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• SNL is interested in monitoring systems that are constantly evolving, and that may have 
deviated from original design specification due to upgrades, or the fact that they are legacy 
systems with unknown design pedigree. 

• These requirements motivate the use of a data-driven approach since the physics-based 
models may not always be available. 

• This requirement combined with the need for understanding the physical behavior of the as-
built, as-deployed system in order to perform physically interpretable structural health 
monitoring motivate the use of physics constraints and/or structure preservation in our data-
driven approach. 

• Objectives:

i. Establish a general family of physics-constrained and structure-preserving data-driven 
methods for SHM

ii. Address practical challenges associated with physics-constrained data-driven methods

iii. Propose an SHM workflow that enables the development of physically-interpretable 
models 

Motivation: Representation of the as-built, as-deployed state
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• “The most fundamental lesson of ML is the bias-variance tradeoff: when you have 
sufficient data, you do not need to impose a lot of human generated inductive bias 
on your model. You can “let the data speak”. However, when you do not have 
sufficient data available you will need to use human-knowledge to fill the gaps.” [1]

• In physics, data generation is expensive and therefore we cannot simply “let the 
data speak”, so we need to impose structure and domain knowledge for 
generalization. 

Bias-Variance Trade-Off in Machine Learning 

[1]. “Do we still need models or just more data and compute?” Article by Prof. Max Welling (University of Amsterdam), 2019
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1. Physics-informed: the goal is to solve a known partial 
differential equation (PDE) with ML (least amount of data, 
max amount of physics knowledge)

2. Structure preservation: the goal is to preserve the underlying 
geometric structure of the physical system through the use of 
architectural constraints or inductive biases (low amount of 
data, medium amount of physics knowledge)

3. Physics constraints: the goal is to constrain the ML model to 
obey certain physical laws (more amount of data, low amount 
of physics knowledge)

4. Purely data-driven: no physical constraints, the ML model has 
maximum flexibility to learn from data (most amount of data, 
no physics knowledge)

Physics/Data Trade-Offs
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Ensemble of neural networks

Structure-Preserving Hamiltonian Neural Differential Operator

Encoder Decoder
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Sensor measurements

No assumptions of linearity anywhere 
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Application of structure-preserving, data-driven digital twins

• Oscillator with nonlinear damping and 
stiffness. 

• Trained with a single realization, and 
tested with different initial conditions 
and/or boundary conditions. 

𝑚1 = 1.1,𝑚2 = 1.5, 𝑘1 = 1.0, 𝑘2 = 1.3, 𝑘3 = 0.8, 𝑐1 = 0.01, 𝑐2 = 0.08

𝑘𝑛𝑙 = 10.0, 𝑐𝑛𝑙 = 0.095

Najera-Flores, D. A., and Todd, M. D., 2023, “A structure-preserving neural differential Operator with 

embedded Hamiltonian constraints for modeling structural dynamics,” Computational Mechanics, 3.
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The challenge of reconstructing the state-space from partial measurements 

How to reconcile realistic measurements techniques with data-
driven methods? 

• A consequence of choosing Hamiltonian mechanics is that the system must be 
solved in generalized coordinates. An autoencoder is used to perform coordinate 
transformation from some arbitrary coordinate set to the generalized coordinates. 

• CHALLENGE: typically, observable data (i.e., measured) does not represent a 
complete set of generalized coordinates. 

Typically, only sparse 

measurements are available. 
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Taken’s embedding theorem 

Addressing partial observability challenge

• Taken’s theorem [1] implies that state space 
reconstruction is possible via time-delay 
embeddings of observable data (under certain 
conditions). 

• Formally, it is stated that there exists a 
diffeomorphism between time-delay 
embeddings of data and its underlying state 
space (or manifold). 

• Challenges: 
• Determining the time delays and the number of 

delayed time series to use. 

• Finding the diffeomorphic mapping between the time-
delay embeddings and the appropriate manifold. 

https://cnx.org/contents/k57_M8Tw@2/Takens-Embedding-Theorem

[1]. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Warwick 1980, pp. 

366–381. Springer, Berlin, Heidelberg (1981)



9

Leveraging embeddology algorithms 

Kraemer’s automated & unified 
embedding recipe

• Continuity statistic by Pecora et al [1].:

• Continuity statistic is used to test whether a 

new proposed embedded component can be 

reconstructed from existing components, 

thus testing its redundancy and irrelevance. 

• L-statistic by Uzal et al [2]: 

• L-statistic quantifies the goodness of a 

reconstruction and is used to select the 

candidate components indicated by the 

continuity statistic. 

