIN-

NER, G. CEDER, AND K. A. PERSSON, Commentary: The Materials Project: A materials genome approach to
accelerating materials innovation, APL Materials, 1 (2013), p. 011002.

[8] M. KARABIN AND D. PEREZ, An entropy-maximization approach to automated training set generation for inter-
atomic potentials, 2020.

[9] S. KIM, J. CHEN, T. CHENG, A. GINDULYTE, J. HE, S. HE, Q. LI, B. A. SHOEMAKER, P. A. THIESSEN, B. YU,
L. ZASLAVSKY, J. ZHANG, AND E. E. BOLTON, Pubchem 2023 update, Nucleic Acids Research, 51 (2023),
pp. D1373–D1380.

[10] K. LI, D. PERSAUD, K. CHOUDHARY, B. DECOST, M. GREENWOOD, AND J. HATTRICK-SIMPERS, Exploiting
redundancy in large materials datasets for efficient machine learning with less data, Nature Communications, 14
(2023), p. 7283.

[11] A. O. LYAKHOV, A. R. OGANOV, H. T. STOKES, AND Q. ZHU, New developments in evolutionary structure predic-
tion algorithm uspex, Computer Physics Communications, 184 (2013), pp. 1172–1182.

[12] Y. LYSOGORSKIY, C. V. D. OORD, A. BOCHKAREV, S. MENON, M. RINALDI, T. HAMMERSCHMIDT,
M. MROVEC, A. THOMPSON, G. CSÁNYI, C. ORTNER, AND R. DRAUTZ, Performant implementation of the
atomic cluster expansion (PACE) and application to copper and silicon, npj Computational Materials, 7 (2021),
pp. 1–12.

[13] S. MOHR, L. E. RATCLIFF, L. GENOVESE, D. CALISTE, P. BOULANGER, S. GOEDECKER, AND T. DEUTSCH,
Accurate and efficient linear scaling dft calculations with universal applicability, Phys. Chem. Chem. Phys., 17
(2015), pp. 31360–31370.

[14] J. M. SANCHEZ, F. DUCASTELLE, AND D. GRATIAS, Generalized cluster description of multicomponent systems,
Physica A: Statistical Mechanics and its Applications, 128 (1984), pp. 334–350.

[15] A. SARKAR, L. VELASCO, D. WANG, Q. WANG, G. TALASILA, L. DE BIASI, C. KÜBEL, T. BREZESINSKI, S. S.
BHATTACHARYA, H. HAHN, ET AL., High entropy oxides for reversible energy storage, Nature communications,
9 (2018), p. 3400.

[16] E. L. SIKORSKI, M. A. CUSENTINO, M. J. MCCARTHY, J. TRANCHIDA, M. A. WOOD, AND A. P. THOMPSON,

C. Mullen, E. Salas, & J. Goff 385

Machine learned interatomic potential for dispersion strengthened plasma facing components, The Journal of
Chemical Physics, 158 (2023), p. 114101.

[17] L. TALIRZ, S. KUMBHAR, E. PASSARO, A. V. YAKUTOVICH, V. GRANATA, F. GARGIULO, M. BORELLI,
M. UHRIN, S. P. HUBER, S. ZOUPANOS, C. S. ADORF, C. W. ANDERSEN, O. SCHÃ¼TT, C. A. PIGNEDOLI,
D. PASSERONE, J. VANDEVONDELE, T. C. SCHULTHESS, B. SMIT, G. PIZZI, AND N. MARZARI, Materials
cloud, a platform for open computational science, Scientific Data, 7 (2020), p. 299.

[18] A. THOMPSON, L. SWILER, C. TROTT, S. FOILES, AND G. TUCKER, Spectral neighbor analysis method for au-
tomated generation of quantum-accurate interatomic potentials, Journal of Computational Physics, 285 (2015),
pp. 316–330.

[19] A. P. THOMPSON, H. M. AKTULGA, R. BERGER, D. S. BOLINTINEANU, W. M. BROWN, P. S. CROZIER, P. J.
IN ’T VELD, A. KOHLMEYER, S. G. MOORE, T. D. NGUYEN, R. SHAN, M. J. STEVENS, J. TRANCHIDA,
C. TROTT, AND S. J. PLIMPTON, LAMMPS - a flexible simulation tool for particle-based materials modeling at
the atomic, meso, and continuum scales, Comp. Phys. Comm., 271 (2022), p. 108171.

[20] K.-K. TSENG, H. HUANG, W. REN WANG, J.-W. YEH, AND C. TSAI, Edge-dislocation-induced ultrahigh elevated-
temperature strength of hfmonbtaw refractory high-entropy alloys, Science and Technology of Advanced Mate-
rials, 23 (2022), pp. 642 – 654.

[21] M. E. TUCKERMAN AND G. J. MARTYNA, Understanding modern molecular dynamics: Techniques and applica-
tions, J. Phys. Chem. B, 104 (2000), pp. 159–178.

[22] T. VAN MOURIK, M. BÜHL, AND M.-P. GAIGEOT, Density functional theory across chemistry, physics and biol-
ogy, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372
(2014), p. 20120488.

[23] Z. WANG, J. MA, AND L. ZHANG, Finite element thermal model and simulation for a cylindrical li-ion battery, IEEE
Access, 5 (2017), pp. 15372–15379.

[24] T. XIE AND J. C. GROSSMAN, Crystal graph convolutional neural networks for an accurate and interpretable pre-
diction of material properties, Phys. Rev. Lett., 120 (2018), p. 145301.

[25] A. ZUNGER, S.-H. WEI, L. G. FERREIRA, AND J. E. BERNARD, Special quasirandom structures, Phys. Rev. Lett.,
65 (1990), pp. 353–356.

386Breaking Bad Structure Generation: Methods For Systematic, Data-driven Atomistic Structures For MLModel Training

OLLAMA-ASSISTED FUNCTION CALLS IN LEAP

PAT MUTIA∗ AND JACOB DAVIS†

Abstract. This project focuses on enhancing the operators’ experience of using the ground station
scheduling satellite software with the use of large language models (LLM). Operators are often faced with
managing multiple tasks in time-constrained situations. The integration of a pre-trained transformer to
perform function calling within the application promotes the ease of performing multi-step tasks and a user-
friendly experience for all operators by performing the task with a well-formulated prompt. For the handling
of sensitive information, Ollama was the optimal choice as an open-source API to well-trained LLMs such as
Llama3.1 and Mistral3, which would be responsible for interpreting the natural language of a user’s query.
Ollama allows for local hosting that opens up control over published information with a tradeoff of lowered
processing speed depending on the number of parameters for the selected model. Moreover, LangChain and
LangGraph were integrated into the generative chat interface to perform function calls after interpreting the
operator’s request embedded with the required arguments. Experimentation of the generative chat interface
called “LEAP Chat” was performed manually to verify the accuracy. Future experiments to fine-tune
prompting the model, sequential chaining, and human-in-the-loop integration would need to be performed
to provide consistent and accurate results. Despite the early nature of this work, there is high potential that
an LLM could be integrated to provide new capabilities and simplify workflows.

1. Introduction. Generally, pre-trained large language models (LLMs) are trained on
substantial amounts of documents and data with methods like supervised and unsupervised
learning to improve the stability and accuracy of the models. Adaptations of the LLM with
proper prompts and fine-tuning have many possible capabilities (Figure 1.1), such as text
generation, image generation, or pattern recognition [1].

Fig. 1.1. Available Functionalities with a Pre-trained LLM through Adaptation

Recent developments within the machine learning community have progressed from
generative and recognition models to multi-modal capabilities that can function call, retrieve
information from databases, and leverage external tools [1]. In this work, we explore the use
of a LLM to improve usability of a legacy satellite scheduling application termed as LEAP
for Leading Edge Advancement Project. This application has a complex user interface (UI)
with multi-step tasks that may call for a few or many parameters to properly work but can
otherwise be easily described in a sentence. We aimed to improve the UI through allowing a
function calling language model to parse an operator’s prompt with any described parameter
and perform the specified task(s) with their respective arguments. This would ease the user

∗California Institute of Technology, pmutia@caltech.edu
†Sandia National Laboratories, jacdavi@sandia.gov

CSRI Summer Proceedings 2024 387

experience for operators by allowing multi-step tasks to be performed upon a single or a few
queries and allow new operators to interact with the software with minimal familiarity.

2. Components Research. The LEAP software potentially handles sensitive infor-
mation, so while the user interface can be enhanced with large language models, it must be
done locally without returning input and output data back to the model for improvement.
Ollama, an open-source API of high performing LLMs, allows local hosting of the models
on instantiation. However, only some models have the capabilities to perform tool calling
accurately [7].

2.1. Models. For the language model, compatibility of the LLM to perform function-
calling was imperative to the task for the “LEAP Chat.” In collaboration with the AI-
researching organization Glaive, an option for the model was Llama-3-Groq-Tool. Built
based on the Meta Llama 3 model, it scored the highest on the Berkeley Function Calling
Leaderboard in July 2024 at 90.76% overall accuracy for 70B (billion parameters) and 89.06%
for 8B. With the same structure as Llama3, the performance of the model was enhanced
with full fine-tuning and Direct Preference Optimization (DPO) to optimize for function-
calling. From the developers, the recommended approach was a routing system to analyze
user queries for their nature and requirements. For tool use or API interactions, the model
should be selected whereas general queries should be directed to a general-purpose language
model like Llama3 [10].

Additionally, the Ollama database has access to the Meta Llama 3.1 model (8B, 70B,
405B), which is one of the highest performing closed source AI models that competes with
top AI models such as GPT-4 and Claude 3.5 Sonnet in capabilities of general knowledge,
flexibility, math, and tool use. The recent upgraded versions have longer context length of
128K, advanced tool use, and stronger reasoning [2].

Comparing the extensive testing and scoring of the Llama3.1 versus other models in
Figure 2.1, Llama 3.1 model performs better in the general category and is comparable
in tool use, which are the main capabilities crucial to the “LEAP Chat.” The model uti-
lizes a decoder-only transformer architecture with minor adaptations for training stability
while also using iterative post-training of supervised fine-tuning (SFT) and DPO to improve
performance.

2.2. LangChain and LangGraph. For the adaptation of the model to perform func-
tion calls for LEAP, components from LangChain and LangGraph are extremely useful.
LangChain provides the standard interface to interact with models and other components,
which is useful for simple straight-forward chains and retrieval flows[4]. The library con-
tains necessary building blocks to templatize prompts and to dynamically select and manage
model inputs[1].

LangGraph is also a helpful library for state-based applications with LLMs to create
agents that determine the flow of the LLM. The low-level framework allows for precise
control over the flow and state of the application. Moreover, LangGraph also enables access
to human-in-the-loop and memory features that enable the model to perform supervised
function calling and recall previous values starting from the initialization of the model [5].

For the intended structure of “LEAP Chat” (Figure 2.2), the model must process the
user’s input as a query and use the LangChain components to understand the nature of the
query and the arguments. Then the model must determine what tools with various function
calls are at it’s disposal and decide which to call based on the nature of the task and the
prompt fed into the model. An agent created using LangGraph would help choose what
function call operations to perform next such as using a tool or asking for more user input.
The memory would store previous chat history between the user and the model. This

388 Ollama-Assisted Function Calls In Leap

(a) Comparison of Llama 3.1 405B to Other Models

(b) Comparison of Llama 3.1 8B and 70B to Other Models

Fig. 2.1. Scores of Llama 3.1 Accuracy Depending on Task Type

structure was proposed based on the rigid structure of the satellite API, which requires
parsing through the user’s query for required parameters in a specific format. Moreover,
the memory is helpful for allowing reference to previously mentioned information from the
user and/or the model.

3. Experimentation. For the LEAP scheduling satellite software, the initial task was
to experiment and focus on the ease, accuracy, and consistency of the LLM when checking
on the status of a specific or multiple satellites, which requires date/time and satellite name
arguments to be processed and formatted accordingly. These parameters would then be used
in a subsequent API invocation to the satellites. Therefore, the tools for this experimentation
included the following functions: format the time, get an end time, and check the status of

P. Mutia & J. Davis 389

Fig. 2.2. LEAP Chat architecture

the satellites with those parameters.
For the model for “LEAP Chat”, the Llama-3-Groq-Tool performed well on single tool

calls in all versions of the “LEAP Chat” but was unable to recognize sequential tool calls,
so the model selected for further fine-tuning was Llama 3.1.

3.1. LangChain LEAP Chat. For the initial model proposal, LangChain was the
only structure used as the task appeared strictly sequential; i.e. obtain a start time, obtain
an end time, format the two times, and then feed those times into a tool for API invocation.
However, prompting the model demonstrated that very specific queries, which would allow
the LLM to recognize multiple function calls, were required such as listing each tool to
select. With such queries triggering multiple function calls, the ease and functionality of the
“LEAP Chat” was minimized. Moreover, there was no memory specified in the structure
of the chain, so the model was unable to recall outputs from previous tools in the chain.
This version of “LEAP Chat” highlighted the importance of the queries and memory in the
chain, but the multiple, sequential tool calls may need to be coded into the structure of the
model for this task.

Fig. 3.1. Example of LangChain Flow. The user can prompt the LEAP Chat like demonstrated.
The model will parse the arguments within the query. The LangChain should perform multiple tool calls to
reach an output for the user.

