
User’s Manual for HODIF, A Library of High-Order Derivatives,
Interpolations and Filters

Jaideep Ray
Sandia National Laboratories, Livermore, CA

April, 2006

Abstract

This User’s Manual describes how one may use HODIF, a library of High-Order derivatives, inter-
polations and filters. This document is relevant to Version 0.1 of HODIF, which addresses data stored at
cell-corners (also known as vertex-centered collocation) of a discretized domain. The mesh is assumed
to be uniform and Cartesian. The library is designed to be used in constructing high-order versions of
block-structured adaptive meshes.

1 Introduction

HODIF is a library of high-order derivatives, interpolations and filters. The current version, Version 0.1 ,
is restricted to vertex-centered variables i.e. where variables are stored at cell-corners of a uniformly dis-
cretized domain. Further, the mesh is assumed to be Cartesian. The current version can only handle 1D
and 2D meshes; 3D is in the works. The library is designed to work within the context of high-order block-
structured adaptive mesh (AMR) simulations, where regions are refined in rectangular patches - see [2]
for details. Filters are an integral part of block-structured AMR simulations, especially when Runge phe-
nomenon is observed.

HODIF is written in FORTRAN77, but like most other FORTRAN77 libraries, can be invoked from
C/C++. However, one needs to specify both the FORTRAN and C/C++ compilers being used in order to
deal with multi-language interoperability issues. This is explained in Sec. 2.

New versions of HODIF will be announced at [1].

2 Structure of the package, compiling and installing

The HODIF package consists of three directories deriv/, interp/ and filter/ which is where the
derivatives, interpolations and filters are kept. Each has a Makefile and can compile them into libDerivatives.a,
libFilters.a and libVertexCenteredInterps.a. These are copied to lib/ which is the cor-
rect “final resting place” for the libraries.

include/ contains deriv.h, interp.h and filter.h. These are header files, in case you
wish to use the libraries from C/C++. Examples of how you may use the library from FORTRAN or C/C++
are in example/. This user’s manual is in doc/.

The compilation of the package is easy. In the top directory, edit the file MakeIncl.HODIF. It will
require the specification of certain compilers and flags. Doing make should create the libraries in lib/.
Link them in, as per the example/Makefile.

1

3 Description of the library

3.1 Filter

libFilters.a has only one function in it. For C/C++, the interface is in include/filter.h

FORTRAN :

subroutine expfil(fn, ifilt_x, ifilt_y, ifilt_z, iord,
fiL, fiR, fjL, fjR, fkL, fkR,

piL, piR, pjL, pjR, pkL, pkR,
wiL, wiR, wjL, wjR, wkL, wkR,
ierror, error, ierr_coeff, err_coeff)

C/C++ :

void C_expfil(double *fn, int *ifilt_x, int *ifilt_y, int *ifilt_z, int *iord,
int *fiL, int *fiR, int *fjL, int *fjR, int *fkL, int *fkR,
int *piL, int *piR, int *pjL, int *pjR, int *pkL, int *pkR,
int *wiL, int *wiR, int *wjL, int *wjR, int *wkL, int *wkR,
int *ierror, char *error, int *ierr_coeff, char *err_coeff) ;

where

1. fn is the 3D real*8 INPUT FORTRAN array containing the solution to be filtered. It will be
returned in the same array

2. ifilt x, ifilt y, ifilt z are integers which denote if we should filter in x-, y- or z-directions.
Setting them to 1 indicates “Yes”, 0 to “No”.

3. iord, an integer, denoting the order of the filter. Positive even numbers between 2 and 50 are OK.

4. fiL, fiR, fjL, fjR, fkL, fkR are integers which denote the lower and upper bounds to
the 3D FORTRAN array fn.

5. piL, piR, pjL, pjR, pkL, pkR are integers which denote the lower and upper bounds to
the 3D FORTRAN array fn where you actually have data that can be filtered. This is necessarily a
subset of the array denoted by fiL, fiR, fjL, fjR, fkL, fkR.

6. wiL, wiR, wjL, wjR, wkL, wkR the lower and upper bounds of the array section of fn
where you wish filtering to be done. Again this is a subset of piL, piR, pjL, pjR, pkL,
pkR.

