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Vulnerable machine vision

Dog!
Conf:88%
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Achieving invariances along visual ventral stream

• Evolving representational space achieved by disentangling object 
manifolds along the ventral visual stream.
Dicarlo & Cox, Trends Cogn Sci. 2007

“Identity-preserving transformations”
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Decision hyperplane

Pixel space

Achieving invariances along visual ventral stream

“Good” neural space

• Evolving representational space achieved by disentangling object 
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Achieving invariances along visual ventral stream

Decision hyperplane

Pixel space

“Good” neural space

“Not so good” DNN space

• Evolving representational space achieved by disentangling object manifolds along the 
ventral visual stream.
Dicarlo & Cox, Trends Cogn Sci. 2007
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1. Does training guided by human ventral cortex activity improve DNN robustness?

Our questions
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2. Does such improvement increase as we ascend the ventral visual cortex?

1. Does training guided by human ventral cortex activity improve DNN robustness?

…

Our questions

…

Neural Guidance
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𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑡𝑎𝑠𝑘

Max Pooling

Avg Pooling

Conv

FC

Training with Neural Guidance
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“Task Head”

Training with Neural Guidance

Max Pooling

Avg Pooling

Conv

FC

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑡𝑎𝑠𝑘
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“Neural Head”

Human neural representation

FC -- DNN neural representation

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑡𝑎𝑠𝑘 + 𝑅𝐷𝑁𝑁 − 𝑅𝑛𝑒𝑢𝑟𝑎𝑙  
2

“Task Head”

Max Pooling

Avg Pooling
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Training with Neural Guidance
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“Neural Head”
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Neural representation

• Brain activities were recorded with 7T fMRI while each human subject viewing 10,000 
natural images.

Neural activity pattern

…

…

…

(Natural Scene Dataset, Allen et al., Nat. Neurosci. 2022)
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Ventral Visual Stream Hierarchy 

V1

Neural representation

• Brain activities were recorded with 7T fMRI while each human subject viewing ~30,000 
natural images.

• 7 bilateral Regions of Interest (ROIs) were used 

V2

V4 LO

TO

VO

PHC

(Wang et al., Cereb. Cortex, 2015)
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(NSD, Allen et al., Nat. Neurosci. 2022)
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Neural representation

• Brain activities were recorded with 7T fMRI while each human subject viewing ~30,000 
natural images.

• 7 bilateral Regions of Interest (ROIs) were used 

“Neural Predictor”

…

…

…

V1

V2

V4
LO

TO

VO

PHC

(NSD, Allen et al., Nat. Neurosci. 2022)
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“Neural Head”

FC -- DNN neural representation

Predicted human neural representation
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Max Pooling

Avg Pooling

Conv

FC

Training with Neural Guidance

Neural Predictor
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• 7 DNNs trained with Neural Guidance

Summary of models

Ventral Visual Stream Hierarchy 

V1

V2

V4 LO

TO

VO

PHC
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• 7 DNNs trained with Neural Guidance

Summary of models

• 4 baseline models for comparison

V1

“V1-shuffle”

V1

“None” “Random”

R
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• 7 DNNs trained with Neural Guidance

Summary of models

“None” “Random”

• 4 baseline models for comparison

TO

R

“V1-shuffle”

V1 TOTO

“TO-shuffle”
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• 𝒍𝒑-based adversarial attack: max 𝜏
𝑝

 <𝜖 𝑙(𝑓𝜃 𝑥 + 𝜏 , 𝑦)

Evaluating DNN robustness

Dog!
Conf:88%

Ostrich!
Conf:91%
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 <𝜖 𝑙(𝑓𝜃 𝑥 + 𝜏 , 𝑦)



S H A O ,  M A ,  L I ,  & B E C K ,  2 0 2 4L E V E R A G I N G  H U M A N  V V S  T O  I M P R O V E  N N  R O B U S T N E S S

Evaluating DNN robustness

Task: Image Classification

Dataset: ImageNet (Deng et al., 2009)