390 Ollama-Assisted Function Calls In Leap

3.2. LangGraph LEAP Chat. With the addition of LangGraph, the model gained
an agent to cycle through the multiple tools for the “LEAP Chat,” which proved more
successful in calling multiple function calls. However without human intervention, the model
would continue performing the function calls that were unnecessary and yielded inaccurate
results as seen in Figure 3.2(a). Even with a node to allow the model to rely on human
feedback, it would not detect that that its responses were erroneous, so it would not end
up using the human node. Adding a human-in-the-loop structure to interrupt before each
function call was another strategy to promote accuracy and unnecessary calls at the expense
of losing the autonomy of the “LEAP Chat” to perform the tool calls on its own and
consequently the speed of the query in Figure 3.2(b). With this strategy, the tool calls
were more intentional and accurate with the option to correct arguments, but if the model
recognized that it needed to perform multiple tool calls and then was interrupted, the model
failed to continue calling all the tools even when the arguments were accurate.

(a) LangGraph Agent with Human Node (b) LangGraph Agent with Human-In-
The-Loop Structure

Fig. 3.2. LangGraph Agents of LEAP Chat

In Figure 3.2, the flow of LEAP Chat is demonstrated with the use of a human node for
dependency on a human for content versus human-in-the-loop interruptions for corrections.
In Figure 3.2(a), the chat interface starts up with a chatbot to request user input or queries.
With a prompt and a query, the chatbot that represents the model would decide on whether
to request for content from the human node or to perform a tool call. It would cycle through
those until it believes it has reached completion. Then the model will prompt the user again
and repeat the steps until an end condition is found. In Figure 3.2(b), the chat interface
starts up similarly. The chatbot will only be able to decide between tools to call and be
interrupted after trying to set up the tool call. The interface will let the user accept the
tool call with the parameters the model has parsed or deny it and subsequently edit the
arguments. Then the model will perform that cycle until an end condition is called as well.

4. Future Research. The initial structures and experiments demonstrated some com-
mon issues with performing multiple function calls, making sequential function calls, and
having general inaccuracies that cannot be edited at the expense of functionality. Therefore,
the future challenge is fine-tuning of the LLM to perform multiple and/or sequential func-
tion calls, which may be resolved with additions and modifications to the chat interface’s
model structure and prompt engineering.

P. Mutia & J. Davis 391

Fig. 3.3. Example of LangGraph Flow. The user can prompt the LEAP Chat like demonstrated.
The model will parse the arguments within the query. Unlike the LangChain flow in Figure 3.1, there is
a LangGraph agent that will determine which state that model should enter to perform the necessary tool
calls, rather than sequential tool calls, to reach an output for the user. For Human-In-The-Loop, there will
be pauses before each tool call asking the human whether to continue.

4.1. Prompting. The prompt was shared for all versions of “LEAP Chat.” It had
set a persona for the model as a helpful assistant responsible for answering questions with
explicit mentions of a default argument for formatting date and time if it was not mentioned
in the query. Further experimentation in prompting for the “LEAP Chat” could include
mentioning steps to complete a task or providing examples of a query and how it should be
interpreted as input. Based on operators’ preferences, the output could also be formatted
to be more succinct [8]. Overall, these choices would allow the code to become simpler and
cleaner while increasing the accuracy and experience of the chat for the operators since the
model is being requested to be more conscious of specific aspects of query.

Occasionally, the model would fail to be able to accurately parse through the query for
arguments required for the function calls. For instance, the time “1200” that represents
the time “12:00” could be seen as 1,200 hours. Apart from explicit mention in the prompt,
default values were integrated into the tool calls rather than the model deciding on whether
to reprompt the operator or the model choosing default values, leading to overly complex
prompting and code. This challenge can be resolved with libraries Instructor and Pydantic.
Instructor works with Pydantic, a data validation library [9], to extract arguments from
complete and incomplete messages [6]. Pydantic uses schema validation to ensure the correct
values and their types are passed into the function calls [9]. These libraries would prove
beneficial in creating a robust model that can take incomplete arguments like time and date
values of many formats (e.g. colon inclusion, 12-hour format) and raise less errors.

4.2. Sequential Chains with Memory. For the difficulty with multiple sequential
tool calls, the use of sequential chains, a specific type of LangChain, would allow each step in
the chain to pass on its outputs as respective inputs for the next step. Moreover, these chains
have memory that can be integrated into them to retain information of previous inputs and
outputs [3]. In the context of “LEAP Chat”, the multi-stepped tasks would occur more
consistently with assurance that the correct previous output would be the argument for the
proceeding function call. In Figure 4.1, an example of a sequential chain is demonstrated,
where input after parsing for parameters is passed through a sequential chain of tool calls.
Then the parameters are passed into another chain of tool calls. Then the final chain outputs

392 Ollama-Assisted Function Calls In Leap

the result.

Fig. 4.1. Example of Sequential Chain Structure

4.3. Expandability of LEAP Chat. Although the LEAP software has a multitude of
tasks per application, the feasibility and ease of creating a chat interface for the application
is possible. Multi-stepped tasks can be made into different sequential chains with commonly
shared tools such as formatting time and getting start and end times. The LangGraph can
then be additionally expanded to have a node run these sequential chains as well as the
human node and tool node. Therefore, the complexity of LEAP can be minimized through
a function calling LLM to perform multi-step tasks, especially as the model gains greater
consistency with structure adjustments of sequential chains to ensure multiple function calls
occur.

5. Conclusion. The purpose of this research was to show the potential of improving
the LEAP satellite scheduling software through the integration of an LLM. The potential
was qualitatively evaluated through the ease of converting one function of an application
within the LEAP software with the aid of LangChain and LangGraph in addition to the
LLM’s consistency and accuracy from a variety of prompts. We found that Llama 3.1
model had more flexibility in breaking down the query into the proper parameters for the
tool calls than the Llama-3-Groq-Tool model. Moreover, we observed LangGraph worked
well on performing multi-step tasks independent of LangChain, but LangChain was crucial
for reaching consistent results for tool calls that needed to be called sequentially. Although
consistency and accuracy must still be improved, LEAP Chat demonstrates how LEAP
software can incorporate a chat interface to perform well-defined multi-step tasks that would
improve the learning curve of operating the software and may allow the operator to perform
trivial tasks easily with a good query and interaction with a model.

REFERENCES

[1] K. Chandrakant, Introduction to LangChain, Baeldung, (2024).
[2] A. Dubey et al., The Llama 3 Herd of Models, Meta, (2024).
[3] P. Krampah, Langchain — Sequential LLM Calls, Medium, (2023).
[4] LangChain AI, LangChain, LangChain, (2024).
[5] , LangGraph, LangChain, (2024).
[6] J. Liu, Instructor.
[7] Ollama, Ollama.
[8] OpenAI, Prompt engineering, OpenAI Platform, (2024).
[9] Pydantic, Pydantic.

[10] N. A. Rick Lamers et al. and S. Chaudhary, Introducing Llama-3-Groq-Tool-Use Models, groq,
(2024).

P. Mutia & J. Davis 393

SCIENTIFIC MACHINE LEARNING FOR SURROGATE MODELING

KWESI A. OHENE-OBENG∗ AND KATHRYN MAUPIN†

Abstract.
In computational simulations, the advancement of surrogate models is paramount for the efficient pre-

diction of experimental outcomes. Previous studies have demonstrated the efficacy of Gaussian processes in
modeling the discrepancies between simulation predictions and experimental observations. However, there
is a growing interest in harnessing machine learning (ML) and artificial intelligence (AI) techniques to fur-
ther enhance predictive accuracy and computational efficiency. This study aims to explore the application
of various ML algorithms, specifically Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN),
and Convolutional Neural Network (CNN), in the construction of surrogate models, with a particular focus
on identifying the optimal combination of model parameters (density, velocity, and location) for accurate
prediction of experimental data.Using simulation data, MLP, RNN, and CNN models were trained and eval-
uated. The MLP model demonstrated superior performance, which was further refined through calibration
to reduce discrepancies with experimental data. This methodology was employed to discern the optimal
parameter combinations and elucidate the underlying physical mechanisms, thereby enhancing prediction
accuracy. Incorporating domain-specific knowledge into ML models holds promise for achieving even greater
precision and reliability in predictions. This study underscores the potential of advanced ML techniques to
advance the accuracy of surrogate models in complex simulation environments.

1. Introduction. The quantification of uncertainty of a computational model is criti-
cal to establishing its credibility and trustworthiness for predicting the quantities of interest.
Uncertainty quantification (UQ) studies, whether addressing inverse or forward problems,
rely on repeated evaluations of the computational model. A significant challenge in UQ
arises from the computational demands of these models, which can be computationally ex-
pensive. Additionally, these models often do not perfectly mirror reality, and uncertainties
are introduced by the imprecision in choosing a functional form and determining the value
of input parameters associated with the models.

Numerous studies have addressed these challenges by developing surrogate models, par-
ticularly in situations where the computational models are prohibitively expensive to eval-
uate repeatedly. Approaches such as Gaussian Processes have been employed to capture
model form error and provide insights into the underlying physics that may be absent from
traditional physics-based computational models [3, 5, 6]. This study focuses on constructing
surrogate models using machine learning algorithms, specifically neural networks, and sub-
sequently quantifying model form error to shed light on the underlying physical phenomena.

Following this introduction, the paper presents a brief background of the study in Section
2, the methods employed in Section 3, and the results obtained in Section 4. Concluding
remarks are provided in the final section.

2. Background. High-fidelity models, which are often treated as black-box represen-
tations of first-principle models, may not always offer sufficient insights or explanations of
the phenomena within the studied domain. When these models fail to adequately represent
or explain the phenomena, this deficiency is known as model discrepancy. Addressing such
errors may require a more in-depth examination of the model’s underlying assumptions and
representations to improve its accuracy and reliability [7]. Numerous methodologies have
been developed to quantify discrepancies in models, often relying on statistical techniques
to compare model outputs with actual data. While these approaches can effectively identify
errors or biases in predictions based on observed data, they fall short in addressing how
these inaccuracies affect predictions for unobserved or future scenarios. This is a signifi-

∗University of Texas at El Paso, kaohene@sandia.gov
†Sandia National Laboratory, kmaupin@sandia.gov

394 CSRI Summer Proceedings 2024

cant limitation, as the primary objective of many modeling efforts is to provide accurate
predictions for situations where data is not yet available.

To construct a meaningful representation of model inadequacy, it is essential to integrate
both qualitative and quantitative insights into the phenomena being modeled. This means
that any framework designed to quantify uncertainty in predictions must be informed by
our existing knowledge of the system and the mechanisms through which errors arise. By
acknowledging the underlying causes of model discrepancies and incorporating this under-
standing into the modeling process, we can develop more robust methods for representing
uncertainty. Such an approach not only enhances the reliability of predictions but also con-
tributes to a more comprehensive understanding of the model’s limitations and strengths.

The computational challenges often encountered in modelling complex physical phenom-
ena stem from the costly and time-consuming nature of detailed analysis and simulations.
Achieving a level of accuracy comparable to real experimental data can be particularly tax-
ing. To alleviate this burden, surrogate modeling has emerged as a powerful tool, offering
approximations that effectively mimic high-fidelity models [11] and to make predictions that
closely align with reality.

2.1. Existing Literature. This study builds upon the foundational work of [5], which
utilizes Gaussian Processes to construct surrogate models within a Bayesian framework for
model calibration and correction. A first-order Taylor series expansion is used to address
parameter non-identifiability and explore how different model discrepancy formulations af-
fect Bayesian calibration and prediction accuracy [4]. This research demonstrates that
simpler formulations can improve extrapolation beyond the calibration domain. Maximum
Likelihood Estimation (MLE) can effectively quantify model form uncertainty, as demon-
strated in [6]. The MLE is shown to offer reliable composite predictions by integrating
model-to-model variance and prediction errors, as compared with Bayesian methods using
uninformative priors. This is demonstrated with applications to concrete creep and laser
peening.

In our study, we incorporate scientific machine learning techniques, specifically neural
networks, to develop surrogate models. We apply Monte Carlo dropout methods for pre-
diction and subsequently perform model calibration. We then identify model discrepancies
and compare our findings with the methods proposed by [5].

3. Methods. In the methods section, we outline the approach employed to analyze
both experimental and simulated data, providing a comprehensive overview of our experi-
mental setup and machine learning methodologies. To analyze these datasets, we applied
several machine learning algorithms, including Multilayer Perceptrons (MLP) and Convo-
lutional Neural Networks (CNN), to capture and predict the complex relationships inherent
in the data. The performance of these algorithms was evaluated through rigorous statistical
analysis and validation procedures to ensure accuracy and robustness.

3.1. Neural Networks. This study utilized neural networks, specifically Multi-Layer
Perceptrons (MLPs), Recurrent Neural Networks (RNNs), and Convolutional Neural Net-
works (CNNs), for surrogate modeling. Neural networks (NNs) are a powerful class of algo-
rithms designed for function approximation through data-driven methods. They structure
information hierarchically, with features distributed across multiple layers. Recent research
has increasingly focused on the potential of neural networks for uncertainty quantification,
with some studies employing deep neural networks to address challenges associated with
numerical simulations [10].

K.A. Ohene-Obeng & K. Maupin 395

Fig. 3.1: Neural Network Architecture: The input neurons, shown in blue correspond to the
the three input parameters: density(rho), velocity(Uinf), and spatial location (x). These
inputs are processed through the hidden layers, shown by red circles. The green output
neuron correspond to the model outputs: heat flux and pressure.

