

Secure and Intelligent Edge Research

Artificial Intelligence for Microelectronics Security and Trust

Prabuddha Chakraborty

Electrical and Computer Engineering Advanced Structures and Composites Center University of Maine

About Myself

MAINE

Outline

- Background Hardware Design Intellectual Property (IP) Protection
- SAIL: Structural Analysis using MachIne Learning
- SURF: Joint StructURal Functional Attack on Logic Locking
- LeGO: Learning-Guided Logic Locking
- Background Hardware Trojans
- MIMIC: Machine Intelligence based Malicious Implant Creation
- VIPR: Verification of IP TRust
- Summary

• Security is an important design parameter

- Horizontal supply-chain brings diverse threats: IP Theft, Reverse Engineering, Trojans
- One solution is to build-in security measures in the hardware IP itself

Background-IP	SAIL	SURF	LeGO	Background-Trojan	MIMIC	VIPR	Summary

Logic Locking: A Potential Solution

Background-IP	SAIL	SURF	LeGO	Background-Trojan	MIMIC	VIPR	Summary

Ingredients of Good Logic Locking

- Attack Modality Exploration:
 - Functional Attacks
 - Structural Attacks
 - Joint Structural-Functional Attacks
- Comprehensive Metrics:
 - QuantifyStructural + Functional Defense
- Defense Framework:
- Scalable Security
- Progressive
- Fast

Verifying Strength of Logic Locking (How it was)

Background-IP	SAIL	SURF	LeGO	Background-Trojan	MIMIC	VIPR	Summary
---------------	------	------	------	-------------------	-------	------	---------

Vulnerability in the Structure: A Novel Attack Vector

- Structural changes due to logic locking is local.
- The diversity of transformation is limited.
- Heavy Bias... Can we statistically model this?

	Level - 1	Level - 2	Level - 3
C1355	26	334	0
C1908	62	292	6
C2670	96	245	19
C3540	283	1124	33
C5315	750	1950	180
C6288	516	2247	117
C7552	481	2257	142
ALU	3404	18570	1057
FIR	3376	18368	1296
Total	8994 (15.71%)	45387 (79.30%)	2850 (4.97%)

Chakraborty, Prabuddha, et al. "SAIL: Analyzing structural artifacts of logic locking using machine learning." IEEE Transactions on Information Forensics and Security 16 (2021): 3828-3842.

Structural Unlocking

Quantify Structural Defense

Chakraborty, Prabuddha, et al. "SAIL: Analyzing structural artifacts of logic locking using machine learning." IEEE Transactions on Information Forensics and Security 16 (2021): 3828-3842.

Learning the Predictable & Limited Transformations

learning." IEEE Transactions on Information Forensics and Security 16 (2021): 3828-3842.

Background-IP SAI	L SURF	LeGO	Background-Trojan	MIMIC	VIPR	Summary
-------------------	--------	------	-------------------	-------	------	---------

Quantitative Analysis with SAIL

GE[i] = The number of predicted localities with Gate Error = i and Link Error = 0

Ly	3	4	5	6]	Large Exploration
Exploration Space	5.12E+5	6.55E+5	3.35E+12	6.87E+16		
SAIL-RD Avg. Top-5 Acc. (%)	77.91	60.82	41.38	29.02]	Space
						•

Chakraborty, Prabuddha, et al. "SAIL: Analyzing structural artifacts of logic locking using machine learning." IEEE Transactions on Information Forensics and Security 16 (2021): 3828-3842.

Quantitative Analysis with SAIL

Chakraborty, Prabuddha, et al. "SAIL: Analyzing structural artifacts

of logic locking using machine learning." IEEE Transactions on

Information Forensics and Security 16 (2021): 3828-3842.

SIVA (Structural Signature Vulnerability Analysis) Metric

Theorem 6.1: SIVA-Metric = $(\sum_{i=1}^{n} F_i) \times \frac{100}{S}$ implies that the SIVA-Metric is the upper bound of SAIL Accuracy

 F_i : Maximum locality recovery success for i^{th} transformation S: Total number of localities

A Metric to Quantify Structural Integrity of Logic Locking

Theoretical Upper Bound for SAIL-RD

Designs

Chakraborty, Prabuddha, et al. "SAIL: Analyzing structural artifacts of logic locking using machine learning." IEEE Transactions on Information Forensics and Security 16 (2021): 3828-3842.