Attack: 𝑙∞-based PGD attack
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Evaluating DNN robustness - Results

Task: Image Classification

Dataset: ImageNet (Deng et al., 2009)

Attack: 𝑙∞-based PGD attack

None Random

V1-shuffle TO-shuffle
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Task: Image Classification

Dataset: ImageNet (Deng et al., 2009)

Attack: 𝑙∞-based PGD attack

Neural guidance improves 
robustness (max: 22% 
accuracy increase)

There exists a hierarchy of 
improvement’s magnitude

Replicated across datasets, 

tasks, attacks…

Evaluating DNN robustness - Results

• 𝐿∞ FGSM

• Auto-Attack (APGD-
CE, APGD-T, FAB 
square)

• 𝐿2 FGM

• 𝐿2 Deepfool

• CIFAR-100

• MSCOCO

• Image Captioning
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• Robust DNNs have smoother output surfaces

(Yu et al., IJCAI’19, 2019)

In
v
e
rs

e 
lo

ss

Intriguing properties of neurally-guided DNNs

Increasing robustness

+
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Intriguing properties of neurally-guided DNNs
L

o
ss

None

V4

V4-guided

TO

TO-guided

• Robust DNNs have smoother output surfaces
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Intriguing properties of neurally-guided DNNs

V4 TO

• Robust DNNs have smoother output surfaces
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In
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ss

DNN#1

Intriguing properties of neurally-guided DNNs

+ In
v
e
rs

e 
lo

ss
DNN#2

“Transfer attack”

Adversarial examples are 
transferable across:

• Architectures (Liu et al., 2017)

• ML techniques (Papernot et al., 2016)

• Training datasets (Lu et al., 2020)

• Tasks (Richards et al., 2021)

• Robust DNNs have smoother output surfaces -- neurally-guided DNNs are 
indeed smoother!

• Conventional DNNs usually develop highly homogenous output surfaces
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Intriguing properties of neurally-guided DNNs

• Conventional DNNs usually develop highly homogenous output surfaces
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Lower accuracy

More similar

(vanilla ResNet)
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Intriguing properties of neurally-guided DNNs

• Robust DNNs have smoother output surfaces -- neurally-guided DNNs are 
indeed smoother!

• Conventional DNNs usually develop highly homogenous output surfaces -- 
but neurally-guided DNNs have distinct surfaces! 

• Representational space

Representational space Output surface
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Neural guidance leads to distinct representational space

V1

(Nilli et al., Plos. Comp. Bio., 2014) 

• Representational spaces of neurally guided DNNs (Representational Similarity Analysis)
(Kriegeskorte et al., Front. Syst. Neurosci., 2008) 
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Neural guidance leads to distinct representational space

V1
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• Representational spaces of neurally guided DNNs (Representational Similarity Analysis)
(Kriegeskorte et al., Front. Syst. Neurosci., 2008) 
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Intriguing properties of neurally-guided DNNs
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• Representational spaces of neurally guided DNNs are distinct from conventionally 
trained ones

Neurally-guided WD-models Baseline
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Intriguing properties of neurally-guided DNNs

• Robust DNNs have smoother output surfaces -- neurally-guided DNNs are 
indeed smoother!

• Conventional DNNs usually develop highly homogenous output surfaces -- 
but neurally-guided DNNs have distinct surfaces! 

• Representational space -- neurally-guided DNNs developed distinct and better 
representational geometry!
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• We found: 

• Hierarchical improvements in DNN adversarial 
robustness with neural guidance

• Implications:

• Robustness emerges from the evolving representational space along the ventral visual stream

• Potential for understanding human representational space and advancing DNN architectural 
developments

Conclusion & Discussion

• Neurally-guided DNNs developed distinct representational 
spaces

• Neurally-guided DNNs developed distinct and hierarchically 
smoother output surfaces directly contributing to robustness

• Neurally-guided DNNs are progressively more shape biased.

Paper
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Thank you! Questions?
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