The surrogate model in the present study is a feed-forward neural network with ReLU
activation. A schematic of the NN architecture is shown in Figure 3.1. The network consists
of three input neurons, which correspond to the variables: density, velocity, and location.
These input neurons are represented by blue circles on the left side of the diagram. The
neural network includes two hidden layers, with neurons depicted as red circles. These
hidden layers are where the data is processed and feature extraction occurs, allowing the
network to capture complex patterns in the data. Each neuron in these hidden layers is
connected to neurons in adjacent layers, forming a fully connected architecture.

One of the hidden layers includes a dropout layer, highlighted by an orange rectangle.
Dropout regularization technique is used to prevent overfitting by randomly setting a frac-
tion of the input units to zero during the training process. The output layer of the network
consists of two neurons, represented by green circles on the right side, corresponding to the
target variables: heat flux and pressure. These output neurons generate the final predictions
of the network after processing the inputs through the hidden layers.

3.2. Monte Carlo Dropout. Monte Carlo (MC) Dropout combines Monte Carlo
methods with dropout regularization techniques to enhance predictive performance in neural

396 Scientific Machine Learning For Surrogate Modeling

networks. This approach aims to mitigate overfitting and underfitting by minimizing the loss
function, thus improving the model’s robustness, particularly in the context of uncertainty
estimation. Further details can be found [2].

When fitting a Multi-Layer Perceptron (MLP) model, MC Dropout introduces random-
ness into the neural network’s forward passes, even during the prediction phase. Dropout
is applied during training to prevent overfitting by randomly deactivating a fraction of each
neuron’s outputs in each forward pass. MC Dropout extends this dropout mechanism to
the inference phase, where each prediction is subject to random neuron deactivation. By
performing multiple forward passes with different dropout configurations, a distribution
of predictions is generated. That is, given multiple realizations of the MLP, ŷt, the final
prediction is given by

ŷ = fMLP (x; θ) (3.1)

ŷ =
1

N

N∑

t=1

ŷt, (3.2)

and the corresponding uncertainty is calculated as

σŷ =
1

N

N∑

t=1

(ŷt − ŷ)2. (3.3)

Here, N is the number of predictions. This method offers several key advantages. First, it
provides a straightforward yet effective means of estimating prediction uncertainty without
necessitating major alterations to the model architecture or the use of complex Bayesian
methods. Secondly, it allows for a probabilistic interpretation of the network’s outputs,
which is valuable in contexts where understanding the confidence in predictions is as critical
as the predictions themselves. Lastly, MC Dropout builds upon existing dropout mecha-
nisms, enabling its efficient integration into most neural network frameworks with minimal
computational overhead.

3.3. Parameter Calibration. The principal objective of model calibration is to re-
fine the parameters of a model to ensure that its predictions align closely with empirical
data. This process involves systematically adjusting the model parameters to minimize
discrepancies between predicted outcomes and observed measurements. Typically, this is
accomplished through the minimization of a loss function that quantifies the deviation be-
tween model predictions and actual data [1, 9]. Let θ denotes the model parameters. With
experimental data denoted by yexp and model predictions denoted by ypred, we define the
loss function as L(θ),

L(θ) =
1

N

N∑

i=1

(ypred,i(θ)− yexp,i)2 . (3.4)

Here, N is the number of data points, ypred,i(θ) is the predicted value for the ith data point,
and yexp,i is the corresponding experimental measurement. The goal is to find the parameter
set θ∗ that minimizes this loss function:

θ∗ = argmin
θ
L(θ). (3.5)

K.A. Ohene-Obeng & K. Maupin 397

In practice, optimization algorithms such as gradient descent, stochastic gradient de-
scent, or more sophisticated techniques like Bayesian optimization are employed to find the
optimal parameters. These algorithms iteratively adjust the parameters to reduce the loss
function, improving the model’s fit to the experimental data.

4. Example Application. The data utilized in this study comprise both experimen-
tal and simulated datasets. The simulated dataset was divided into training and testing
sets, with 80% allocated for training and 20% reserved for testing. Additionally, from the
training data, 20% was further set aside to create a validation set for tuning the neural net-
work model.The experimental data were obtained from the Large Energy National Shock
(LENS) Tunnel at the Calspan-University at Buffalo Research Center, focusing on a laminar
hypersonic double-cone experiment. In this experiment, a 25°/55° double-cone was exposed
to conditions defined by freestream parameters, including density (ρ), velocity (U), and
temperature (T). Measurements were taken for heat flux (q) and pressure (p) at multiple
locations along the cone, under two distinct scenarios referred to herein as ‘Run 06‘ and
‘Run 07‘ [8]. Each scenario involved distinct experimental conditions, with a single test
conducted per condition set. Simulated data were generated using the high-fidelity code,
Sandia Parallel Aerodynamic Reentry Code (SPARC). This simulated data served as a basis
for developing surrogate models for further analysis.

4.1. Preliminary Analysis. The data consisted of parameters; Density (rho), Veloc-
ity (Uinf), Vibrational Temperature and Temperature (Tinf). Relationships between the
key parameters and the target outcomes for Run 06 scenario are shown in Figure 4.1. Ve-
locity demonstrates the strongest correlation with heat flux, with a correlation coefficient
of 0.384. This moderate positive correlation indicates that as velocity increases, heat flux
also tends to increase. This suggests that velocity is likely a critical predictor of heat flux
and should be given significant attention in any predictive modeling efforts. In contrast,
the temperature parameters show an extremely weak correlation with heat flux (correlation
coefficient of 0.003), indicating that these parameters may not significantly influence heat
flux predictions. Density also exhibits a weak correlation with heat flux (correlation coeffi-
cient of 0.018), suggesting a minimal linear relationship with heat flux and therefore a lesser
role as a predictor. Location shows a small negative correlation with heat flux (correlation
coefficient of -0.049). However, it is important to note that correlations capture only the
linear relationships.

For pressure, location is the most strongly correlated parameter, with a correlation
coefficient of 0.822. This strong positive correlation suggests that location plays a significant
role in influencing pressure, indicating that as the distance from the tip of the cone increases,
pressure also increases, in contrast to the behavior observed with heat flux. Velocity shows
a weak positive correlation with pressure (correlation coefficient of 0.080), suggesting a
minor but positive relationship between the two. The temperature parameters again show
very weak negative correlations with pressure (correlation coefficient of -0.021), indicating
minimal impact on pressure predictions.

The corresponding correlation heatmap for Run 07 is shown in Figure 4.2. Velocity
remained the most strongly correlated parameter with heat flux, with a correlation coefficient
of 0.534. This stronger correlation compared to Run 06 suggests that velocity is even more
critical in predicting heat flux in this scenario. Location also shows a positive correlation
with heat flux, though weaker (correlation coefficient of 0.122), indicating that location has
some influence on heat flux, albeit less than velocity. The temperature parameters exhibit
an extremely weak and negative correlation with heat flux (correlation coefficient of -0.001),
further supporting the notion that temperature has little to no impact on heat flux. Density
also shows a very weak negative correlation with heat flux (correlation coefficient of -0.011),

398 Scientific Machine Learning For Surrogate Modeling

reinforcing its limited role as a predictor.

Fig. 4.1: Heatmap of correlation coefficients, calculated between inputs and outputs of
Run 06. The yellow color indicates a perfect correlation (correlation coefficient of 1), while
deeper shades transitioning towards purple signify a strong negative correlation (correlation
coefficient approaching 0).

For pressure, location again emerges as the most strongly correlated parameter (cor-
relation coefficient of 0.801), highlighting its importance in pressure prediction. Velocity
shows a moderate positive correlation with pressure (correlation coefficient of 0.389), sug-
gesting a meaningful relationship where increases in velocity correspond to increases in
pressure. The temperature parameters, similar to heat flux, display extremely weak posi-
tive correlations with pressure (correlation coefficient of 0.007), indicating negligible linear
relationships. Density has a very weak negative correlation with pressure (correlation coef-
ficient of -0.023), suggesting it plays a minor role in predicting pressure. The analysis across
both scenarios indicates that velocity consistently shows a meaningful correlation with both
heat flux and pressure, underscoring its importance as a predictor. Conversely, temperature
parameters consistently exhibit near-zero correlations, suggesting their negligible impact.
Consequently, this study will exclude temperature from further modeling efforts, focusing
instead on parameters with stronger predictive power, such as velocity, density (due to its
significance on heat flux), and location.

K.A. Ohene-Obeng & K. Maupin 399

Fig. 4.2: Heatmap of correlation coefficients, calculated between inputs and outputs of
Run 07. The yellow color indicates a perfect correlation (correlation coefficient of 1), while
deeper shades transitioning towards purple signify a strong negative correlation (correlation
coefficient approaching 0)

4.2. Relationship between Inputs and Outputs. To gain a qualitative under-
standing of the relationships between the inputs and the outputs in the Run 06 scenario we
show 3D scatterplots in Figure 4.3. The left plot shows that heat flux generally increases
with distance from the tip of the cone. The regions farther from the tip (yellow) tend to
have higher heat flux values compared to the regions closer to the tip (purple). Higher heat
fluxes are associated with specific ranges of density and velocity. The data points tend to
cluster around certain values of density and velocity, suggesting a non-linear relationship
where the heat flux depends on the interplay between density and velocity. Pressure (right
plot) also appears to increase with distance from the tip of the cone. However, the increase
in pressure is less steep than the increase in heat flux as you move farther from the tip.
The distribution of pressure shows a more complex relationship with density and velocity
compared to heat flux. The points appear more spread out across the ranges of density
and velocity, indicating that pressure might be influenced by additional factors or that the
relationship is non-linear.

400 Scientific Machine Learning For Surrogate Modeling

Fig. 4.3: 3D Scatterplot for Run 06 Scenario. The yellow color indicates a greater distance
from the cone, while a dimmer hue suggests proximity to the cone.

We similarly analyze a 3D scatterplot of Run 07. Figure 4.4 depicts a different rela-
tionship, the heat flux values still increase with distance from the tip of the cone, but the
overall range of heat flux appears to be lower compared to the Run 06. The maximum heat
flux value is around 200,000, indicating that this dataset or the specific run being analyzed
might involve less extreme conditions. The clustering of points suggests that the relation-
ship between heat flux, density, and velocity is consistent with Run 06, where heat flux
values are influenced by specific combinations of density and velocity. The scatter is more
concentrated, indicating perhaps a more uniform distribution of conditions.

Fig. 4.4: 3D Scatterplot for Run 07 Scenario. The yellow color indicates a greater distance
from the cone, while a dimmer hue suggests proximity to the cone.

Pressure values increase with distance from the tip but show a more noticeable gradient
compared to the previous dataset. The maximum pressure here is around 1600, which is

K.A. Ohene-Obeng & K. Maupin 401

lower than in the previous figure. The data points show a clearer division between low-
pressure and high-pressure regions, with more pronounced clustering at lower pressures
near the tip.The spread of pressure values across density and velocity appears tighter in this
figure, suggesting a stronger correlation or a more controlled range of conditions.

4.3. NN Construction. In this section, we present the performance evaluation of
different neural network architectures, including Multi-Layer Perceptron (MLP), Recurrent
Neural Network (RNN), and Convolutional Neural Network (CNN), in predicting heat flux
and pressure within our dataset. The models were trained using a dataset comprising the
predictors (density, velocity, and location) to estimate the target variables (heat flux and
pressure).

To ensure robust and reliable model evaluation, the dataset was divided into training
and testing subsets. The training set was further split into training and validation subsets to
facilitate model tuning and prevent overfitting. The validation data was crucial in monitor-
ing the model’s performance during training, allowing for the fine-tuning of hyperparameters
and early stopping strategies. This approach ensured that the models generalized well to
unseen data, as reflected in the test set performance metrics.

4.3.1. Model Selection. Each of the three NN architectures featured in the present
study- MLP, RNN and CNN- were constructed for the two quantities of interest: heat flux
and pressure. The results are reported in Table 4.1 and include the coefficient of determina-
tion (R2) and mean squared error (MSE) for both the training and test sets. These metrics
provide a comprehensive assessment of each model’s predictive accuracy and reliability. The
findings reveal the strengths and limitations of each neural network architecture, offering
insights into their suitability for the task at hand.

heat flux PRESSURE
Model Train R2 Test R2 MSE Train R2 Test R2 MSE
MLP 0.8184 0.6120 0.0798 0.8959 0.8117 0.0723
RNN 0.9011 0.7534 0.0638 0.9982 0.9959 0.0105
CNN 0.9669 0.9205 0.0361 0.9658 0.9356 0.04226

Table 4.1: Model performance metrics for heat flux and pressure using three neural network
architectures.

For heat flux, the MLP model achieved a training R2 of 0.8184 and a test R2 of 0.6120,
with an MSE of 0.0798 on the test set. The RNN model performed better, with a training
R2 of 0.9011 and a test R2 of 0.7534, along with a lower test MSE of 0.0638. The CNN
outperformed both with a training R2 of 0.9669 and a test R2 of 0.9205, and an MSE of
0.0361, indicating its superior ability to generalize and accurately predict heat flux. In
pressure prediction, the MLP model again demonstrated solid performance with a training
R2 of 0.8959 and a test R2 of 0.8117, and an MSE of 0.0723. The RNN model, however,
excelled with near-perfect results, showing a training R2 of 0.9982 and a test R2 of 0.9959,
with a very low MSE of 0.0105, making it the most accurate model in this task. The CNN,
while still performing well, showed a slightly lower test R2 of 0.9356 and a higher MSE of
0.4226 compared to its performance on heat flux prediction.

