

Sandia National Laboratories Annual ML/DL Workshop

September 9-12, 2024

Physics-based and Graph-based Machine Learning Models for Surface Property Predictions

Dr. Peter Schindler

Assistant Professor at Northeastern University (Dept. of Mechanical & Industrial Engineering)

Majority of Energy Goes to Waste(-Heat)

Thermionic Energy Converter (TEC)

• No moving parts

Northeastern

Iniversity

• Power output scales with area

TEC Efficiency

Question: Which Electrode in a TEC Requires Ultra-low Work Function?

Anode

State-of-the-Art Low Work Function Surfaces

WF < 2 eV typically require alkaline coatings or non-steady state conditions

P. Schindler, et al. ACS Energy Letters 4, 10 (2019)

Data-driven Approach, Part I: Work Function Database

No large databases of work functions in literature (except for elemental crystals and 2D materials)

Work Function Database

Northeastern University

Work Function: Chemical Trends

Data-driven Approach, Part II: Featurization & ML

P. Schindler, et al. Adv. Func. Mat. 34, 19 (2024)

Physically Motivated Surface Descriptors

For topmost 3 layers:

4 elemental features x (min, max, average) x 3 layers

= 36

+ structural features: packing area (n_{atoms} / area) x 3 layers, + d_{1-2} and d_{1-3} + θ_{\min} and θ_{\min}

= **43** total features \rightarrow pick **top 15 features** with RFE

Model Performance with Surface-based Descriptors

University

Promising Candidate Surfaces with Extreme WFs

Graph-Convolutional Neural Networks to Predict Surface Properties

D2R2group.com

(in preparation)

MatFold: Cross-Validation Protocols to Probe OOD Generalization in MatSci

ML Driven Screening: Novel Ultra-bright and Air-Stable Photocathodes

E. R. Antoniuk, Y. Yue, Y. Zhou, **P. Schindler**, W.A. Schroeder, B. Dunham, P. Pianetta, T. Vecchione, and E.J. Reed. *Physical Review B*, 101 (2020). E. R. Antoniuk, **P. Schindler**, W. A. Schroeder, B. Dunham, P. Pianetta, T. Vecchione, and E. J. Reed. *Advanced Materials*, 33, 44 (2021).

Northeastern

University

Ultra-low Work Function

Thank you for listening!

For further information and references:

www.d2r2group.com

Open Access: Full database and ML model (click on "*Resources*")

