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BACKGROUND

- Malware attacks from cybercrime organizations are pervasive
- These organizations have been the subject of law enforcement action

« Studying malware from these cybercrime organizations provides insights into detecting

malware used in rare, targeted attacks
- Both cybercrime organizations and perpetrators of targeted attacks use custom tools to package
and send malware

- Targeted attacks are poorly detected by commercial antivirus engines
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BACKGROUND

+ Files or messages created and sent with custom software tools can have distinctive
metadata values

« These metadata values can be used to detect malware
« Metadata values remain distinctive even as malware evolves and changes
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BACKGROUND

« A cybersecurity expert can create malware metadata signatures
- More effective than commercial antivirus engines

Number of AV Engines Detecting Samples that Match an Expert-Created Signature
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OBJECTIVE

Develop methods to automatically generate malware metadata signatures from malware
samples
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Does not require a human expert

Signatures can be generated more quickly

Generated signatures are more objective
Methods more accurately identify metadata attributes that are artifacts of tooling
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ZIP FILE METADATA

« Set of features with discrete values
« ZIP Version=6.3

« Method = Deflate
* Create System = UNIX

- Signature defines possible values for a subset of the features
« ZIP Version=6.30r 2.0

« Method = Deflate




RANDOM FOREST CLASSIFIER

« Collection of decision trees
- Does not require intensive feature engineering
« (Can determine feature importance

Random Forest
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RANDOM FOREST CLASSIFIER
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One-hot encode metadata features
Train a random forest to classify whether metadata came from a malicious file

Determine the most important metadata features
Use these important features for a signature
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Malicious ZIP Files

Evaluate Signature on Benign and Malicious ZIP Files
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RESULTS

- Random forest classifiers and generated signatures were extremely effective

- However, signatures often included many redundant features
« Limits signature generalization and explainability

- Difficult to determine the feature importance threshold

ZIP 1 Feature Importance
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CONCLUSIONS N\

AN
- Knowing which features are important is different from knowing which features are \
sufficient

« A greedy algorithm for building combinations of features created shorter, equally effective
signatures
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EMAIL METADATA

- Sequences of characters
« Signatures are regular expressions that must match the entire metadata value

Example Metadata Value: ----=_NextPart_000_0012.08724505
Example Metadata Signature: ----=_NextPart_00[0-9]_[0-9]{1,5}\.[0-9]{1,10}

Constant Character Class
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TRANSFORMER MODEL N

Train a transformer neural network to classify whether metadata came from a malicious
email

Transformers learn context and meaning in sequential data

Bidirectional Encoder Representations from Transformers (BERT) is a transformer
architecture previously used for malware analysis

- BERT considers both preceding and succeeding elements when learning context

Linear Layer Added
for Classification
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RESULTS

« Performance on training data quickly neared 100% accuracy
« Poor generalization to unseen testing data

F1 Across Training Epochs
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CONCLUSIONS

 Insufficient data for training a transformer model capable of generalizing
- For some signatures, few malicious emails are available

- Possible to generate synthetic data using the known signatures

« Signatures are based on a pattern in the entire sequence rather than the contextual
meaning of the individual characters
- Atransformer model attempts to learn contextual meaning that may not exist

- An algorithm that used Multiple Sequence Alignment could create effective signatures and
required few training samples
« Required encoding knowledge specific to the domain and the signature format
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