While the RNN and CNN models demonstrated superior accuracy in both tasks, as
indicated by their higher R2 values and lower MSEs, the MLP model was ultimately cho-
sen for further use. This decision was based on the simplicity and ease of implementation
associated with MLPs, despite their slightly lower performance metrics. The MLP offers

402 Scientific Machine Learning For Surrogate Modeling

a balance between performance and computational efficiency, making it a more practical
choice, especially when the application context does not demand the highest possible pre-
cision. Moreover, the simpler architecture of the MLP makes it easier to train and deploy,
requiring less computational power and time. This trade-off between simplicity and per-
formance is often crucial in real-world applications, where the marginal gains in accuracy
offered by more complex models may not justify the additional complexity and resource re-
quirements. Therefore, despite the higher accuracy, the MLP was selected as the preferred
model due to its straightforward implementation and adequate performance in both heat
flux and pressure prediction tasks.

4.4. Model Calibration. The impact of model calibration on the surrogate models is
shown in Figures 4.5 and 4.6. The plots are organized into three rows, with the left column
depicting the pre-calibration results and the right column presenting the outcomes following
calibration.

In the top row, which compares predicted versus actual values, the dashed red line
represents the ideal scenario where predictions perfectly match the actual values. Prior to
calibration, the data points are scattered significantly below this line, indicating a consid-
erable underestimation by the model, with nearly all predictions falling short of the actual
values. Following calibration, the plot on the right shows a marked improvement, as the
points are positioned much closer to the dashed red line, indicating that the model’s pre-
dictions are now more accurately aligned with the actual values. This demonstrates that
calibration mitigates the underestimation issue, resulting in predictions that better reflect
the true values. Note that the post-calibration results still suffer from model discrepancy,
resolving which is reserved for future work. The middle-left plot highlights the uncertainty
in the model’s predictions before calibration. The blue shaded area represents the uncer-
tainty band around the mean predictions (depicted by the blue line), while the red line
indicates the actual values. The plot reveals a consistent underestimation by the model,
with the uncertainty band failing to encompass the actual values, particularly around the
peak at the 30th location. Additionally, the uncertainty band is relatively narrow, signifying
an unjustified level of confidence in predictions that are, in reality, inaccurate. After cal-
ibration, as illustrated in the middle-right plot, the model’s predictions exhibit significant
improvement. Though still underpredicting, the uncertainty band more accurately captures
the range of actual values. The band has appropriately widened where necessary, especially
around the peak, suggesting that the model now provides a more realistic assessment of
its uncertainties. The bottom-left plot shows the discrepancy before calibration, while the
bottom-right plot, which depicts the post-calibration results, reveals a significant reduction
in errors.

K.A. Ohene-Obeng & K. Maupin 403

Fig. 4.5: Assessment of MLP surrogate performance before (left) and after (right) calibration
for Run 06. These three visualizations capture how the model improved following calibration.

Similar plots for Run 07 are shown in Figure 4.6, in the pre-calibration plot on the
left, the data points are noticeably scattered below this line, indicating that the model
is significantly underestimating the actual values. After calibration, the plot on the right
exhibits a clear improvement: the points are much closer to the dashed red line, suggesting
that the model’s predictions now more accurately align with the actual values. Calibration
has successfully addressed the underestimation issue, enhancing the accuracy of the model’s
predictions. As with the results for Run 06, some model discrepancy remains and is intended
for future studies. The pre-calibration uncertainty, shown in the middle plot on the left,
illustrates a narrow uncertainty band as before, indicating that the model is overly confident
in its inaccurate predictions. After calibration, as depicted in the middle-right plot, there
is again an improvement. In the bottom row, the post-calibration plot reveals a significant
reduction in residuals across most locations. This reduction highlights that calibration has
effectively minimized errors, resulting in a more accurate and dependable surrogate model.
In summary, the post-calibration results in the figures demonstrate that the calibration
process has improved the model’s predictive accuracy, enhanced the reliability of uncertainty
quantification, and reduced discrepancies between predicted and actual values, making the
model more robust and reliable for predicting heat flux and pressure.

404 Scientific Machine Learning For Surrogate Modeling

Fig. 4.6: Assessment of MLP surrogate performance before (left) and after (right) calibration
for Run 07. These three visualizations capture how the model improved following calibration.

4.5. Discrepancy. The study employed the additive dependency approach as outlined
in the framework established by Kennedy and O’Hagan. Despite the efforts dedicated to cal-
ibrating the MLP surrogate model, discrepancies persist in comparisons to the experimental
data. Figure 4.7 compares the discrepancies between the high-fidelity model (SPARC) and
its corresponding surrogate model for heat flux (top row) and pressure (bottom row) in the
Run 06 scenario. The left column displays the discrepancies from the high-fidelity model,
while the right column shows the discrepancies from the surrogate model. The primary
objective of this comparison is to evaluate how well the surrogate model approximates the
high-fidelity model.

K.A. Ohene-Obeng & K. Maupin 405

Fig. 4.7: Comparing the discrepancy between SPARC and the MLP surrogate for Run 06.
This is to investigate if the MLP can be used as a surrogate to SPARC.

In the top row, the discrepancies for heat flux are plotted against location. The high-
fidelity model’s discrepancies (left plot) exhibit a range of values, with most points remaining
close to the zero line, though there are notable deviations, particularly around the 30th

location, where a significant spike is observed. The surrogate model’s discrepancies (right
plot) similarly show a general alignment with the zero line, with deviations that closely
mirror those of the high-fidelity model. The most notable feature is that the surrogate model
also captures the spike around the 30th location, though with slight variations in magnitude
and shape. The fact that the surrogate model reflects the key patterns and deviations seen
in the high-fidelity model, particularly the spike, indicates that the surrogate is a strong
approximation for predicting heat flux. The discrepancies between the two models are
generally small, suggesting that the surrogate model effectively replicates the behavior of
the high-fidelity model across various locations. In the bottom row, the discrepancies for
pressure are plotted against location. The high-fidelity model’s discrepancies (left plot) are
distributed around the zero line, with a few noticeable outliers, particularly between the 10th
and 20th locations. These outliers indicate locations where the high-fidelity model detects
variations or anomalies in pressure that deviate from the expected values.

Similar plots for Run 07 are shown in Figure 4.8. The surrogate model’s discrepancies
(right plot) also show a distribution around the zero line but with some differences compared
to the high-fidelity model. Notably, the surrogate model captures the overall trend of the
discrepancies but exhibits some systematic deviations, particularly in the range from the 5th

to the 15th locations, where the surrogate model’s discrepancies tend to be negative. This
suggests that while the surrogate model approximates the high-fidelity model’s behavior, it
may slightly underestimate or overestimate pressure at certain locations. However, the gen-
eral pattern and magnitude of the discrepancies indicate that the surrogate model remains a
reasonable approximation for pressure prediction. The comparison between the high-fidelity
and surrogate models for both heat flux and pressure indicates that the surrogate model

406 Scientific Machine Learning For Surrogate Modeling

provides a good approximation of the high-fidelity model. For heat flux, the surrogate model
captures the key features and discrepancies observed in the high-fidelity model, particularly
the significant spike around the 30th location. For pressure, while there are some system-
atic deviations, the overall trend and magnitude of discrepancies suggest that the surrogate
model reasonably approximates the high-fidelity model’s behavior. Overall, the surrogate
model effectively replicates the key patterns of the high-fidelity model, making it a suitable
and efficient alternative for scenarios where computational resources are limited, or when
quick predictions are needed.

Fig. 4.8: Comparing the discrepancy between SPARC and the MLP surrogate for Run 07.
This is to investigate if the MLP can be used as a surrogate to SPARC

5. Discussion and Conclusion. The study presented here builds upon previous re-
search by investigating the relationship between key parameters and their predictive in-
fluence on heat flux and pressure in a laminar hypersonic double-cone experiment. This
investigation leverages both experimental data from the LENS-I and high-fidelity simulated
data generated by the SPARC code. The core of this research lies in the application of
advanced neural network architectures—namely, Multi-Layer Perceptron (MLP), Recurrent
Neural Network (RNN), and Convolutional Neural Network (CNN)—to predict heat flux
and pressure, followed by an exploration of model calibration and discrepancy analysis.

Through a correlation analysis, the temperature parameters were determined to be un-
necessary for the accurate representation of the quantities of interest. The MLP, RNN and
CNN were therefore trained over velocity, density, and location. The performance evaluation
of the neural network architectures revealed distinct differences in their ability to predict
heat flux and pressure. The CNN outperformed other models in predicting heat flux, achiev-
ing the highest R2 and lowest MSE on the test dataset. Similarly, the RNN demonstrated
exceptional accuracy in predicting pressure, with near-perfect R2 values. However, despite
these superior metrics, the MLP was ultimately chosen for further application due to its
balance between simplicity and adequate performance. The decision to prioritize simplicity

K.A. Ohene-Obeng & K. Maupin 407

and ease of implementation over marginal gains in accuracy reflects a pragmatic approach
to model selection, particularly relevant in real-world applications where computational
resources and time are often constrained.

Model calibration further refined the predictive accuracy of the selected models. The
calibration process addressed the initial underestimation issues in the surrogate model’s
predictions. The reduction in residuals and the alignment of uncertainty bands with actual
values following calibration underscore the importance of this step in enhancing model
reliability. Discrepancy analysis between the high-fidelity and surrogate models reveals that
the surrogate model closely approximates the behavior of the high-fidelity model. This
finding suggests that the surrogate model is a suitable alternative for scenarios requiring
efficient and quick predictions without sacrificing significant accuracy.

The neural network architecture employed in the present study, while effective, do not
explicitly consider the correlated nature of the output variables. A multi-output framework
could potentially offer an avenue for further improvement in predictive modeling and will
be explored in future work.

REFERENCES

[1] S. Bi, S. Prabhu, S. Cogan, and S. Atamturktur, Uncertainty quantification metrics with
varying statistical information in model calibration and validation, AIAA journal, 55 (2017),
pp. 3570–3583.

[2] Y. Gal and Z. Ghahramani, Dropout as a Bayesian approximation: Representing model uncertainty
in deep learning, in international conference on machine learning, PMLR, 2016, pp. 1050–1059.

[3] M. C. Kennedy and A. O’Hagan, Bayesian calibration of computer models, Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 63 (2001), pp. 425–464.

[4] Y. Ling, J. Mullins, and S. Mahadevan, Selection of model discrepancy priors in Bayesian calibra-
tion, Journal of Computational Physics, 276 (2014), pp. 665–680.

[5] K. A. Maupin and L. P. Swiler, Model discrepancy calibration across experimental settings, Relia-
bility Engineering & System Safety, 200 (2020), p. 106818.

[6] I. Park and R. V. Grandhi, A Bayesian statistical method for quantifying model form uncertainty and
two model combination methods, Reliability Engineering & System Safety, 129 (2014), pp. 46–56.

[7] S. Peitz and M. Dellnitz, A survey of recent trends in multiobjective optimal control—surrogate
models, feedback control and objective reduction, Mathematical and computational applications,
23 (2018), p. 30.

[8] J. Ray, S. Kieweg, D. Dinzl, B. Carnes, V. G. Weirs, B. Freno, M. Howard, T. Smith, I. Nom-
pelis, and G. V. Candler, Estimation of inflow uncertainties in laminar hypersonic double-cone
experiments, AIAA journal, 58 (2020), pp. 4461–4474.

[9] C. Soize, Uncertainty quantification, Springer, 2017.
[10] R. K. Tripathy and I. Bilionis, Deep UQ: Learning deep neural network surrogate models for high

dimensional uncertainty quantification, Journal of computational physics, 375 (2018), pp. 565–588.
[11] G. G. Wang and S. Shan, Review of metamodeling techniques in support of engineering design

optimization, in International Design Engineering Technical Conferences and Computers and In-
formation in Engineering Conference, vol. 4255, 2006, pp. 415–426.

408 Scientific Machine Learning For Surrogate Modeling

QUANTIFYING ALEATORIC UNCERTAINTY IN OPERATOR
LEARNING USING GENERATIVE NETWORKS

JULIO C. PÁEZ∗ AND RAVI G. PATEL†

Abstract. The standard implementation of deep neural networks yields deterministic behavior after
training, where each input always yields the same prediction. This can be problematic when the data used to
train the network has high uncertainty. We use generative networks to produce randomized outputs of deep
neural networks. Focusing on aleatoric uncertainty, these networks are then applied to regression as well as
operator learning to yield a range of predictions rather than one static predictions, all while bypassing the
need to compute the posterior distribution required for Bayesian neural networks.

1. Introduction. Operator learning is a recently developed generalization of regres-
sion to mappings between functions that promises to drastically replace expensive numerical
integration of partial differential equations (PDEs) with fast evaluations of mappings be-
tween functional states of a system. However, even in the ideal case where operator learning
recovers the training data, there will be epistemic uncertainty in the interpolatory and ex-
trapolatory regimes. A trustworthy model is one that is transparent about its shortcomings.
Single-point estimates such as the maximum likelihood estimate (MLE) and maximum a
posteriori (MAP) point hide the broad range of fits that reasonably match the training data
while presenting vastly different predictions. Trustworthy models include UQ which exposes
analysts and designers to the full range of surrogate predictions. Moreover, models that ac-
curately decompose uncertainty into aleatoric and epistemic parts more faithfully capture
inherent stochastic dynamics and enable decision makers and algorithms to seek new data
to improve the models.

