

Exceptional service in the national interest

DEEP NEURAL OPERATORS AS ACCURATE SURROGATES FOR SHAPE OPTIMIZATION

Applications to Airfoils and Hypersonic Waveriders

Michael Penwarden, Ph.D.

Org. 6741

+ Khemraj Shukla (Brown), Vivek Oommen (Brown), Ahmad Peyvan (Brown), Nicholas Plewacki (ARL), Luis Bravo (ARL), Anindya Ghoshal (ARL), Mike Kirby (Utah), George Karniadakis (Brown)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

PHYSICS-INFORMED MACHINE LEARNING (PIML)

- What models are "Good"
- 5. Employ Optimization
 - What algorithms to train models?

PINNs

- Equations of motion are simpler in some coordinate frames than others
- We should train on data in formats ML is best able to interpret and learn from based on our physical knowledge
- The simpler the mapping from inputs to outputs, the easier it is to train ML models

SOLVING FORWARD PDE'S (WHY?)

TRADITIONAL APPROACHES TO NUMERICAL METHODS FOR PDE'S

Finite Volume Methods

Spectral Methods

NEURAL OPERATORS

• A neural operator is a general data-driven ML approach which learns infinite dimensional function to function maps

$$G: \mathbb{R}^n \to \mathbb{R}^m$$

- Standard PDE solvers can be time consuming and even require super computers
- If you can properly learn the operator between inputs (i.e. PDE initial conditions) and outputs (i.e. PDE solution), then you can predict new solutions with one forward pass of the network (only takes milliseconds) instead of solving each time

APPLICATIONS OF NEURAL OPERATORS

HPC simulation (e.g. weather forecasting)

Digital twins for design, embedded control, etc.

[1] Pathak, Jaideep, et al. "Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators." *arXiv preprint arXiv:2202.11214* (2022).

DEEP LEARNING (DL): BRIEF DNN BACKGROUND INFO

- Single artificial neural with (nonlinear) activation function $\boldsymbol{\sigma}$

 Arbitrarily large single-layer NN (Universal Approximation Theorem)

• Fully-connected NN with arbitrary width, depth, and output size

DEEPONET FOR VEHICLE SHAPE OPTIMIZATION

 Using neural operators to discover optimal geometries: a case study on airfoil and hypersonics

GENERATE GEOMETRIC DATASET

where $a_0 = 0.2969, a_1 = -0.1260, a_2 = -0.3516, a_3 = 0.2843, a_4 = -0.1015.$

MESH TRAINING EXAMPLES (PRE-CFD STEP)

TRAIN SURROGATE MODEL

• Solve 2D compressible Navier-Stokes for different airfoils

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} = 0$$

$$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^{2} + p}{\partial x} + \frac{\partial \rho uv}{\partial y} = \frac{1}{Re} \left(\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} \right)$$

$$\frac{\partial \rho v}{\partial t} + \frac{\partial \rho uv}{\partial x} + \frac{\partial \rho v^{2} + p}{\partial y} = \frac{1}{Re} \left(\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} \right)$$

$$\frac{\partial E}{\partial t} + \frac{\partial (E+p)u}{\partial x} + \frac{\partial (E+p)v}{\partial y} = \frac{1}{Re} \left[\frac{\partial (u\tau_{xx} + v\tau_{xy} + \kappa\frac{\partial T}{\partial x})}{\partial x} + \frac{\partial (u\tau_{xy} + v\tau_{yy} + \kappa\frac{\partial T}{\partial y})}{\partial y} \right]$$

• Train DeepONets to predict pressure, x-y velocity, and density fields

	NURBS-DeepONet		Parameter-DeepONet	
	Train rel. L^2 Error	Test rel. L^2 Error	Train rel. L^2 Error	Test rel. L^2 Error
\mathcal{G}^p	4.68e-03	6.05e-03	5.23e-03	6.85e-03
\mathcal{G}^{u}	4.97e-03	6.21e-03	4.12e-03	5.38e-03
\mathcal{G}^v	3.73e-03	4.60e-03	3.31e-03	4.25e-03
$\mathcal{G}^{ ho}$	4.57e-03	5.89e-03	4.00e-03	5.18e-03