• Kraemer et al. [3] combined these ideas into an 

algorithm called PECUZAL, which is used in this 

work. 

[1]. Pecora, L.M., Moniz, L., Nichols, J., Carroll, T.L.: A unified approach to attractor 

reconstruction. Chaos: An Interdisciplinary Journal of Nonlinear Science 17(1), 013110 

(2007) https://doi.org/10.1063/1.2430294.

[2]. Uzal, L.C., Grinblat, G.L., Verdes, P.F.: Optimal reconstruction of dynamical systems: 

A noise amplification approach. Phys. Rev. E 84, 016223 (2011). 

https://doi.org/10.1103/PhysRevE.84.016223

[3]. Kraemer, K.H., Datseris, G., Kurths, J., Kiss, I.Z., Ocampo-Espindola, J.L., Marwan, 

N.: A unified and automated approach to attractor reconstruction. New Journal of Physics 

23(3), 033017 (2021). https://doi.org/10.1088/1367-2630/abe336

https://arxiv.org/abs/https:/doi.org/10.1063/1.2430294
https://doi.org/10.1103/PhysRevE.84.016223
https://doi.org/10.1088/1367-2630/abe336
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• In order to find a the diffeomorphic mapping, a 
bijective neural network is used. 

• A well-known bijective architecture is the 
normalizing flow network (also know as an 
invertible neural network). 

• However, the normalizing flow network cannot 
change dimensions, limiting any dimensionality 
compression. 

• To overcome this limitation, a singular value 
decomposition is used on the original time-
delay embeddings, and a reduced number of 
dimensions is kept. 

• The reduced-order vectors are then linearly  
“mixed” to avoid any biases when the NF 
network splits the data in two. 

Learning bijective autoencoders 

Normalizing flow autoencoder

𝐳 = 𝐕𝐓𝐱

𝐳 = 𝐓𝐳

𝐪𝐴 = 𝐳𝐴 ⊙exp 𝑠𝐵 𝐳𝐵 + 𝑡𝐵(𝐳𝐵)

𝐪𝐵 = 𝐳𝐵 ⊙exp 𝑠𝐴 𝐳𝐴 + 𝑡𝐴(𝐳𝐴)

𝐳𝐵 = 𝐪𝐵 − 𝑡𝐴 𝐪𝐴 ⊙exp(−𝑠𝐴 𝐪𝐴 )

𝐳𝐴 = 𝐪𝐴 − 𝑡𝐵 𝐪𝐵 ⊙ exp(−𝑠𝐵 𝐪𝐵 )

𝐳 = 𝐓−𝟏𝒛

𝐱 = 𝐕𝐳

SVD projection

Linear mixing, learned

Normalizing 

flow 

Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using Real NVP (2017)
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• The PECUZAL time-delay 
algorithm is integrated with the 
normalizing flow autoencoder and 
then passed to the structure-
preserving neural differential 
operator. 

• The autoencoder and the 
structure-preserving neural 
differential operator are all 
trained simultaneously. 

Integration of bijective autoencoder with structure-preserving neural differential operator 

Proposed workflow 

Najera-Flores, D.A., Todd, M.D. State-space reconstruction from partial observables using an invertible neural network 

with structure-preserving properties for nonlinear structural dynamics. Nonlinear Dyn (2024). 

https://doi.org/10.1007/s11071-024-09642-4. 
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• The Half Brake-Reuss beam was used to demonstrate the 
proposed approach. 

• The nonlinearities in this beam are due to the three bolt lap 
joint used to join two beams. 

• The beam was tested by exciting the beam at the frequency 
of interest with a fixed sinusoidal signal and then detaching 
the shaker. 

• Although this test is meant to isolate a single model, 
modal coupling occurs due to the nonlinearities

• It was excited with enough energy to excite the 
nonlinearities

• Digital image correlation (DIC) was used to obtain full field 
displacement response but in this work, only three 
locations were assumed to be measured. 

Experimental example 

Demonstration: Half Brake-Reuss Beam 

[1]. Wei Chen et al. Measurement and identification of the nonlinear dynamics of a jointed structure using full-field 

data, part i: Measurement of nonlinear dynamics. Mechanical Systems and Signal Processing, 166:108401, 2022

Experimental setup courtesy of [1]. 
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• The PECUZAL algorithm determined that 
only two dimensions were required for 
state-space reconstruction. 

• Physically, this result made sense given 
the descriptions provided by the authors 
of the original experimental paper, which 
showed that there was coupling between 
two modes. 

