
CONTINUAL LEARNING
with NEUROGENESIS

TIM DRAELOS
timdraelos@q.com

Motivated by prior Sandia work: Draelos, T., et al (2017). Neurogenesis Deep Learning, IJCNN.

WHAT IS CONTINUAL LEARNING?
(LIFELONG LEARNING, INCREMENTAL LEARNING)

• An adaptive algorithm capable of learning from a
continuous stream of information, with such
information becoming progressively available over
time and where the number of tasks to be learned
(e.g. membership classes in a classification task)
are not predefined. Critically, the accommodation
of new information should occur without
Catastrophic Forgetting or interference, where the
process of learning new knowledge quickly
disrupts previously acquired information).
• Parisi et al. Continual Lifelong Learning with Neural Networks: a review, 2019.

APPROACHES TO CONTINUAL LEARNING
• Regularization (Weight and Function): Add penalty term to loss function to constrain

the parameter updates, use old model to create new training samples.
• Elastic Weight Consolidation (EWC)
• Synaptic Intelligence (SI)
• Learning without Forgetting (LwF) – Label new data with old model

• Replay (Generative, Experience, Feature): Generate data, features, outputs from
previous tasks to mitigate forgetting when learning new tasks.

• Generative Replay (GR)
• Optimization: Manipulate the optimization program, gradient calculations, and/or loss

landscape to learn new tasks without forgetting old tasks.
• Representation: Leverages sparse representations, pre-training, and self-supervised

learning.
• Architecture: Dynamically utilize or expand the current model architecture for new

tasks or data.
• Continual Learning with Neurogenesis (CLN) using Generative Replay

CONTINUAL LEARNING with NEUROGENESIS (CLN)
• Human Neuroscience Motivation

• Human brain has the potential to create new neurons (neurogenesis).
• New neurons are used to help learn new tasks.
• New neurons can die off if they are not utilized for new tasks.

• Human brain can recall (replay) old information from their current neural networks

• Key Design Elements - assumes data used to trained the original classifier isn’t available
• Intrinsic Generative Replay

• Generate examples of old classes using weights from the current classifier in a
variational autoencoder (VAE).

• Neurogenesis

• Add new filters/nodes to each layer of a
classifier to adapt to new classes of data.

• Train new weights using only new data to
learn features of the new data.

• Freeze old weights during training of new weights.

• Fine-tune the new classifier & VAE using all data,
old and new.

StabilityPlasticity

ARCHITECTURE FOR 2-CLASS MNIST

• Modified SimpleNet Classifier with Batch Normalization and Leaky ReLU

• Class-Conditional Variational Autoencoder (VAE) Batch Normalization in Encoder only

• Training VAE with Gaussian Mixture Model (GMM) for image synthesis
• For n iterations:

• Train VAE with GMM to minimize Reconstruction error and Kullback-Leibler (KL) divergence

• Perform GMM Clustering using latent vectors and labels from VAE

Lin16 Lin23x3
Conv8

Softmax
0

1

3x3
Conv8

3x3
Conv16

2x2
MaxPool

3x3
Conv32

3x3
Conv32

1x1
Conv16

3x3
Conv8

3x3
Conv4

Lin16
mu3x3

Conv8
3x3

Conv8
3x3 Stride

Conv16 of 2
3x3

Conv32
3x3

Conv32
1x1

Conv16
3x3

Conv8
3x3

Conv4 logvar
One-hot Encoded Labels

Concat

Sample

mu+rand*std

Encodings
Latent VectorsLin163x3

ConvT8
3x3

ConvT8
Stride 3x3

 of 2 ConvT16
3x3

ConvT32
3x3

ConvT32
1x1

ConvT16
3x3

ConvT8
3x3

ConvT4
Concat

Input
Images

Input
Images

Decodings
Reconstructed

Images

GMM
Clustering

Labels

+ Reconstruction Error
+

-

TRAINING VAE WITH GMM
 https://github.com/is0383kk/Pytorch_VAE-GMM

1. VAE estimates latent variable（x）and
sends latent variables（x）and labels (y)
from N classes to GMM.
• x = output of VAE encoder