The standard approach to modeling epistemic and aleatoric uncertainty in neural net-
works is Bayesian inference with heteroscedastic noise. However, computing the posterior
is a computationally expensive task. For high dimensional parameter spaces as encountered
in neural network models, the posterior is intractable and approximations are necessary. In
the limit of large chains with large enough step sizes, Markov Chain Monte Carlo (MCMC)
can produce samples of the posterior distribution, but this convergence is slow. For neural
networks, the posterior is typically approximated with variational inference (VI). However,
VI does not provide convergence guarantees to the true posterior distribution.

Even with the posterior distribution, UQ of new predictions requires the posterior pre-
dictive distribution, which involves an integral over the parameter space. Again, for high-
dimensional parameter spaces, this computation is intractable, and must be approximated.
As neural operators are composed of deep neural networks, they also suffer from the com-
putational limitations of the Bayesian approach to UQ.

Additionally, while Bayesian inference of phenomenological parameters provides useful
information about a physical process, Bayesian inference of neural network weights does not.
Within a compact domain, there are many sets of neural network weights that yield the same
function, within some approximation. For neural networks, the posterior predictive distri-
bution provides the most useful UQ information. Since it requires one to marginalize out
the parameter space from the posterior distribution anyway, we attempt to avoid comput-
ing posterior distribution and focus on computing a predictive distribution directly. In this
work, we investigate an alternative approach to UQ leveraging techniques from generative
modeling. Our approach is to construct a generative model to produce model parameters
whose actions on data match the data distribution. We demonstrate our method by quan-

∗University of Texas Rio Grande Valley, Sandia National Laboratories, julio.paez01@utrgv.edu
†Sandia National Laboratories, rgpatel@sandia.gov

CSRI Summer Proceedings 2024 409

tifying the aleatoric uncertainty from a scalar regression problem and an operator learning
problem.

2. The Structure of Deep Neural Networks. The prototypical deep neural net-
work (DNN) is a function composed of other functions, called layers, which approximates a
function of choice f . Each layer takes an input xi−1, performs a linear transformation Wi

on xi−1, adds a bias vector bi, and evaluates a function σ (called the activation function)
at the result to get its output xi:

xi = σ(Wixi−1 + bi).

If we define

Li(x) := σ(Wix+ bi),

then a DNN comprised of d layers can be represented by the composition

N(x0; ξ) = Ld

(
Ld−1

(
· · ·L2

(
L1(x0)

)
· · ·
))

, (2.1)

where x0 represent the initial input of the DNN and ξ is the set of all the weight matrices
Wi and biases bi:

ξ = {W1,W2, . . . ,Wd, b1, b2, . . . bd}.

We also use ξ to denote the set of all the particular elements of each weight matrix and bias
vector, also called the parameters of the DNN.
The signature aspect of deep neural networks is how these parameters are determined.
In general, another function M (called the objective or loss function) is chosen and the
parameters are defined to be the arguments where M reaches its minimum given a training
dataset of observations X:

ξ := argmin
ξ∗

M
(
f(x), N(x; ξ∗)

)
,

where x are the individual observations from X.
Usually, gradient-based optimization is used to obtain approximations of these parameters
[2].

2.1. Regression with Deep Neural Networks. The quintessential use case for
DNNs is regression: approximating a function given a set of n points

{
(xi,yi)

}n
i=1

.
Typically, the objective function used for regression is the mean squared error (MSE):

ξ := arg min
ξ∗

n∑

i=1

∥∥yi −N(xi; ξ
∗)
∥∥2.

3. Problems with Quantifying Uncertainty in Deep Neural Networks. Deep
neural networks can run into problems when trained on data with high uncertainty. For
example, consider a dataset of n points

{
(xi, yi)

}n
i=1

with high aleatoric uncertainty as in
Figure 3.1. After a DNN is trained on such a dataset, the output of the network at any
given test point x∗ will always produce the same output y∗. This produces a single line over
the testing data set (Figure 3.2). The determinism of the DNN structure after training is a
problem as we cannot quantify the uncertainty of the output. Furthermore, high aleatoric

410 Quantifying Aleatoric Uncertainty In Operator Learning Using Generative Networks

Fig. 2.1. A deep neural network trained using the plotted points.

Fig. 3.1. Training and testing datasets with high aleatoric uncertainity at both ends.

uncertainty can be caused by a process’s inherent stochastic behavior, behavior which would
ideally be replicated in the model.
A way to combat this problem is to use Bayesian neural networks [1]. However, imple-
menting a Bayesian neural networks comes with its own problems. Namely, the reliance
on calculating the posterior probability distribution. This distribution includes an integral
over the parameter space, a space which is high-dimensional for all but the most trivial neu-
ral networks. This integral is thus intractable and computationally expensive to estimate.
Hence, we will use a different approach to introduce stochasticity to DNNs.

4. Generative Networks. A generative network (GN) has an architecture similar to
a DNN, but whose input is a sample z from a probability distribution Pz over the space Z.
Because the input of the GN is random, the outputs are randomized in turn. Thus, we can
use a GN to generate randomized parameters of a DNN, which leads to randomized outputs
even when receiving the same input.
Say we have a deep neural network N as described in Section 2 and a generative network G
with hyperparameters θ. Then, to produce the output y∗ of the network N , we first sample
Pψ to get ψ, input ψ into the generative network G(· ; θ), feed the parameters ξ produced
by G(ψ; θ) into N , and finally input x∗ into N(· ; ξ):

x∗ −→ N(x∗; ξ) −→ y∗

↑
ψ ∼ Pψ −→ G(ψ; θ) −→ ξ

J. Paez & R. Patel 411

Fig. 3.2. A deep neural network trained on the training data and acting on the testing data.

By repeating this process multiple times for each input, we obtain a range of predictions
rather than being limited to a single one.
Of course, we cannot expect fully random ξ parameters to yield reasonable predictions.
Hence, we need to tune the hyperparameters θ in G. We will do so using scoring rule
minimization [3].
A scoring rule S is a function over two distributions P and Q which provides a sense of
distance between the two distributions:

S(P,Q) := EX∼QS(P,Z).

A scoring rule S is strictly proper relative to a set of distributions P if P = Q is the unique
minimum of S in the set P. In the context of generative networks, we will compare the
concatenation of the model input and outputs to the input/output data pairs, z = [x, y]T .

From now on, we will use the energy score, with unbiased estimate

Ŝ
(β)
E (P,z) =

2

m

m∑

j=1

∥z̃j − z∥β2 −
1

m(m− 1)

m∑

j,k=1

∥z̃j − z̃k∥β2 , z̃j ∼ P,

and let the input ψ to the generative network have each of its elements be distributed
according to the random normal distribution, N (0, 1).

5. Aleatoric Uncertainty Quantification in Regression. Consider the data de-
scribed in Section 3. Using the same training data of size 1000, with m = 10 draws, 100
batches of size 10, and 125 epochs, we can fit the DNN and GN pair to the data and arrive
at a range of outputs. The same size was used for the DNN in this case as in Figure 3.2,
as well as the same training data, batches, and epochs. We train a generative network to
produce the weights for a neural network fit to the data using the scoring rule to match the
predictions to the data in distribution. Our results are shown in Figure 5.1.

6. Operator Learning. Another task DNNs can perform is operator learning: Instead
of having input points/vectors xi, corresponding output points/vectors yi and trying to
learn a function f(x) = y, we have input functions ui, corresponding output functions vi
and try to learn an operator L[u] = v.
While this can be done in various ways, we will use the parameterization described in [4]:
given an input function u∗, the output v∗ is given by

v∗ = F−1

[
g(κ; ξ1) · F

[
h(u∗; ξ2)

]]
,

412 Quantifying Aleatoric Uncertainty In Operator Learning Using Generative Networks

Fig. 5.1. A deep neural network aided by a generative network acting on the same data as before.

where g(· ; ξ1) is a DNN with parameters ξ1, h(· ; ξ2) is another DNN with parameters ξ2,
κ are the wavenumbers, and F and F−1 are the Fourier transform and the inverse Fourier
transform, respectively.
A generative network G can be introduce in this process to add stochasticity to the output,
this time generating weights for both g(· ; ξ1) and h(· ; ξ2):

κ −→ g(κ; ξ1)
×−→ g(κ; ξ1) · F

[
h(u∗; ξ2)

] F−1

−→ v∗

↑ ↑ F
ψ ∼ N (0, 1) −→ G(ψ; θ) −→ ξ1, ξ2 −→ h(u∗; ξ2)

↑
u∗

We will now quantify uncertainty in the case of operator learning.

7. Aleatoric Uncertainty Quantification in Operator Learning. Consider a
dataset of pairs of functions

{
(ui,vi)

}n
i=1

over the domain (0, 1). We want to learn the
operator L which maps the u functions to their corresponding v functions (Figure 7.1).
As in the scalar regression example above, we train a generative network to produce the
weights of a neural operator using the scoring rule such that predictions from the neural
operator match the data in distribution. Figure 7.2 shows that the predictions from the
neural operator match held out test data.

8. Conclusion. This work demonstrates a novel, ensemble approach to UQ in oper-
ator learning. We demonstrate with a synthetic benchmark that our approach provides
intuitive measures of aleatoric uncertainty. Future work will focus on quantifying epistemic
uncertainty in operator learning

REFERENCES

[1] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, Variational Inference: A Review for Statisticians,
2018.

[2] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017.
[3] L. Pacchiardi and R. Dutta, Likelihood-Free Inference with Generative Neural Networks via Scoring

Rule Minimization, 2022.
[4] R. G. Patel, N. A. Trask, M. A. Wood, and E. C. Cyr, A physics-informed operator regression

framework for extracting data-driven continuum models, Computer Methods in Applied Mechanics,
373 (2021).

J. Paez & R. Patel 413

Fig. 7.1. A few samples from the training dataset. Top row shows the input functions and bottom row
shows the output functions.

Fig. 7.2. The top row shows the true operator acting on some samples from the testing data set. The
bottom row shows the predictions from the neural operator with weights from the trained generator network

414 Quantifying Aleatoric Uncertainty In Operator Learning Using Generative Networks

COUPLED DEEP NEURAL OPERATORS AS A SURROGATE MODEL
FOR ICE-SHEET DYNAMICS

DARIO RODRIGUEZ ∗ AND MAURO PEREGO †

Abstract.

Sea level is expected to dramatically increase in the next decades to centuries with severe impact on
coastal infrastructure and population. Therefore, sea-level rise projections are critical to inform policy
making and adopt strategies to mitigate these changes. However, a large uncertainty in these predictions
is due to uncertainty in ice-sheet modeling. Traditionally, ice-sheet dynamics have been modeled using
classical discretization methods such as the finite element method (FEM). Nonetheless, FEM-based models
tend to be computationally expensive and, therefore, not ideal in the context of uncertainty quantification
where a large number of evaluations are required. We hence propose machine-learning-based surrogates as a
more efficient alternative to conventional numerical models. Our work builds on previous research where a
deep neural operator, the so-called Deep Operator Network (DeepONet), was employed to compute the ice
flow velocity while the ice thickness evolution was solved with FEM, generating a hybrid FEM -DeepONet
ice-sheet model. In the present work, we aim at predicting the evolution of the ice thickness by means of
a DeepONet surrogate that maps the ice thickness and parameters at time t to the ice thickness at time
t + ∆t, in order to create a fully neural-operator based ice-sheet model. In particular, for the DeepONet
that maps the temporal evolution of the ice thickness, two neural operator approaches are considered: i) a
vanilla architecture, where the operator features both a branch and a trunk network and ii) a SVD-based
operator, where the trunk net is substituted with a set of basis functions precomputed from the dataset.
Moreover, the composition of this neural operator with itself during training is assessed with the main goal
of increasing the prediction accuracy and decreasing the training time. The outcomes demonstrate that a
four-step composition of the thickness neural operator is ideal in order to obtain highly accurate results.
After both the velocity and thickness neural operators are trained independently, they are coupled together
to fully characterize the ice-sheet dynamics. Preliminary results demonstrate that the proposed framework
is appropriate to handle high-dimensional problems and hence, the model is suitable to conduct uncertainty
quantification studies. A brief summary about the hyperparameter selection to find the ideal neural network
architectures and configurations is presented. In this work, the Humboldt glacier in Greenland was selected
as case study.

1. Introduction. Ice-sheet modeling plays an important role in climate modeling be-
cause it is crucial to make probabilistic projections of sea-level rise, an issue that has become
a global concern due to the potential catastrophic effects associated with it. A timely and
accurate prediction of this phenomenon might help governmental agencies and stakeholders
to anticipate the consequences of sea-level rise and thus to inform mitigation policies [1, 2].

To first approximation, the dynamics of ice sheets is governed by Stokes-like flow equa-
tions, consisting of a set of partial differential equations (PDE) that is often solved nu-
merically using finite element methods [3, 4, 5]. However, one of the biggest challenges
in characterizing ice sheets’ physics is related to the inherent presence of high-dimensional
uncertainty in the models and observations [6, 1]. As an example, the basal friction field
(β), a parameter that describes the sliding conditions at the ice bed and one of the biggest
control on ice-flow, can be estimated, together with its probability distribution, by solving a
Bayesian inference problem assimilating observations of the surface ice velocity [7, 8]. The
uncertainty on quantities of interests such as the total ice-sheet mass loss over time (a proxy
of its contribution to sea-level rise) can then be computed with a Monte Carlo method by
drawing samples from the parameter distribution and by running, for each sample, the ice-
sheet model forward in time. Unfortunately, the cost of conventional PDE-based models
and the large number of runs required, makes this approach intractable for realistic ice-sheet

∗Department of Aerospace Engineering, University of Illinois Urbana Champaign, darior2@illinois.edu
†Department of Scientific Machine Learning, Sandia National Laboratories, mperego@sandia.gov

CSRI Summer Proceedings 2024 415

problems.