Localities

Analysis

Prabuddha Chakraborty, Jonathan Cruz, and Swarup Bhunia. "SURF: Joint structural functional attack on logic locking." 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2019.

Background-IP	SAIL	SURF	LeGO	Background-Trojan	MIMIC	VIPR	Summary
---------------	------	------	------	-------------------	-------	------	---------

SURF: Leveraging SAIL

D. 1. 1.	DN	CC	CII
Benchmarks	R N	CS	SLL
c1355	74.16	100.0	100.0
c1908	100.0	100.0	75.00
c2670	95.83	100.0	100.0
c3540	98.33	87.50	87.50
c5315	97.18	87.50	100.0
c6288	99.37	90.62	82.81
c7552	91.87	82.81	93.75
AVG	93.82	92.63	91.29

SURF Key Recovery Accuracy (on Average)

SURF Key Recovery Accuracy Distribution

■ c1355 ■ c1908 ■ c2670 ■ c3540 ■ c5315 ■ c6288 ■ c7552

	•									
		RN		CS		SLL				
Benchmark	Output Pin	% IO Correct	S-Metric	% IO Correct	S-Metric	%IO Correct	S-Metric			
c1355	32	90.41	99.68	100	100	100	100			
c1908	25	100	100	100	100	100	100			
c2670	140	96.65	99.97	100	100	100	100			
c3540	22	91.67	99.22	91.96	99.54	78.97	96.81			
c5315	123	94.06	99.87	74.17	98.89	100	100			
c6288	32	86.92	99.17	49.08	97.45	61.76	97.61			
c7552	108	88.60	99.84	64.25	99.50	40.70	99.12			
AVG	68.85	92.61	99.68	82.78	99.34	83.06	99.07			

Usefulness of Partial Unlocking

Prabuddha Chakraborty, Jonathan Cruz, and Swarup Bhunia. "SURF: Joint structural functional attack on logic locking." 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2019.

Background-IP	SAIL	SURF	LeGO	Background-Trojan	MIMIC	VIPR	Summary					
Metrics of Logic Locking												

LeGO: Learning-Guided Logic LOcking

A Novel Attack Vector: Inspired Follow-up Works

Hardware Trojans can get inserted throughout the supply chain

- Hardware Trojans: Malicious modifications made in • the hardware design/IC
- **Challenges** with Detecting Hardware Trojans:
 - 1. Lack of datasets \rightarrow Limited understanding
 - 2. Reliance on static defense \rightarrow Easy to bypass

Cruz, Jonathan, et al. "A machine learning based automatic hardware trojan attack space exploration and benchmarking framework." 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). IEEE, 2022. 23

(a) 8-triggered combinational Trojan in RS232 design

MIMIC Flow

Cruz, Jonathan, et al. "A machine learning based automatic hardware trojan attack space exploration and benchmarking framework." 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). IEEE, 2022. 24

Background-IP	SAIL	SURF	LEGO	Background-Trojan	MIMIC	VIPR	Summary
---------------	------	------	------	-------------------	-------	------	---------

MIMIC Results

Benchmark	Num	No Acc	ML .(%)	Troj. N Acc	ML (A)	Trig.&Pay Acc	y. ML (B)	Both (A) and (B)	_
	Clusters	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	_
s5378-c1	14	2.86	4.29	15.71	15.71	4.29	17.14	62.86	64.29	_
s5378-c2	12	0.00	5.00	15.00	15.00	1.67	18.33	60.00	61.67	
s5378-s1	12	0.00	1.67	15.00	15.00	6.67	23.33	81.67	85.00	
s5378-s2	8	2.50	5.00	25.00	25.00	5.00	20.00	72.50	75.00	
s9234-c1	10	4.00	8.00	40.00	40.00	2.00	16.00	56.00	60.00	- Accuratoly
s9234-c2	6	3.33	10.00	16.67	16.67	10.00	16.67	73.33	76.67	Accurately
s9234-s1	11	1.82	3.64	18.18	20.00	3.64	18.18	74.55	76.36	generate valid &
s9234-s2	6	3.33	13.33	23.33	30.00	3.33	26.67	80.00	83.33	potent Trojans
s38417-c1	6	6.67	10.00	46.67	46.67	3.33	26.67	96.67	100.00	_
s38417-c2	6	0.00	6.67	23.33	30.00	0.00	36.67	93.33	100.00	
s38417-s1	9	2.22	4.44	28.89	28.89	2.22	13.33	64.44	64.44	
s38417-s2	9	2.22	15.56	44.44	46.67	8.89	26.67	86.67	86.67	
s38584-c1	8	0.00	0.00	15.00	15.00	7.50	32.50	80.00	87.50	_
s38584-c2	8	0.00	2.50	22.5	25.00	5.00	22.50	75.00	85.00	
s38584-s1	8	0.00	2.50	17.50	17.50	5.00	27.50	97.50	100.00	
s38584-s2	9	0.00	0.00	17.78	17.78	2.22	6.67	64.44	66.67	
Average	-	1.81	5.79	24.07	25.31	4.42	21.80	76.18	79.54	_

