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Background and Motivation



TEMPORAL ATTRIBUTED GRAPHS AND CRITICAL SYSTEMS
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Temporal graphs are an extensible structure that is heavily used to 
represent complex dynamical systems across many high impact domains. 
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Cyber networks

Transportation and logistics

Global trade

Social networks

These representations are used for far more than advertising, and 
marketing, social media. They are frequently used in high consequence 
modeling applications.



CURRENT MODELING STATE OF THE ART

Current state-of-the-art algorithms are performant but lack causal structure and explainability.

This can preclude their use in higher consequence modeling and decision making.
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INCORPORATING MECHANISTIC INTERPRETABILITY

We seek to develop algorithm agnostic methods to incorporate interpretable, causal 
explanations into graph prediction models using the latent representations that underpin 
model inference.
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LATENT REPRESENTATIONS: EMBEDDINGS AND NODE SELF ATTENTION

Contextually rich relationships between nodes are learned through the attention mechanism.
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• Technique originally introduced in large 
language modeling

• Each node and edge embedding is 
associated with query, key, and value learned 
vectors.

• Similarity between the query of each element 
and the key of all other elements is used by 
the model to learn relationships between 
sentences, paragraphs, etc



EXEMPLAR MODELS
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DySAT (Dynamic Self-Attention Network)

• Learns local and global dependencies through 
hierarchical self-attention layers

• Discrete-time dynamics

TGN (Temporal Graph Networks)

• Adopts a message-passing framework to 
handle dynamic graphs

• Continuous-time dynamics

Sankar, Aravind, et al. "Dysat: Deep neural representation learning on dynamic 

graphs via self-attention networks." Proceedings of the 13th international 

conference on web search and data mining. 2020.

Rossi, Emanuele, et al. "Temporal graph networks for deep learning on 
dynamic graphs." arXiv preprint arXiv:2006.10637 (2020).
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DYSAT ARCHITECTURE
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Input: Adjacency matrix, node attributes

Step 1: Structural self-attention

Step 2: Encode temporal position

Step 3: Temporal self-attention

Output: 1 node embedding vector per node per snapshot

Sankar, A., Wu, Y., Gou, L., Zhang, W., & Yang, H. (2020). "Dynamic Graph Representation Learning via Self-Attention 
Networks." In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 6039-6046).

Position embeddings

Node embeddings

Position-aware temporal self-attention



DYSAT ARCHITECTURE

20

Sankar, A., Wu, Y., Gou, L., Zhang, W., & Yang, H. (2020). "Dynamic Graph Representation Learning via Self-Attention Networks." In Proceedings of the AAAI Conference on 
Artificial Intelligence (Vol. 34, No. 04, pp. 6039-6046).



SIMULATED SOCIAL INTERACTION EXPERIMENT
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• 3 communities with locations sampled in a distribution around their center

• 30 days, broken into 10 ESSD snapshots

• 100 nodes, each belonging to 1 or more communities

▪ Nodes with shared communities have positive probability of check-in

• Probability of edges varies by

▪ Number of communities nodes share

▪ Average location proximity



SIMULATED SOCIAL INTERACTION EXPERIMENT
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Node Attribute Modification Experiments



NODE ATTRIBUTE VARIATION AND MODEL PERFORMANCE
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• How does modifying attributes impact model performance?

• Number of false positive predictions decreases with addition of features which enhance 
underlying dataset dynamics
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Number of false positive predictions decreases with addition of features which enhance underlying 
dataset dynamics



NODE ATTRIBUTE VARIATION AND LATENT REPRESENTATIONS
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These embeddings are used by the model to predict link likelihood
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The increased attribute richness decreases false positives, and creates a more complex and separable 
node embedding



NODE ATTRIBUTE VARIATION AND LATENT REPRESENTATIONS
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The mechanism that underlies link prediction in this case is heavily influenced by node proximity in the 
embeddings



LATENT REPRESENTATIONS AND MODEL PREDICTIONS
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Probability thresholds illustrate the complexity of this relationship



LESSONS LEARNED

• Addition of meaningful features increases separability in latent representations

• More features isn't always better

• Even in simple models it is difficult to communicate the mechanism of link prediction in 
terms of model inputs

30

Node community membership features, trained for 100 epochs Node community membership features, trained for 300 epochs
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Embeddings as a Lens for Causal Analysis



TWO PROPOSED METHODS FOR CAUSAL EXPLANATIONS FROM GRAPH 
EMBEDDINGS
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Define causal neighborhoods based on 
proximity in embedding space

• Goal: Provide analyst with a mechanistic metric 
that can be used to inform the context of 
predictions in terms of familiar model inputs



TWO PROPOSED METHODS FOR CAUSAL EXPLANATIONS FROM GRAPH 
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Define causal neighborhoods based on 
proximity in embedding space

Generate causal diagrams via utilizing 
sparse autoencoder to highlight key model 

features influencing predictions

• Utility demonstrated by recent advances 
in language modeling

https://transformer-circuits.pub/2023/monosemantic-features/index.html
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SPARSE AUTOENCODER APPROACH
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LINK ATTRIBUTION
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• Sparse and neuron dimensions provide different information

• Aim to generate more sparse representations to reduce the number of neurons 
responsible for placement in a given cluster

Marks, Samuel, et al. "Sparse feature circuits: Discovering and editing interpretable 
causal graphs in language models." arXiv preprint arXiv:2403.19647 (2024)



SUMMARY
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• Graph representations are ubiquitous in modeling complex systems but lack causal 
explanation

• Graph attention networks achieve state-of-the-art performance while providing latent 
representations that can be leveraged to extract mechanistic interpretability

• Promising recent results in large language modeling provide a good starting point for 
generating causal explanations

• Causal explanations are only as good as the representations they came from



38

Questions?
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