The advent of automatic differentiation (AD) [9] and high-performance computing
(HPC) [10] have boosted the embrace of machine learning (ML) as a scientific tool to de-
velop accurate surrogates for modeling such complex problems in a faster manner [11, 12].
In particular, neural operators are a type of deep learning models that learn the operator
mapping between infinite dimensional function spaces, which allow these ML models to pre-
dict relationships between continuous functions [13, 14, 15, 16]. Specifically, one of the most
well-known neural operator architectures are the deep operator networks (DeepONets) [14],
which are a subclass of ML-based surrogates that have proven to work well within a wide
range of applications such as gas dynamics [17], hypersonics [18], material science [19] and
ice-sheet [20, 21] modeling. In its vanilla version [14], a DeepONet relies on uncovering a
projection to approximate an operator by using two neural networks, referred to as branch
and trunk. The bases of this projection, which are constructed by the trunk network, are
assumed of be non-linear functions of the operator’s independent variables (time and spatial
coordinates), while the coefficients are generated as non-linear functions of the operator’s
input fields evaluated at a set of discrete sensor points (time and space) by the branch
network. Then, the DeepONet automatically discovers the appropriate projection by per-
forming the dot product between the output layers from each network, which can be seen
as a coefficient-to-input and basis-to-independent-variable mapping [22].

Several works have demonstrated the feasibility of neural operators as surrogates to
approximate observation data from large-scale spatio-temporal systems by composing the
operator with itself during the training process [23, 24]. This is accomplished by employing
a residual network (ResNet) [25] approach to compose the neural operator in a recursive
fashion as illustrated in Figure 4.1 [26]. Note that the recurrence is enforced blockwise
on the ResNet block, which is itself a deep neural operator. The advantage of this specific
architecture stands on that it is capable of approximating unknown dynamical systems using
only state variable data, which could be coarsely distributed in time [26].

Nonetheless, the high dimensionality of the training data pose a significant challenge due
to the considerable number of trainable parameters to optimize. Therefore, since DeepONets
are considered projection-based methods [22], one of the alternatives is to precompute a set
of basis functions by means of a singular value decomposition (SVD) of the training data. In
other words, this approach aims to replace the conventional trunk network of a DeepONet
with a set of SVD-generated basis functions. Thus, a single neural network (the branch net)
is used to learn the coefficients, while the SVD-generated basis is employed instead of the
trunk network [27, 28].

The overall goal of this work is to generate accurate surrogate models suitable for con-
ducting uncertainty quantification and addressing inverse problems with less computational
burden compared to the FEM approach. Previous research was focused on the implemen-
tation of a hybrid DeepONet-FEM approach [20], where a neural operator was trained to
map the basal friction field and the ice thickness to the depth-averaged ice velocity. Com-
plementary, the present work aims to substitute the remaining FEM -based discretization
from the hybrid approach with a DeepONet that maps the ice thickness and parameters at
time t to the ice thickness at time t+∆t, in order to generate a framework of coupled neural
operators that fully predicts the ice-sheet dynamics.

In this sense, in section 2, the mathematical models that govern the ice-sheet dynam-
ics are described. Next, in section 3, the numerical approach and model assumptions to
generate the training and testing dataset are introduced. Later, in section 4 two different

416 Coupled Deep Neural Operators As A Surrogate Model For Ice-sheet Dynamics

neural operators (vanilla and SVD-based) to predict the time-evolution of ice thickness are
introduced. This section concludes with a description of how the proposed neural operator
is coupled with a previously trained DeepONet to generate a framework of coupled neu-
ral operator as a surrogate to assess ice-sheet dynamics. Then, in section 5, a summary
of the methods to preprocess the data, the neural networks architectures, as well as the
hyperparameter selection, is presented. Afterwards, the loss values and the computational
cost for training the operators is compared and discussed. Furthermore, a full prediction of
the ice-sheet dynamics obtained by using the two approaches of coupled neural operators is
presented and compared with the FEM -generated outcomes. Finally, a brief summary and
future work research are highlighted in section 8.

2. Ice-sheet models. Figure 2.1 illustrates a cartoon of a vertical section of an ice
sheet along the direction of ice flow, where the horizontal coordinates are denoted with x
and y, while z represent the vertical coordinates (z = 0 is defined as the sea level). The
ice domain, at time t, can be approximated as a vertically extruded domain Ω, as shown in
Equation 2.1:

Ω := {(x, y, z) s.t. (x, y) ∈ Σ, and l(x, y, t) < z < s(x, y, t)} (2.1)

bedrock

ice

ocean

basal friction (β)

Γd Γs

ΓmΓf

Γg

H
Ω

Γb

Fig. 2.1. Scheme of an ice sheet

where, Σ ⊂ R2 is the horizontal extension of the ice, Γl(t) := {(x, y, z)} s.t. z =
l(x, y, t), (x, y) ∈ Σ represents the lower surface of the ice at time t, and Γs(t) := {(x, y, z)}
s.t. z = s(x, y, t), (x, y) ∈ Σ denotes the upper surface of the ice and hence, the ice
thickness is obtained by H(x, y, t) = s(x, y, t) − l(x, y, t). Note that the lower surface of
the ice is sectioned between grounded (Γg) and floating (Γf) areas, which determines the
boundary conditions of the problem [20].

The ice thickness H(x, y, t) is modeled according to the conservation law shown in
Equation 2.2,

∂tH +∇ · (ūH) = fH (2.2)

where ū := 1
H

∫ s

l
udz is the depth-integrated velocity and fH is a forcing term account-

ing for accumulations (e.g. snow precipitations) and melting in both upper and lower ice
surfaces [29].

Since ice sheets behave as a shear thinning fluid, non linear Stokes models, which are
described by the set of PDEs shown in Equations 2.3 and 2.4 [29] are often used to model
their dynamics. Here, u = (u, v, w) is the ice velocity vector, σ is the stress tensor, ρ is the
ice density and g is the gravity.

D. Rodriguez & M. Perego 417

−∇ · σ = ρg (2.3)

∇ · u = 0 (2.4)

The Stokes equation is accompanied by the following boundary conditions as shown in
Figure 2.1:

σn = 0 on Γs stress free, atmospheric pressure neglected
σn = ρwg min(z, 0)n on Γm boundary condition at the ice margin
u = ud on Γd Dirichlet condition at the internal boundary
u · n = 0, (σn)|| = βu|| on Γg impenetrability plus sliding condition
σn = ρwgzn on Γf back pressure from ocean under ice shelves

Here, β(x, y) is the sliding coefficient, ρw is the density of the ocean water, n the
unit outward-pointing normal to the boundary and u|| is the component of the velocity
u tangential to the bed. The boundary condition at the margin includes the ocean back-
pressure term, when the margin is partially submerged (z < 0). For terrestrial margin,
z > 0, the term becomes a stress-free condition.

3. Computational models. As in previous work [20], the shallow shelf approximation
(SSA) [30], a simplification of the Stokes equations which is less expensive to evaluate, was
adopted to model the ice-sheet dynamics and to generate an ensemble of data to train the
neural operators. In particular, in the SSA model, it is assumed that the velocity is uniform
in z (i.e. u = ū) and hence, the problem simplifies to a two-dimensional PDE in Σ as shown

in Equation 3.1, where the tensor D̂ is associated to the stress tensor σ. See reference [20]
for a further explanation of this model and its simplified boundary conditions.

−∇ ·
(
2µHD̂

)
+ βū = −ρgH∇s (3.1)

A significant challenge of modeling ice-sheet dynamics is related to the high-dimensional
uncertainty. In this work we focus on the uncertainty in the basal friction field (β), which
is an unknown infinite dimensional field which greatly affects the ice flow. A Bayesian
inference approach can be used to estimate the distribution of β; see, e.g. [7, 8]. However,
in this work, a simplified approach is adopted, where β is assumed to have a log-normal
distribution with a square covariance kl, as shown in Equation 3.2

log(β) ∼ GP(log(β̄), kl), and kl(x1,x2) = a exp

(
−|x1 − x2|2

2l2

)
(3.2)

Here, β̄ is the optimal basal friction parameter obtained by solving a PDE-constrained
optimization problem [31] to minimize the mismatch between the computed ice velocity and
the observed surface ice velocities. The selection of scaling parameters a and l are described
in ref. [20].

The finite element discretization of the glacier (based on the SSA approximation) was
implemented in FEniCS and solved using PETSc [20]. The samples for β were drawn
from the Gaussian process (Equation 3.2). For each β field sample, the FEM model was
run forward in time to predict both the ice depth-averaged velocity vectors (ū) and ice
thickness (H) to generate the ensemble of data to train the neural operators.

418 Coupled Deep Neural Operators As A Surrogate Model For Ice-sheet Dynamics

4. Neural operators. The aim of this work is to generate a fully-coupled ensemble of
neural operators as a surrogate to predict the ice-sheet dynamics subject to initial conditions.
Previous research was focused on the implementation of a hybrid DeepONet-FEM approach
[20], where a neural operator G was trained to map the basal friction field (β) and the
ice thickness (H) into the depth-averaged velocity vector (ū). Hence, the operator G, in
combination with the FEM -based discretization of the ice thickness H over time (Equation
2.2) constituted the hybrid ice-flow model. The training, calibration and validation of the
operator G was deeply explored and discussed in ref. [20] and it will not be further addressed
in this work. Instead, it is assumed that the operator G was already trained and it will
be directly incorporated as a component of the coupled neural operator surrogate that is
proposed in this work.

4.1. Ice thickness neural operator. The emphasis of this work was placed on de-
veloping the neural operator F that substitutes the conventional FEM discretization of the
ice thickness H over time (Equation 2.2). In this context, the operator F maps the depth-
averaged velocity vector ū and ice thickness H states at time t = n to the thickness state
at next time step t+∆t = n+ 1 (∆t is assumed as one year), i.e. Hn+1 = F (Hn, ūn), as
illustrated in Figure 4.2. Note that the term ū depends implicitly on the basal friction field
β and hence, the data pairs (shown in Equation 4.1) to train the operator F were obtained
from all the samples of β fields drawn from the distribution 3.2

{(ūn
i , H

n
i), H

n+1
i } n = 0, 1, . . . , N − 1, i = 1, 2, . . . , Q (4.1)

where N is the set of discrete time steps considered and Q is the total number of β
samples. Note that the operator F is a p-time composition of itself where, as an example,
p corresponds to 3 on the diagram shown in Figure 4.1.

Fθ
1 Fθ

2 Fθ
3

Hn Hn+1 Hn+2

un un+1 un+2

L(θ)F1

i
FEM

FEM
i

pred
i

FEM
i

pred
i Hn+3

pred
i

FEM
i

FEM Solver

FEM Solver

Hn+1
FEM

i Hn+2
FEM

i Hn+3
FEM

i

L(θ)F2 L(θ)F3 L(θ)+ + =

Fig. 4.1. Composition of neural operator F

Thus, the training loss function involves summing over the mean squared error in the
predictions for each data pair {(ūn

i , H
n
i), H

n+1
i }. Moreover, we included an additional sum

over P future time steps, where we compose the F operator with itself P times. In particular,
we employ the loss function Lθ,λ shown in Equation 4.2

D. Rodriguez & M. Perego 419

L(θ,λ) =
1

NQP̄ (n)

Q∑

i=1

N−1∑

n=0

∑

x∈X

P̄ (n)∑

p=1

w(x)
∥∥∥Hn+p

i (x)−F [p]
θ

(
Hn

i (x), {ūi(x)}n+p−1
j=n

)∥∥∥
2

(4.2)

where F [p]
θ

(
Hn

i (x), {ūi(x)}n+p−1
j=n

)
denotes the composition of F with itself p times,

i.e., F [p]
θ

(
Hn(x), {ū(x)}n+p−1

j=n

)
= Fθ(·, ū(x)n+p−1) ◦ · · · ◦Fθ(·, ū(x)n)(Hn) (the i subscript

is omitted for readability). Note that the interior sum from p = 1, · · · , P̄ (n) is truncated at
P̄ (n) = min(P,N − n) to avoid predicting time steps outside the training dataset [23].

Furthermore, w(x) represent an array of spatially-dependent penalizing self-adaptive
weights that can lead to a better generalization in presence of localized features [32]. As
in previous research [20], we set w(x) = m(λ(x)), where λ := {λ(x)} are the trainable
self-adaptive weight parameters dependent on locations x ∈ X and m(λ) = λd is a non-
negative monotonically-increasing polynomial mask function with d = 4. Note that the loss
function L(θ, λ) is simultaneously minimized with respect to the network hyperparameters
θ but maximized with respect to the self-adaptive weights λ i.e., minθ maxλ L(θ, λ). Finally,
X = {x1,x2, · · · ,xM} is the finite set of sensor points (spatial coordinates).

From Figure 4.1, it can be noticed that F acts as a multi-step recurrent residual deep
neural network (ResNet) [26], where for each p composition, the branch net takes as input
the dot product between H and the corresponding spatial components of the vector ū (to
mimic the argument of the divergence operator from Equation 2.2).