7. ierror, an integer error code. 0 means “No Error”. -30 means that the filter stencil width is wider
than the array supplied.

8. error a character*60 error which will contain the error in words. In C/C++, this should be
char error[256].

2

9. ierr coeff, an integer error code. 0 means “No Error”. -10 means that you specified an odd-
ordered filter stencil (we do not do that) and -20 indicates that a negative order has been indicated (all
filters are positive, even ordered ones).

10. err coeff a character*60 error which will contain the coefficients’ error in words. In
C/C++, this should be char error[256].

3.2 Derivatives

libDerivatives.a has a number of functions. The function names end in co indicating collation i.e.
the derivatives are evaluated at grid points i.e at (i, j). This distinction is made since one can also
derive stencils which evaluate derivatives in a staggered manner i.e. at (i+1/2, j+1/2) .

FORTRAN :

subroutine x_der1_co(f, df, dx, dy, dz,
vel, upwind, orderi, orderb,
biL, biR, bjL, bjR, bkL, bkR,
fiL, fiR, fjL, fjR, fkL, fkR,
iiL, iiR, ijL, ijR, ikL, ikR,
viL, viR, vjL, vjR, vkL, vkR,
dfiL, dfiR, dfjL, dfjR, dfkL,
dfkR, iperx, ipery, iperz, ierror,
char *error)

subroutine y_der1_co(-- same argument sequence as x_der1_co --)

subroutine x_der2_co(f, df, dx, dy, dz,
orderi, orderb,
biL, biR, bjL, bjR, bkL, bkR,
fiL, fiR, fjL, fjR, fkL, fkR,
iiL, iiR, ijL, ijR, ikL, ikR,
dfiL, dfiR, dfjL, dfjR, dfkL,
dfkR, iperx, ipery, iperz, ierror,
char *error)

subroutine y_der2_co(-- same argument sequence as x_der2_co --) ;

subroutine x_der3_co(-- same argument sequence as x_der1_co --)

subroutine x_der4_co(-- same argument sequence as x_der1_co --)

subroutine x_der5_co(-- same argument sequence as x_der1_co --)

C/C++ :

void C_x_der1_co(double *f, double *df, double *dx, double *dy, double *dz,
double *vel, int *upwind, int *orderi, int *orderb,

3

int *biL, int *biR, int *bjL, int *bjR, int *bkL, int *bkR,
int *fiL, int *fiR, int *fjL, int *fjR, int *fkL, int *fkR,
int *iiL, int *iiR, int *ijL, int *ijR, int *ikL, int *ikR,
int *viL, int *viR, int *vjL, int *vjR, int *vkL, int *vkR,
int *dfiL, int *dfiR, int *dfjL, int *dfjR, int *dfkL,
int *dfkR, int *iperx, int *ipery, int *iperz, int *ierror,
char *error) ;

void C_y_der1_co(-- same argument sequence as C_x_der1_co --) ;

void C_x_der2_co(double *f, double *df, double *dx, double *dy, double *dz,
int *orderi, int *orderb,
int *biL, int *biR, int *bjL, int *bjR, int *bkL, int *bkR,
int *fiL, int *fiR, int *fjL, int *fjR, int *fkL, int *fkR,
int *iiL, int *iiR, int *ijL, int *ijR, int *ikL, int *ikR,
int *dfiL, int *dfiR, int *dfjL, int *dfjR, int *dfkL,
int *dfkR, int *iperx, int *ipery, int *iperz, int *ierror,
char *error) ;

void C_y_der2_co(-- same argument sequence as C_x_der2_co --) ;

void C_x_der3_co(-- same argument sequence as C_x_der1_co --) ;

void C_x_der4_co(-- same argument sequence as C_x_der1_co --) ;

void C_x_der5_co(-- same argument sequence as C_x_der1_co --) ;

The general format of the name of the subroutines is D derN Ywhere D is x or y indicating the direction
of the derivative, N is 1-5 for first to fifth-derivative and Y is co for collocated collocation of the derivatives.

1. f is the 3D real*8 INPUT FORTRAN array containing the field whose derivative is to be taken.