2. GMM clusters the latent variables（x）
from the VAE and returns mean and
covariance parameters of the N Gaussian
distributions to the VAE.
• Use Classifier to determine which label

best matches each cluster
3. Repeat

CLN ALGORITHM, GIVEN A TRAINED CLASSIFIER, VAE & NEW TASK
1. Generate old classes of data on which the Classifier has been trained

• Create random latent vectors with class-conditional GMM statistics (mean and covariance matrix)
• Synthesize class-conditional images with VAE decoder using latent vectors as input
• Filter synthesized images using the current classifier and augment images if necessary

2. For each layer of the classifier except the output layer:
• Add new filters/nodes to convolutional/linear layers of Classifier and VAE as needed
• Use new class of data to train New Feature Learning Autoencoder (NFLAE)

• while freezing old weights
• Transfer NFLAE encoder weights to classifier

3. Add new classifier output nodes
4. Train Classifier with old (synthesized) and new classes of data
5. Expand latent vector dimension
6. Train Class-conditional Variational Autoencoder (VAE) with Gaussian Mixture Model (GMM)

• Initialize VAE with classifier weights (use random weights for classifier layers that don’t overlap with VAE)

Generative Replay

Neurogenesis

Train New Classifier and VAE

NEW FEATURE LEARNING AUTOENCODER (NFLAE)
• Initialize with Classifier weights (new weights are initialized with random values.
• Train network to minimize difference between Input data and Output data (Reconstruction error).

Input D
ata

O
utput D

ata (D
ecoding, Reconstruction)

New Connection (Weight)
New Node/Filter

Old Connection (Weight)

Old Node/Filter

d2 d2

EXPERIMENT – MNIST CLASS-INCREMENTAL LEARNING

1. Train a classifier to discriminate 0’s and 1’s.
2. Present next Task/Episode (e.g., 2’s and 3’s) to the CLN algorithm.
 Add 3 filters/nodes per layer per Task.
 Add 6 latent dimensions per Task.

3. Compute accuracy of classifier against the MNIST test set for all the digits
seen thus far (e.g., 0’s, 1’s, 2’s, and 3’s).

4. Repeat 2-3 until all Tasks/Episodes are complete.

Image Synthesis of 7’s
Image Reconstructions

Image
Synthesis

of 7’s

GMM Accuracy

Iteration 1

Iteration 2

Iteration 3

Iteration 4

0.7

0.6

0.5

0.4

0.8

0.7

0.6

0.5

0.8

0.7

0.6

0.5

1.0

0.9

0.8

0.7

0.6

0.5

Ac
cu

ra
cy

VAE-GMM VISUALIZATIONS

T-SNE Latent
Space Clusters

RESULTS OF CLN ON MNIST CLASS-INCREMENTAL LEARNING

CLN

Te
st

 A
cc

ur
ac

y

Digits trained so far

0
1

+
2
3

+
4
5

+
6
7

+
8
9

Modified figure from van de Ven, G.M., Siegelmann, H.T. & Tolias, A.S. Brain-inspired replay for continual learning with artificial
 neural networks. Nature Communications 11, 4069 (2020). https://doi.org/10.1038/s41467-020-17866-2

Digits
Trained

Test
Accuracy

0,1 0.998

+2,3 0.981

+4,5 0.959

+6,7 0.961

+8,9 0.938

CLN

0.9

	Continual Learning with Neurogenesis
	What is Continual Learning?�(Lifelong Learning, Incremental Learning)�
	Approaches to Continual Learning
	Continual Learning with Neurogenesis (CLN)
	Architecture for 2-class MNIST
	Training VAE with GMM� https://github.com/is0383kk/Pytorch_VAE-GMM
	CLN Algorithm, given a trained classifier, vae & New Task
	New Feature Learning Autoencoder (NFLAE)
	Experiment – MNIST Class-Incremental Learning
	VAE-GMM Visualizations
	Results of CLN on MNIST Class-Incremental Learning