Relative L^2 errors of the state variables trained DeepONet models

SURROGATE MODEL MAPS GEOMETRY TO FOUR FIELDS

NACA 7315

15

MINIMAL FLOWFIELD GENERALIZATION ERROR

SURFACE OF AIRFOIL PREDICTIONS

NACA 7315

COMPUTE QUANTITIES OF INTEREST

• Compute quantities of interest (QOI) to optimize for (Lift/Drag)

$$\tau_w = \mu \frac{dU}{d\overrightarrow{n}}$$
$$L = \int dF_x = \sum p\overrightarrow{n_x} dS + \sum \tau_w \overrightarrow{t_x} dS$$
$$D = \int dF_y = \sum p\overrightarrow{n_y} dS + \sum \tau_w \overrightarrow{t_y} dS$$

1. Finite-difference (A):

$$\frac{dU}{d\overrightarrow{n}} = \frac{-U_2 + 4U_1 - 3U_0}{2h}$$

2. Automatic-differentiation (B):

$$\frac{dU}{d\vec{n}} = (v_y - u_x)\sin\theta\cos\theta - v_x\sin^2\theta + u_y\cos^2\theta$$

EVALUATING PERFORMANCE

• Lift/Drag QOI is close to Nektar++ (traditional CFD solver) baseline

QOI OPTIMIZATION LANDSCAPE

PERFORM GEOMETRY OPTIMIZATION

Perform optimization

- Four to five orders of magnitude speed-up
- Flexibility to designate new quantities of interest to optimize for without re-training

Model Type	Relative Cost of Single Objective Function Evaluation	
Baseline CFD (Nektar++)	32,253	
DeepONet (A)	1.34	
DeepONet (B)	1	

3D AEDC WAVERIDERS AT HYPERSONIC CONDITIONS

US3D

- Also done for morphed surfaces for hypersonic waveriders and at different flight conditions
- Neural operators can be used as digital twins for autonomous control DeepONet due to their real-time physical inferences
- Limited results as most were CUI

Heat flux Q_w at Mach 7.36

HYPERSONIC AEDC WAVERIDERS

The L^2 norm of relative error between actual and predicted total shear stress τ_y and heat flux Q_w from DeepoNet for the AEDC waverider.

AoA	Sample Type	L^2 error in τ_y	L^2 error in Q_w
-10	Train	0.38%	3.50%
-9	Train	0.34%	3.39~%
-8	Test	0.34%	3.55%
-7	Test	0.38%	4.07%
-6	Train	0.30%	3.35%
-5	Test	0.33%	3.30%
-4	Train	0.29%	3.24~%
-3	Test	0.28%	3.05%
-2	Train	0.28%	2.57~%
-1	Train	0.29%	2.44~%
0	Train	0.28%	2.24%
1	Train	0.32%	2.11%
2	Test	0.36%	2.42%
3	Train	0.37%	2.08%
4	Test	0.40%	2.04%
5	Train	0.45%	2.01%
6	Test	0.50%	1.97%
7	Train	0.51%	1.93%
8	Test	0.54%	1.87%
9	Train	0.57%	1.91%
10	Train	0.61%	2.08%

More UUR results in follow-up preprint:

- Shukla, Khemraj, et al. "Deep operator learning-based surrogate models for aerothermodynamic analysis of AEDC hypersonic waverider." *arXiv preprint arXiv:2405.13234* (2024).

QUESTIONS?

ELSEVIER

Engineering Applications of Artificial Intelligence Volume 129, March 2024, 107615 Tanana Addition of Artificial Intelligence

Research paper

Deep neural operators as accurate surrogates for shape optimization

Khemraj Shukla^{a1}, Vivek Oommen^{a1}, Ahmad Peyvan^{a1}, Michael Penwarden^{b1}, Nicholas Plewacki^c, Luis Bravo^c, Anindya Ghoshal^c, Robert M. Kirby^b, George Em Karniadakis^a ∧ ⊠