2. df, a 3D real*8 OUTPUT FORTRAN array filled up by the subroutine with the derivatives.

3. dx, dy, dz, the mesh spacing in x-, y- and z-directions

4. vel, a velocity array, of the same size as f containing velocities at each (i, j). This is used for
upwinding first derivatives.

5. upwind an integer flag, which when set to 1 indicates “please upwind”. Else set it to zero.

6. orderi, orderb, two integers that indicate the order of accuracy needed in the interior and at the
boundary (orderb). orderb is currently neglected and the subroutines will close the stencil to a
lower order by skewing the stencils. orderi can take positive, even values between 2 and 8 if not
upwinding and between 3 and 7 if upwinding.

7. biL, biR, bjL, bjR, bkL, bkR, integers that denote the width of the “halo” around a rect-
angular domain. Each number describes the width at the lower and upper end of each axis.

8. fiL, fiR, fjL, fjR, fkL, fkR, integers which denote the lower and upper bounds of the
indices of array f

4

9. iiL, iiR, ijL, ijR, ikL, ikR, integers which denote the lower and upper bounds of the
section of array f where are the “interior” or “valid” points i.e. “non-halo” points.

10. dfiL, dfiR, dfjL, dfjR, dfkL, dfkR, integers which denote the lower and upper bounds
of df.

11. iperx, ipery, iperz integers that denote if the data is periodic in x-, y- or z-directions. setting
them to 1 means “Yes”, 0 is “No”. Anything else is an error.

12. ierror, an error return code. Zer means “OK”, else

� -10 : the interior + halo exceed the size of the array
� -20 : the interior is wider than the size of d0fx
� -40 : the halo is negative !
� -50 : the interior region has an upper index ¡ lower index
� -80 : Can’t handle the requested order
� -90 : periodicity is neither set to no (0) or yes (1)
� -100 : Stencil wider than domain

13. error, a string which will contain the error in words. In FORTRAN, it is character*60 error,
in C/C++, char error[256] suffices.

3.3 Interpolations

Within the context of simulations, interpolations are needed in two cases (1) when variables, stored at cell-
corners are needed at face-centers (red dots in Fig. 1) or cell-centers (cyan squares in Fig. 1 or when one fills
up a fine mesh with coarse mesh values (prolongations used in multigrid techniques and block-structured
AMR). In such a case, we need to get both the red points and cyan squares from data at the blue circles
(Fig. reffig:mesh). The red-circles are obtained by 1D interpolations e.g. x intp cf vc() while the cyan
squares need a 2D interpolation e.g. xy intp cf vc().

The case of refinement often causes confusion in terms of indexing. Let the 2-cell coarse mesh (NCELLS C
= 2) have its 3 corners (along the x-axis) indexed

�����������
	��
�����
. The fine mesh has 4 cells i.e. NCELLS F

= 4 and its cell corners are indexed
������������	��
�����

. The important thing to note here is that matters become
much simpler if thought of in a cell-based manner - it is the cells which get refined and doubled, not corners.

CAUTION ! The library assumes a factor of two refinement, it cannot handle arbitrary refinement ratios.
libVertexCenteredInterps.a contains 3 functions :

FORTRAN :

c Interpolate in x
subroutine x_intp_cf_vc(uc, d0fx, orderi, orderb,

biL, biR, bjL, bjR, bkL, bkR,
fiL, fiR, fjL, fjR, fkL, fkR,
iiL, iiR, ijL, ijR, ikL, ikR,
dfiL, dfiR, dfjL, dfjR, dfkL, dfkR,
iperx, ipery, iperz, ierror, message)

5

�����
�����
�����
����� �����

�����
�����
�����

�����
�����
�����
����������

�����
�����
����������

�����
���
���

 � �
 � �
!�!
!�! "�"�"

"�"�"
#�#�#
#�#�# $�$�$

$�$�$
%�%�%
%�%�%

&�&�&
&�&�&
'�'
'�'

Figure 1: A vertex-centered grid on a coarse mesh (blue circles) and places that one frequently needs data
interpolated to - face-centers (red circles) and cell-centers (cyan squares).