Additionally, the operator F also consists of either i) a trunk network (vanilla operator)
or ii) a precomputed set of basis functions that substitute the trunk net (SVD-based oper-
ator) as shown in Figure 4.2. In the former approach, the trunk net, which is feed-forward
neural network, takes as input the sensor points (spatial coordinates) x ∈ X [14] and yields
a vector tk from its output layer. Then, this latter is combined via dot product with the
branch net’s output layer bk and the resulting value is added up to the ice thickness at the
current time step as shown in Equations 4.3 and 4.4. An important remark is that for the
first composition, the initial H corresponds to the initial condition, i.e. the ice thickness at
time step t = n but for subsequent compositions, the predicted ice thickness Hpred, together
with the depth-averaged velocity from the FEM model (ūFEM), are combined together via
dot product and used as input for the branch net of subsequent compositions of the neu-
ral operator. Finally, note that for each p-composition, the loss value is computed via the
mean square error between Hn+p

i,FEM and Hn+p
i,pred. In this approach both branch and trunk

networks’ hyperparameters are optimized.

Hn+1
i,pred = H0

i +

K∑

k=0

bk
(
Hn

i,FEM , ū
n
i,FEM

)
tk(x) (4.3)

Hn+p+1
i,pred = Hn+p

i,pred +

K∑

k=0

bk
(
Hn

i,pred, ū
n
i,FEM

)
tk(x), p = 1, · · · , P̄ (n) (4.4)

On the other hand, for the SVD-based operator, the set of basis functions (also called

as tk in Figure 4.2 for simplicity) are precomputed from the matrix Hm
n,i ∈ RN×Q

M which
contains the ice thickness data, where the M columns are the number of grid nodes and
the product N ×Q rows, that we call S, represents a stacked combination of the time steps

420 Coupled Deep Neural Operators As A Surrogate Model For Ice-sheet Dynamics

n and β samples considered. Therefore, the SVD of the matrix Hm
n,i is used to generate a

lower-dimensional linear subspace [27] given by the approximation of Hm
n,i as the product

of the truncated matrices Ũ Σ̃Ṽ T , where Σ̃ ∈ Rr×r contains the largest r singular values
associated to the truncated singular vectors Ũ ∈ RS×r and Ṽ T ∈ Rr×M . Hence, the right
singular vector Ṽ ∈ Rr×M was used as the set of basis functions [22], where r was set
heuristically to retain the most amount of thickness data information. The output layer
vector bk from the branch net is then combined with the set of basis functions tk for each
p-composition following the same approach as described for the vanilla case.

Hn un(x)

x=(x, y)

Branch net

Trunk net

X Fθ (un, Hn)(x)Hn+1=

Hn un(y)

SVD HQxN(x)MHQxN (x)M

[p]

b1

bk

...

t1

tk

...

i i

ii

i i i

Fig. 4.2. Architecture for the neural operator F

4.2. Coupled neural operators. Once the two operators, G (that predicts the depth-
averaged ice velocity) and F (that maps the temporal evolution of the ice thickness), were
trained independently, they were coupled together in such a way that for a given βi field
distribution and initial ice thickness H0

i , the first operator computes the deep-averaged
velocity vector ū0

i at time t = 0 and then, this latter value, in conjunction with the initial
ice thickness H0

i , are fed into the F operator so it predicts the ice thickness at the next time
step H1

i . This cycle is repeated until the states ū and H are completely determined for a
desired time span t = N . Although the coupled model was used to predict the dynamics
of aforementioned states (H and ū), the ultimate goal is to predict the ice mass added to
the ocean which is associated to the ice-sheet mass loss mloss that we compute as shown in
Equation 4.5

mn
loss = ρice

∑

x∈X
Mlump(x)

(
H0

i (x)−Hn
i (x)

)
(4.5)

where Mlump is the lumped mass matrix (obtained from the FEM model) and ρice is
the ice density.

Fθ

Gθ
βi

ui,pred

Hi

Gθ

0

βi

Hi
0

1

Hi,pred
1

Fθ

ui,pred
0

...

Gθ
βi

Hi,pred
N-1 ui,pred

N-1

Fθ Hi,pred
N...

Fig. 4.3. Coupled neural operators G and F

Finally, it is worth mentioning that all the considered neural operators and thus, the
corresponding deep neural networks, were fully implemented in JAX [33], while the open-
source Optax [34] library was used to set up the stochastic gradient-based optimizer and
the learning rate scheduler.

D. Rodriguez & M. Perego 421

5. Data preprocessing and training details. The FEM model of the Humboldt
glacier in Greenland was run forward in time based on the SSA model considering Q = 200
basal friction samples, βi(x), i = 1, · · · , Q drawn from the distribution 3.2. For each βi
sample, the depth-averaged velocity ū and ice thickness H were determined over a period
of N = 50 years, n = 0, ·, N evaluated at M = 1426 grid points x ∈ X corresponding to the
unstructured mesh of the glacier. Thus, the training and testing dataset were organized as
a triplet of multidimensional vectors of the form 5.1, where the bracket-enclosed subscripts
denote the number of data samples in each dimension of the vector.

[
{ūH}[(N−P̄ (n))×Q,M] , {X}[(N−P̄ (n))×Q,M] , {H}[(N−P̄ (n))×Q,M,p=1,··· ,P̄ (n)]

]
(5.1)

As in previous work [20], the data corresponding to the first 20 β samples were used
for testing, whereas the rest of data (β samples from 21 to 200) were used for training the
neural operator F .

The training parameters for the two approaches (vanilla and SVD-based) of the operator
F are listed in Table 3.2. For the former, the architecture of both the branch net and the
trunk net consisted of 4 hidden layers and 300 neurons per layer (denoted as 4× 300) with
ReLU activation function. Conversely, for the SVD-based case, a single neural network was
required since only the branch net is considered for training while the trunk net was replaced
with a precomputed set of basis functions obtained from an SVD of the data. In specific,
by following an heuristic approach, we found that most of thickness data information is
retained with 300 eigenmodes as shown in Figure 5.1, where the largest 500 singular values
are depicted.

0 100 200 300 400 500
100

101

102

103

104

105

106

Singular values

Fig. 5.1. Largest singular values from the ice thickness H dataset

Regularization in the loss function 4.2 was introduced with a penalty coefficient of
5 × 10−5 to mitigate possible overfitting. The Adam optimizer was set by default and the
learning rate to optimize the networks’ hyperparameters was set to 1 × 10−4, while the
learning rate to optimize the self-adaptive weights was set to 5 × 10−5. For both learning
rates, an independent scheduler was set to decay the learning rate exponentially from its
initial value at a 0.9 rate every 100k epochs. Finally, the neural operator F was trained with
p = {1, 2, · · · , 7} compositions of itself to conduct a composition-dependant analysis such
that minimizes the loss function while getting accurate predictions. Table 5.1 summarizes
the training details of the neural operators.

422 Coupled Deep Neural Operators As A Surrogate Model For Ice-sheet Dynamics

Table 5.1
Training details

Approach Architecture Compositions Epochs

Vanilla 4× 300 (b&t)* 1-7 300k
SVD 4× 300 (b)* 1-7 500k

* b refers to branch net and t refers to trunk net

6. Ice thickness DeepONet training. As mentioned in section 5, two approaches
for the F operator (vanilla and SVD-based) composed p-times with itself were evaluated.
Figure 6.1 illustrates the training and testing errors as a function of the iterations (epochs)
corresponding to the vanilla neural operator for p = {2, 4, and 6} compositions.

Fig. 6.1. Loss values for training and testing the vanilla neural operator F

In a similar fashion, Figure 6.2 depicts the training and testing errors for the SVD-based
neural operator for the same number of compositions aforementioned. From these results,
it can be noticed that the errors flatten at greater loss function values as the number of
compositions increases for both the vanilla and SVD-based approaches. This behavior is
attributed to the fact that the loss function is more complex as the compositions augment
and hence, the minimization of the loss function becomes less trivial. In addition, note that,
when comparing the two approaches, for the same number of compositions, the loss function
value decays faster and it is less noisy for the SVD operator, which indicates that this latter
is faster to train while getting a similar accuracy compared with its vanilla counterpart. This
trend can be linked to the fact that the SVD operator features less trainable parameters
since a single neural network is employed and hence, the minimization of the loss function
converges faster with less computational burden.

Fig. 6.2. Loss values for training and testing the SVD-based neural operator F

D. Rodriguez & M. Perego 423

Consider that, although the loss function value is greater as the number of compositions
of the operator F augments, composing the F operator with itself up to 3 or 4 times
demonstrates a lessening of the relative L2 error in the prediction of the ice thickness. Then,
after this threshold value of compositions, it is observed that the relative error flattens for
both the vanilla and SVD-based operator as depicted in Figure 6.3, where the relative L2 of
the ice thickness H for a 50-year prediction was computed. Furthermore, note that adding
more compositions to the operator results into longer training times as shown in red on the
right-hand side axis of the plot from Figure 6.3. For instance, observe that for a 4-step
composition of the operator F , training the vanilla DeepONet takes around 8 times longer
than training the SVD-based operator to get similar accuracy.

Ice thickness (H) @50[yr])
5x10-1

5x10-3

Vanilla SVD

Train

Tr
ai

ni
ng

 ti
m

e
Va

ni
lla

Training time SVD

Test

Fig. 6.3. Comparison between the vanilla and SVD-based neural operator F for (left) - relative L2

error of the ice thickness h for a 50-year prediction and (right) - training time

7. Coupled-operator predictions. In this section, we present the predicted results
obtained by coupling the two neural operators: i) G, that predicts the depth-averaged
velocity ū as a function of the basal friction field β and the ice thickness H at a given time
step t = n and ii) F , that maps the ice thickness H and deep-averaged velocity ū from a
given time step t = n to the next time step t+∆t = n+ 1

7.1. Depth-averaged velocity and ice thickness. The relative L2 error (relative
to the FEM models) of the predicted depth-averaged velocity ū and the ice thickness H for
a time range of 50 years obtained by the framework of coupled neural operators is shown in
Figure 7.1. The left-hand side plot shows the relative L2 error for the ū prediction and it
can be noticed that the error is considerably stable and low (less than 6% for the training
dataset and less than 12% for the testing dataset). This highlights the high accuracy that
the G operator achieves. Note that the two approaches considered for the neural operator
F (vanilla and SVD) are listed in this subplot. This simply means that, although the G
operator was used to predict the ice flow velocity ū, it was coupled with one of the two
types of the operator F to evolve the solution of the ice thickness H over time. Hence, the
legend shown in 7.1 refers to the coupled framework of operators G and F as a single model
that characterizes the ice-sheet dynamics.

On the right-hand side of Figure 7.1, the relative L2 error for the ice thickness H as
function of the 50-year time span considered is depicted. Consider that, although the relative
L2 error increases and it is accumulated over time, the maximum value among the training
and testing datasets does not exceed the 0.3% for both approaches. Hence, the coupled

424 Coupled Deep Neural Operators As A Surrogate Model For Ice-sheet Dynamics

Fig. 7.1. L2 Error of ice depth-average velocity ū (left) and ice-thickness H (right) with coupled neural
operators for a 50 year time span

operators approach demonstrates to be a highly accurate alternative method able to predict
the dynamics of the ice sheet for the given set of initial conditions (β and Hn) at a moderate
computational cost.

Fig. 7.2. L2 Error of the change of ice thickness (∆H) with coupled neural operators for a 50-year
time span

It is important to mention that it is often the case that predicting the ice-thickness dy-
namics itself is not the main goal. In fact, one of the most important parameters associated
to the sea-level rise is the rate of change of the ice mass (mass loss), which in turn is related
to the change of ice thickness ∆H. Thus, we considered important to determine the relative
L2 error of the predicted ∆H relative to the corresponding value obtained by the FEM
model. We computed the relative error of ∆H for each predicted year, where the difference
is always referred to the initial thickness at time t = 0, i.e., we defined ∆Hn := Hn −H0

for a given year n, n ∈ {1, · · · , 50}. The aforementioned errors are shown in Figure 7.2,

D. Rodriguez & M. Perego 425

where one can note that the error is significantly higher at the beginning and then, after
approximately the 10-th year prediction, the error decreases and it flattens. This is because
the rate of change of ice thickness relative to the thickness itself at early years is very low,
which explains the sudden drop in the relative error.

Finally, Figure 7.3 illustrates the two-dimensional field of the absolute error referred
to ∆H for a 50-year prediction for a testing β case for the two F operators considered.
Although, the absolute error for both methods are within a similar range, it can be observed
that the largest errors are located on different regions across the two-dimensional field. This
can be related to the difference of the basis functions of the DeepONets since they were
obtained by different approaches: i) a standard trunk network and ii) a precomputed SVD
basis from the ice thickness data.

Fig. 7.3. Absolute error of ∆H field for a 50-year prediction

7.2. Estimation of ice mass change. As mentioned, the mass loss of a glacier is
one of the most important quantities of interest in ice-sheet modeling because it is a proxy
for sea-level rise. On the left hand side, Figure 7.4 shows a comparison of the mass change
prediction (in gigatons) obtained with a FEM model and the vanilla coupled operator over
the 50-year period. Likewise, on the right hand side, a comparison between the mass change
prediction obtained using the FEM model and the SVD-based coupled neural operator
is presented. Observe that the SVD-based approach outperforms the vanilla DeepONet
architecture as the predicted mass change, for the same β sample, better aligns with the
FEM prediction in the former case.