Experimental Example

Demonstration: Half Brake-Reuss Beam 
Amplitude-dependent 

frequency and damping 

backbone curves

Hilbert Transform of three 

response measurements 

Accurate predictions past 300% of 

training region. Accurate representation 

of nonlinear frequency and damping. 
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• Once trained, the digital twin is meant to be 
used to detect changes in the system. This 
problem is difficult because the 
healthy/baseline state may be nonlinear, so a 
nonlinearity test is insufficient. Furthermore, 
because of its nonlinear behavior, bifurcations 
may not necessarily indicate damage. 

• We need a strategy for detection that is robust 
to “normative” changes, such as variability in 
initial conditions. 

• Idea: encode distance awareness in the 
hidden feature space in a physically-
meaningful way. 

Identifying domain shift when confronted with new data 

How can we use the trained model to detect damage or changes 
in the system?

Uncertainty-aware models, courtesy of [1]:

[1]. Liu, J. Z., Lin, Z., Padhy, S., Tran, D., Bedrax Weiss, T., and Lakshminarayanan, B., 2020, Simple and principled uncertainty 

estimation with deterministic deep learning via distance awareness. 34th Conference on Neural Information Processing Systems 

(NeurIPS 2020), Vancouver, Canada
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Spectral normalization Gaussian process networks 

Improving neural network’s distance-awareness 
Neural network’s hidden features h 

are used to compute 𝚽

The kernel matrix captures the distance in the hidden space and 

since the inputs to the network represent the state space, the 

distance is then measured in a transformed state space manifold. 
David Najera-Flores, Justin Jacobs, D. Dane Quinn, Anthony Garland, and Michael Todd. Uncertainty-aware, structure-

preserving machine learning approach for domain shift detection from nonlinear dynamic responses of structural systems. 

Manuscript submitted for publication to the Journal of Risk and Uncertainty in Engineering Systems Part B: Mechanical 

Engineering, 2024
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Gradual cubic stiffness example 

Nonlinear damping prediction variance 

• As an example, damage was simulated by 
gradually changing the cubic stiffness 
coefficient

• This damage model is simulating a self-
accelerating degradation mechanism. 



17

• Given the dispersion distributions of 
the nonlinear damping prediction 
variance, a hypothesis test was 
performed. 

• The results showed that the p-value for 
the normative cases (i.e., variation of 
initial conditions) was below 0.05, 
while it was greater than 0.05 for the 
cases with a structural change (i.e., 
damaged). 

• This result indicates that the 
hypothesis test was successful at 
detecting damage while being robust to 
normative changes. 

Comparing test statistic and p-value 

Testing for damage 



18

• After having detected damage, one could 
simply take the system offline and stop 
monitoring. But depending on the severity of 
damage, model updating may be desired so 
that continuous forecasting can continue. 

• The model updates were performed by re-
training the models with a WS = 3500 time 
steps for 10,000 epochs (15 minutes). 
Classical backpropagation methods were used, 
leveraging the interpretation of stochastic 
gradient descent as a proper posterior sampler 
(thus re-training is akin to performing Bayesian 
inference). 

Updated variance after re-training 

Model updates after having detected damage 
Prediction variance was significantly 

reduced after model update. 

David Najera-Flores, Justin Jacobs, D. Dane Quinn, Anthony Garland, and Michael Todd. Uncertainty-aware, structure-

preserving machine learning approach for domain shift detection from nonlinear dynamic responses of structural systems. 

Manuscript submitted for publication to the Journal of Risk and Uncertainty in Engineering Systems Part B: Mechanical 

Engineering, 2024
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• The neural network weights were 
updated, so we can explore their 
statistical distributions to see if we can 
say something about the nature of the 
damage or structural change that 
triggered the update. 

• A Kolmogorov-Smirnov two-sample test 
was performed to compare the two 
statistical distributions. 

Inferring structural change type based on updated parameters

Can we leverage the updated parameters to say something about 
the type of damage?

NL Potential weights p-value: 0.030 < 0.05 

NL Damping weights p-value: 0.626 > 0.05

Therefore, the differences in the statistical distribution of NL 

potential weights are statistically significant while they are not 

for the damping. We can infer that the structural change is 

affecting the stiffness rather than the damping, which is 

correct. 
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• We developed a structure-preserving approach for modeling nonlinear structural 
dynamics while enabling uncertainty quantification for domain shift and 
damage detection. 

• The approach addressed the challenge of partial observability.

• Many more applications of the work not presented here. 

• And many more opportunities for extensions and other applications.

Conclusions

COLLABORATORS:
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• David Najera, david.najera@ata-e.com

Questions or Comments?

mailto:david.najera@ata-e.com