c Interpolate in y
subroutine y_intp_cf_vc(-- same argument sequence as x_intp_cf_vc --)

c Interpolate in xy
subroutine xy_intp_cf_vc(uc, d0fx, orderi, orderb,

biL, biR, bjL, bjR, bkL, bkR,
fiL, fiR, fjL, fjR, fkL, fkR,
iiL, iiR, ijL, ijR, ikL, ikR,
dfiL, dfiR, dfjL, dfjR, dfkL, dfkR,
iperx, ipery, iperz, ierror, message,
icorner)

C/C++ :

/* Interpolate in x */
void C_x_intp_cf_vc(double *uc, double *d0fx,

int *orderi, int *orderb,
int *biL, int *biR, int *bjL,
int *bjR, int *bkL, int *bkR,
int *fiL, int *fiR, int *fjL,
int *fjR, int *fkL, int *fkR,
int *iiL, int *iiR, int *ijL,
int *ijR, int *ikL, int *ikR,
int *dfiL, int *dfiR, int *dfjL,
int *dfjR, int *dfkL, int *dfkR,
int *iperx, int *ipery, int *iperz,
int *ierror, char *message) ;

6

/* Interpolate in y */
void C_y_intp_cf_vc(-- same argument sequence as C_x_intp_cf_vc --) ;

/* Interpolate in xy */
void C_xy_intp_cf_vc(double *uc, double *d0fx,

int *orderi, int *orderb,
int *biL, int *biR, int *bjL,
int *bjR, int *bkL, int *bkR,
int *fiL, int *fiR, int *fjL,
int *fjR, int *fkL, int *fkR,
int *iiL, int *iiR, int *ijL,
int *ijR, int *ikL, int *ikR,
int *dfiL, int *dfiR, int *dfjL,
int *dfjR, int *dfkL, int *dfkR,
int *iperx, int *ipery, int *iperz,
int *ierror, char *message, int *icorner) ;

where

1. uc, is the 3D real*8 INPUT FORTRAN array containing the coarse mesh field.

2. d0fx, in the 3D real*8 OUTPUT FORTRAN array containing the interpolated values.

3. orderi, orderb, two integers that contain the order of accuracy needed in the interior (orderi)
and boundary (orderb). Currently only orderi is used and admits even, positive values between
2 and 10.

4. biL, biR, bjL, bjR, bkL, bkR, integers that denote the width of the “halo” around a rect-
angular domain. Each number describes the width at the lower and upper end of each axis.

5. fiL, fiR, fjL, fjR, fkL, fkR, integers which denote the lower and upper bounds of the
indices of array uc

6. iiL, iiR, ijL, ijR, ikL, ikR, integers which denote the lower and upper bounds of the
section of array uc where are the “interior” or “valid” points i.e. “non-halo” points.

7. dfiL, dfiR, dfjL, dfjR, dfkL, dfkR, integers which denote the lower and upper bounds
of uc.

8. iperx, ipery, iperz integers that denote if the data is periodic in x-, y- or z-directions. setting
them to 1 means “Yes”, 0 is “No”. Anything else is an error.

9. ierror, an error return code. Zero means “OK”, else

� -10 : the interior + halo exceed the size of the array
� -20 : the interior is wider than the size of d0fx
� -40 : the halo is negative !
� -50 : the interior region has an upper index ¡ lower index
� -80 : Can’t handle the requested order

7

� -90 : periodicity is neither set to no (0) or yes (1)
� -100 : Stencil wider than domain

10. message, the error message in words. For FORTRAN, character*60 message, for C/C++,
char message[256] suffices.

11. icorner, an integer, when set to 1, indicates that the corner value is also needed. Else set to zero.

References

[1] Libraries of high-order discretizations, interpolations and filters.
http://www.caip.rutgers.edu/ (jaray/HighOrder/SISC06.html.

[2] J. Ray, C. A. Kennedy, S. Lefantzi, and H. N. Najm. Using high-order methods on adaptively refined
block-structured meshes–discretizations, interpolations, and filters. SIAM Journal on Scientific Com-
puting, 2006. in review, also available as a Sandia Technical Report, SAND2005-7981.

8