8. Summary and Future Work. A fully coupled neural operator model was devel-
oped and implemented to predict the ice-sheet dynamics of the Humboldt glacier. This
model is able to handle high-dimensional parameters spaces, making it suitable to account
for large uncertainties like the basal friction. We demonstrated that the model predicts both
the velocities and the ice thickness with high accuracy in a faster manner when compared
with a standard FEM approach. However, the prediction of the rate of change of the ice
thickness still presents a relatively high error, which increases the uncertainty of the pre-
dicted mass loss. We think that training the coupled neural operators concurrently from
their current states (trainable parameters) will increase the accuracy of the models and
hence, we expect a reduction of the uncertainty in the mass loss prediction. The next step
is to implement a concurrent training of the coupled neural operators by training only the
parameters corresponding to the last layer of the neural networks of the neural operators.

426 Coupled Deep Neural Operators As A Surrogate Model For Ice-sheet Dynamics

Fig. 7.4. Mass change (−Mloss) comparison between the vanilla and SVD-based F neural operators
for a 50-year time span

Future research involves the implementation of an statistics analysis to determine the accu-
racy of the model when subject to unseen β samples with the mass loss as figure of merit.
Other future research directions contemplate the implementation of sampling strategies to
generate a less expensive dataset to train the neural operators with the same accuracy and
the implementation of physics-informed coupled neural operators to characterize ice-sheet
dynamics.

REFERENCES

[1] Benjamin P Horton, Nicole S Khan, Niamh Cahill, Janice SH Lee, Timothy A Shaw, Andra J Garner,
Andrew C Kemp, Simon E Engelhart, and Stefan Rahmstorf. Estimating global mean sea-level
rise and its uncertainties by 2100 and 2300 from an expert survey. npj Climate and Atmospheric
Science, 3(1):18, 2020.

[2] Tamsin L Edwards, Sophie Nowicki, Ben Marzeion, Regine Hock, Heiko Goelzer, Hélène Seroussi,
Nicolas C Jourdain, Donald A Slater, Fiona E Turner, Christopher J Smith, et al. Projected land
ice contributions to twenty-first-century sea level rise. Nature, 593(7857):74–82, 2021.

[3] Mauro Perego, Max Gunzburger, and John Burkardt. Parallel finite-element implementation for higher-
order ice-sheet models. Journal of Glaciology, 58(207):76–88, 2012.

[4] Wei Leng, Lili Ju, Max Gunzburger, Stephen Price, and Todd Ringler. A parallel high-order accurate
finite element nonlinear stokes ice sheet model and benchmark experiments. Journal of Geophysical
Research: Earth Surface, 117(F1), 2012.

[5] Irina K Tezaur, Mauro Perego, Andrew G Salinger, Raymond S Tuminaro, and Stephen F Price.
Albany/felix: a parallel, scalable and robust, finite element, first-order stokes approximation ice
sheet solver built for advanced analysis. Geoscientific Model Development, 8(4):1197–1220, 2015.

[6] Andy Aschwanden, Mark A Fahnestock, Martin Truffer, Douglas J Brinkerhoff, Regine Hock, Con-
stantine Khroulev, Ruth Mottram, and S Abbas Khan. Contribution of the greenland ice sheet to
sea level over the next millennium. Science advances, 5(6):eaav9396, 2019.

[7] Tobin Isaac, Noemi Petra, Georg Stadler, and Omar Ghattas. Scalable and efficient algorithms for
the propagation of uncertainty from data through inference to prediction for large-scale problems,
with application to flow of the antarctic ice sheet. Journal of Computational Physics, 296:348–368,
2015.

[8] B. Recinos, D. Goldberg, J. R. Maddison, and J. Todd. A framework for time-dependent ice sheet un-
certainty quantification, applied to three west antarctic ice streams. The Cryosphere, 17(10):4241–
4266, 2023.

[9] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of machine learning research,
18(153):1–43, 2018.

[10] William J Dally, Stephen W Keckler, and David B Kirk. Evolution of the graphics processing unit
(gpu). IEEE Micro, 41(6):42–51, 2021.

D. Rodriguez & M. Perego 427

[11] Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. Machine learning for fluid mechanics.
Annual review of fluid mechanics, 52(1):477–508, 2020.

[12] Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer.
Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy
of Sciences, 118(21):e2101784118, 2021.

[13] Ravi G. Patel, Nathaniel A. Trask, Mitchell A. Wood, and Eric C. Cyr. A physics-informed operator
regression framework for extracting data-driven continuum models. Computer Methods in Applied
Mechanics and Engineering, 373:113500, 2021.

[14] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning non-
linear operators via deeponet based on the universal approximation theorem of operators. Nature
machine intelligence, 3(3):218–229, 2021.

[15] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

[16] Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, and Anima
Anandkumar. Neural operators for accelerating scientific simulations and design. Nature Reviews
Physics, pages 1–9, 2024.

[17] Patricio Clark Di Leoni, Lu Lu, Charles Meneveau, George Em Karniadakis, and Tamer A Zaki.
Neural operator prediction of linear instability waves in high-speed boundary layers. Journal of
Computational Physics, 474:111793, 2023.

[18] Zhiping Mao, Lu Lu, Olaf Marxen, Tamer A Zaki, and George Em Karniadakis. Deepm&mnet for
hypersonics: Predicting the coupled flow and finite-rate chemistry behind a normal shock using
neural-network approximation of operators. Journal of computational physics, 447:110698, 2021.

[19] Somdatta Goswami, Minglang Yin, Yue Yu, and George Em Karniadakis. A physics-informed varia-
tional deeponet for predicting crack path in quasi-brittle materials. Computer Methods in Applied
Mechanics and Engineering, 391:114587, 2022.

[20] QiZhi He, Mauro Perego, Amanda A Howard, George Em Karniadakis, and Panos Stinis. A hybrid
deep neural operator/finite element method for ice-sheet modeling. Journal of Computational
Physics, 492:112428, 2023.

[21] Amanda A Howard, Mauro Perego, George Em Karniadakis, and Panos Stinis. Multifidelity deep
operator networks for data-driven and physics-informed problems. Journal of Computational
Physics, 493:112462, 2023.

[22] Simone Venturi and Tiernan Casey. Svd perspectives for augmenting deeponet flexibility and inter-
pretability. Computer Methods in Applied Mechanics and Engineering, 403:115718, 2023.

[23] Joseph Hart, Mamikon Gulian, Indu Manickam, and Laura P Swiler. Solving high-dimensional inverse
problems with auxiliary uncertainty via operator learning with limited data. Journal of Machine
Learning for Modeling and Computing, 4(2), 2023.

[24] Ravi Patel, Indu Manickam, Myoungkyu Lee, and Mamikon Gulian. Error-in-variables modelling for
operator learning. In Mathematical and Scientific Machine Learning, pages 142–157. PMLR, 2022.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[26] Tong Qin, Kailiang Wu, and Dongbin Xiu. Data driven governing equations approximation using deep
neural networks. Journal of Computational Physics, 395:620–635, 2019.

[27] Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineer-
ing, 393:114778, 2022.

[28] Katiana Kontolati, Somdatta Goswami, Michael D Shields, and George Em Karniadakis. On the
influence of over-parameterization in manifold based surrogates and deep neural operators. Journal
of Computational Physics, 479:112008, 2023.

[29] Kurt M Cuffey and William Stanley Bryce Paterson. The physics of glaciers. Academic Press, 2010.
[30] M Weis, R Greve, and K Hutter. Theory of shallow ice shelves. Continuum Mechanics and Thermo-

dynamics, 11:15–50, 1999.
[31] Mauro Perego, Stephen Price, and Georg Stadler. Optimal initial conditions for coupling ice sheet

models to earth system models. Journal of Geophysical Research: Earth Surface, 119(9):1894–
1917, 2014.

[32] Levi D McClenny and Ulisses M Braga-Neto. Self-adaptive physics-informed neural networks. Journal
of Computational Physics, 474:111722, 2023.

[33] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, et al. Jax: composable transformations of python+ numpy programs, v0. 3.13,
2018.

[34] Optax. Optax documentation, 2024. Accessed: 2024-08-14.

428 Coupled Deep Neural Operators As A Surrogate Model For Ice-sheet Dynamics

	Preface M. Adams, T. Casey, B.W. Reuter
	Articles
	I. Computational & Applied Mathematics M. Adams, T. Casey, B.W. Reuter
	 Extracting Climate Phenomena: Beyond PCA G.H. Brown, E.T. Phipps, H. Jolla, D.L. Bull, & T.S. Ehrmann
	 Comparing Stability Of Partitioned Heterogeneous Time-integration Methods Involving Index-2 DAEs Resulting From High-order Adams-Moulton And Backward Difference Formula Time Integration Schemes A. de Castro & P. Kuberry
	 Backwards Sequential Monte Carlo For Efficient Bayesian Optimal Experimental Design A. Chin & T. Catanach
	 Data Assimilation: Addressing Spurious Correlations And Scalability Issues E. Crislip, M. Khalil, & K. Neal
	 Uncertainty In Reduced Finite-rate Ablation Models For Reentry Vehicles M. Drayton, R. Bandy, & T. Portone
	 Implications Of The Two Interacting Blast Wave Verification Problem For Computational Shock Hydrodynamics R. de Farias, M.B.P. Adams, & W.J. Rider
	 Discrete Exterior Calculus For Hodge-Helmholtz Problem D. Hughes, C. Eldred, & E.C. Cyr
	 A DMD-based Partitioned Scheme For Time-dependent Coupled Parametric PDEs E. Huynh, P. Bochev, & P. Kuberry
	 An Inexact Weighted Proximal Trust-region Method L.F. Maia, R. Baraldi, & D.P Kouri
	 Domain Decomposition-based Coupling Of Operator Inference Reduced Order Models Via The Schwarz Alternating Method I. Moore, C.R. Wentland, A. Gruber, & I. Tezaur
	 Operator Inference Based Flux Surrogate Algorithm For Coupled Transmission Problems R. Pawar & P. Bochev
	 TUSQH: Topological Control Of Volume-fraction Meshes Near Small Features And Ugly Geometry B. Shawcroft, K.M. Shepherd, & S.A. Mitchell
	 Parallel Incomplete LU Factorizations Based On Alternating Triangular Solves M. Tunnell & E.G. Boman
	 Tensor Parametric Operator Inference With Hamiltonian Structure A. Vijaywargiya, S.A. McQuarrie, & A. Gruber
	 Simulating Atomic Precision Advanced Manufacturing (APAM) Enhanced BJT E. Whitesides, J.P. Mendez, J. Ivie, X. Gao, & S. Misra
	II. High Performance & Post-Moore Computing M. Adams, T. Casey, B.W. Reuter
	 Toward Automatic Kernel Fusion for Kokkos using MLIR A. Alvey-Blanco, H. Liegeois, & B. Kelley
	 Performance Insights Into Supporting Kokkos Views In The Kokkos Comm MPI Library C.N. Avans, J. Ciesko, C. Pearson, E.D. Suggs, S.L. Olivier, & A. Skjellum
	 Analysis Of Modern Tools For Communication Impacts N. Bacon, S. Levy, P. Bridges, & K.B. Ferreira
	 Sum Of Squares Bounds On The Performance Of The Quantum Approximate Optimization Algorithm A. Epperly, K. Thompson, & O. Parekh
	 Experience Report On Observability And Its Effect On Security And Usability In Software Systems A. Krishna & R. Milewicz
	 Analyzing Qubit-runtime Tradeoffs In Parallelizing Unary Iteration C. O'Neil, M.D. Porter, & S.K. Seritan
	 Storage System Characterization In Virtualized Testbed J. Shawger & M.L. Curry
	 Scalable Application-Oriented Benchmarking Of Quantum Computers N.D. Siekierski, A.Q. Wilber-Gauthier, & S.K. Seritan
	III. Machine Learning M. Adams, T. Casey, B.W. Reuter
	 Charge Dependent Machine Learned Models For Atomistic Simulations Of Divertor Materials H. Bayat, M.A. Cusentino, & J.M. Goff
	 In Situ Machine Learning For Intelligent Data Capture And Event Detection A.K. Boahen & W.L. Davis IV
	 Large Language Model Accuracy On Post-processed AI-generated Code M.C. Gaitan-Cardenas, C. Siefert, & S.W. Tsai
	 Mixture Of Neural Operator Experts For Nontrivial Boundary Conditions And Model Selection D. Deighan, J. Actor, & R. Patel
	 Exploring Machine Learning Surrogates For Molecular Dynamics Simulations A. Feeney & S. Rajamanickam
	 Designing A Machine-learned Interatomic Potential For Gold-promoted Nickel Catalysts Utilizing Magnetic Training Data I. Furrick, M. Wood, & A. Hensley
	 Event Detection Using Neural Networks Robust To Statistically Similar Distractors M. Gahl, W. Chapman, S. Agarwal, & F.S. Chance
	 Machine Learned Interatomic Potential Development Accelerated Via Large-language Models For Nickel-gold J.D. Gonzales-Pasion, M. Wood, & A.J. Hensley
	 Decision Tree Machine Learning Model Construction For Particle Simulation Q. Mason & K.A. Maupin
	 Breaking Bad Structure Generation: Methods For Systematic, Data-driven Atomistic Structures For ML Model Training C. Mullen, E. Salas, & J. Goff
	 Ollama-Assisted Function Calls In Leap P. Mutia & J. Davis
	 Scientific Machine Learning For Surrogate Modeling K.A. Ohene-Obeng & K. Maupin
	 Quantifying Aleatoric Uncertainty In Operator Learning Using Generative Networks J. Paez & R. Patel
	 Coupled Deep Neural Operators As A Surrogate Model For Ice-sheet Dynamics D. Rodriguez & M. Perego

