

Neural-guidance by the Human Ventral Visual Stream Improves Neural Network Robustness Zhenan Shao^{1,2}, Linjian Ma³, Bo Li^{3,4}, Diane M. Beck^{1,2}

¹Department of Psychology, University of Illinois Urbana-Champaign
²Beckman Institute, University of Illinois Urbana-Champaign
³Department of Computer Science, University of Illinois Urbana-Champaign
⁴Department of Computer Science, University of Chicago

MLDL Workshop at Sandia National Laboratories, 2024

Vulnerable machine vision

• Evolving representational space achieved by disentangling object manifolds along the ventral visual stream.

Dicarlo & Cox, Trends Cogn Sci. 2007

• Evolving representational space achieved by disentangling object manifolds along the ventral visual stream. *Dicarlo & Cox, Trends Cogn Sci. 2007*

Ι

Decision hyperplane

• Evolving representational space achieved by disentangling object manifolds along the ventral visual stream.

"Good" neural space Dicarlo & Cox, Trends Cogn Sci. 2007 Pixel space KNOW "Not so good" DNN space Decision hyperplane

1. Does training guided by human ventral cortex activity improve DNN robustness?

Our questions

1. Does training guided by human ventral cortex activity improve DNN robustness?

2. Does such improvement increase as we ascend the ventral visual cortex?

 $Loss_{total} = L_{task}$

 $Loss_{total} = L_{task}$

• Brain activities were recorded with 7T fMRI while each human subject viewing 10,000 natural images. (*Natural Scene Dataset, Allen et al., Nat. Neurosci. 2022*)

- Brain activities were recorded with 7T fMRI while each human subject viewing ~30,000 natural images.
- 7 bilateral Regions of Interest (ROIs) were used (Wang et al., Cereb. Cortex, 2015)

Ventral Visual Stream Hierarchy

- Brain activities were recorded with 7T fMRI while each human subject viewing ~30,000 natural images.
- 7 bilateral Regions of Interest (ROIs) were used

(NSD, Allen et al., Nat. Neurosci. 2022)

- Brain activities were recorded with 7T fMRI while each human subject viewing ~30,000 natural images.
- 7 bilateral Regions of Interest (ROIs) were used

(NSD, Allen et al., Nat. Neurosci. 2022)

- Brain activities were recorded with 7T fMRI while each human subject viewing ~30,000 natural images.
- 7 bilateral Regions of Interest (ROIs) were used

(NSD, Allen et al., Nat. Neurosci. 2022)

Summary of models

• 7 DNNs trained with Neural Guidance

Ventral Visual Stream Hierarchy

Summary of models

• 7 DNNs trained with Neural Guidance

• 4 baseline models for comparison

"None"

"Random"

"V1-shuffle"

Summary of models

• 7 DNNs trained with Neural Guidance

• 4 baseline models for comparison

• l_p -based adversarial attack: $\max_{||\tau||_p < \epsilon} l(f_{\theta}(x + \tau), y)$

• l_p -based adversarial attack: $\max_{||\tau||_p} < \epsilon l(f_{\theta}(x+\tau), y)$

0.001 0.003 0.005 0.001 0.009 0.011 0.013 0.015 0.017 0.019

Attack Strength $L_{\infty} \varepsilon$

0.001 0.003 0.005 0.007 0.009 0.011 0.013 0.015 0.017 0.019

Attack Strength $L_{\infty} \varepsilon$

Task: Image Classification Dataset: ImageNet (Deng et al., 2009) Attack: l_{∞} -based PGD attack

Neural guidance improves robustness (max: 22% accuracy increase)

There exists a hierarchy of improvement's magnitude

Replicated across datasets, tasks, attacks...

- CIFAR-100 L
- MSCOCO
- Image Captioning
- L_{∞} FGSM
- Auto-Attack (APGD-
- ing CE, APGD-T, FAB square)
 - L_2 FGM
 - L_2 Deepfool

• Robust DNNs have smoother output surfaces

Ι

• Robust DNNs have smoother output surfaces

• Robust DNNs have smoother output surfaces

Ι

- Robust DNNs have smoother output surfaces -- neurally-guided DNNs are indeed smoother!
- Conventional DNNs usually develop highly homogenous output surfaces

"Transfer attack"

Adversarial examples are transferable across:

- Architectures (Liu et al., 2017)
- ML techniques (Papernot et al., 2016)
- Training datasets (Lu et al., 2020)
- Tasks (Richards et al., 2021)

• Conventional DNNs usually develop highly homogenous output surfaces

• Conventional DNNs usually develop highly homogenous output surfaces

Ι

- Robust DNNs have smoother output surfaces -- neurally-guided DNNs are indeed smoother!
- Conventional DNNs usually develop highly homogenous output surfaces -but neurally-guided DNNs have distinct surfaces!
- Representational space

Neural guidance leads to distinct representational space

• Representational spaces of neurally guided DNNs (Representational Similarity Analysis) (Kriegeskorte et al., Front. Syst. Neurosci., 2008)

Neural guidance leads to distinct representational space

• Representational spaces of neurally guided DNNs (Representational Similarity Analysis) (Kriegeskorte et al., Front. Syst. Neurosci., 2008)

• Representational spaces of neurally guided DNNs are distinct from conventionally trained ones

Ι

- Robust DNNs have smoother output surfaces -- neurally-guided DNNs are indeed smoother!
- Conventional DNNs usually develop highly homogenous output surfaces -but neurally-guided DNNs have distinct surfaces!
- Representational space -- neurally-guided DNNs developed distinct and better representational geometry!

LEVERAGING HUMAN VVS TO IMPROVE NN ROBUSTNESS

- Conclusion & Discussion
- We found:
 - Hierarchical improvements in DNN adversarial robustness with neural guidance
 - Neurally-guided DNNs developed distinct and hierarchically smoother output surfaces directly contributing to robustness
 - Neurally-guided DNNs developed distinct representational spaces
 - Neurally-guided DNNs are progressively more shape biased.

- Implications:
 - Robustness emerges from the evolving representational space along the ventral visual stream
 - Potential for understanding human representational space and advancing DNN architectural developments

Acknowledgement

Thank you! Questions?

Zhenan Shao

zhenans2@illinois.edu

Linjian Ma

Bo Li

Diane M. Beck

ACCESS

This work used NCSA Delta GPU through allocation SOC230011 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by National Science Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296.