Table III: Evaluation of MIMIC under Same Template, Same Benchmark Scenario using Structural & Functional Features

Trig=Trigger; Pay=Payload; Troj=Trojan; Acc.=Accuracy; (A) uses only Trojan ML; (B) uses only Trigger & Payload ML;

Cruz, Jonathan, et al. "A machine learning based automatic hardware trojan attack space exploration and benchmarking framework." 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). IEEE, 2022.

MIMIC Results

• Trojans are similar (to the training/potent Trojan population). Yet different!

Cruz, Jonathan, et al. "A machine learning based automatic hardware trojan attack space exploration and benchmarking framework." 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). IEEE, 2022.

VIPR: Joint Structural-Functional Learning to Detect Trojans

Background-IP	SAIL	SURF	LEGO	Background-Trojan	MIMIC	VIPR	Summary
---------------	------	------	------	-------------------	-------	------	---------

VIPR Flow

Background-IP	SAIL	SURF	LEGO	Background-Trojan	MIMIC	VIPR	Summary
---------------	------	------	------	-------------------	-------	------	---------

VIPR Post-Processing Algorithms

Fig. 6. Circuit reconstruction with the proposed post-processing algorithms. Nets highlighted in red color represent predictions from the ML model. Specifically for the last section, nets highlighted in blue are false-positive nets, and those highlighted in red are true-positive nets.

Gaikwad, Pravin, et al. "Hardware IP assurance against trojan attacks with machine learning and post-processing." ACM Journal on Emerging Technologies in Computing Systems 19.3 (2023): 1-23.

VIPR Results

Suspicious Design	Comb. Training		Seq. Training		Comb. + Seq.		Hoque et al. [16]		SC-COTD*		SC-COTD [25]	
	FP	FN	FP	FN	FP	FN	FP	FN	FP	FN	FP	FN
RS232-T1000 (C)	4	0	4	0	4	0	4	1	12	4	2	0
RS232-T1300 (C)	1	0	4	0	1	0	6	2	14	2	0	0
RS232-T1700 (C)	2	0	1	0	0	0	8	3	0	7	NA	NA
S38417-T100 (C)	6	0	6	0	6	0	NA	NA	8	1	1	0
S38417-T200 (C)	1	0	1	0	1	0	NA	NA	0	9	9	0
RS232-T1100 (S)	4	1	4	1	4	1	6	3	12	5	2	0
RS232-T1200 (S)	3	4	4	4	1	4	7	1	0	11	2	0
RS232-T1400 (S)	6	1	6	1	6	1	6	0	0	6	2	0
RS232-T1500 (S)	4	1	4	1	1	1	5	1	12	5	3	0
RS232-T1600 (S)	1	0	4	0	1	0	NA	NA	2	2	0	0

Gaikwad, Pravin, et al. "Hardware IP assurance against trojan attacks with machine learning and post-processing." ACM Journal on Emerging Technologies in Computing Systems 19.3 (2023): 1-23.

Background-IP	SAIL	SURF	LEGO	Background-Trojan	MIMIC	VIPR	Summary
---------------	------	------	------	-------------------	-------	------	---------

Summary & Future Works

rigaer

• Designing secure hardware is challenging

- Logic locking can be a solution but has major pitfalls
- SAIL: Structural attack on logic locking
 - **SURF**: Leveraging recovered structural artifacts to find key
 - LeGO: Learning-guided iterative locking scheme
- Hardware Trojans can have devastating impact
 - MIMIC: Al-guided hardware Trojan exploration
 - VIPR: Al-guided hardware Trojan Detection
- Significant future research possible building on these work

Secure and Intelligent Edge Research

Your (prat Thoughts?

Prabuddha Chakraborty

(prabuddha@maine.edu)